Real-time Measurements of PM$_{2.5}$ and PM$_{1}$ Chemical Composition: Experience and Results from the UK Supersites and EMEP Intensive Measurement Periods

Eiko Nemitz1, Chiara Di Marco1, Marailidh Twigg1,2, Gavin Phillips1, Rick Thomas1,3, Massimo Vieno1,2, Sim Tang1, Mark Sutton1, David Fowler1

1Centre for Ecology and Hydrology (CEH), Edinburgh, UK
2School of GeoSciences, University of Edinburgh, UK.
3University of Manchester, UK
Background

- **EMEP Monitoring Strategy 2004-09:**
 - Move towards a three-tier strategy
 - Intensive Measurement Periods

- **EMEP Level-2 & Air Quality Directive:**
 - Daily or better basic aerosol composition of PM$_{2.5}$ and PM$_{10}$
 - Reliable gas / aerosol partitioning (rather than EMEP filter pack)

- **UK Approach:**
 - Tried daily denuder / filter measurements in the past
 - Spatial pattern:
 - >80 sites for monthly NH$_3$ measurements
 - 32 sites monthly measurements of NH$_3$, HNO$_3$, HCl, SO$_2$, NH$_4^+$, NO$_3^-$, Cl$^-$, SO$_4^{2-}$, base cations (no cut, about PM$_{4.6}$)
 - Temporal pattern: upgrade two sites to Level-2, with hourly measurements of inorganic aerosol composition by MARGA (PM$_{2.5}$ & PM$_{10}$)

- **Intensive Measurement Periods:**
 - June 2006 & January 2007: some hourly, mainly daily
 - Only few gas-phase measurements (NH$_3$, HNO$_3$)
Monthly Denuder / Filter-pack Measurements within the NitroEurope Level-1 Network

DENUDER 2: Carbonate coated to sample HNO₃, SO₂, HCl

DENUDER 3: Acid coated to sample NH₃

DENUDER 4: Acid coated to sample NH₃

DENUDER 1: Carbonate coated to sample HNO₃, SO₂, HCl

TEFLON INLET: 10 mm OD x 28 mm (L)

DELTA Sampler above Speulder Bos, NL
UK Network
(Monthly denuder / filter pack)
Realtime Measurements

- Wet chemistry instrument (**MARGA**) to measure chemistry composition of fine and coarse inorganic particulate (**PM$_{2.5}$** and **PM$_{10}$**)
 - Since June 2006: Scottish EMEP Supersite ‘Auchencorth’
 - Since Feb 2009: English EMEP Supersite ‘Harwell’
 - Instrument intercomparisons during short measurement campaigns
 - Measurements within Intensive Measurement Periods (Auchencorth, Harwell, Cabauw, Ispra)

- Aerosol Mass Spectrometer (**AMS**) to measure non refractory submicron particulate.
 - UK Measurement campaigns
 - European aerosol climatology during EMEP/EUCAARI IMPs

- Use of data for model validation (**EMEP4UK**)
MARGA. Principle I

Compounds Measured:
- **Gas:** NH$_3$, HCl, HNO$_3$, HONO, SO$_2$
- **PM$_{10}$-PM$_{2.5}$ particles:** Cl$^-$, NO$_3^-$, SO$_4^{2-}$, NH$_4^+$, Na$^+$, K$^+$, Ca$^{2+}$, Mg$^{2+}$

Analysis:
- Ion chromatography

Denuder

- To SJAC
- Ambient air
- Absorbing solution in controlled by level detector
- Sample solution out by syringe pump

Image: Diagram of a denuder setup.
MARGA. Principle II

SJAC Steam-Jet-Aerosol-Collector

DI water in

Super saturated steam

To air pump

Sample to the syringe

Steam generator

Air from denuder

Liquid level sensor

Additional DI

Sample to the syringe
Long-term MARGA measurements

The High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS)
Aerosol Mass Spectrometer

- Transmission near 100%: 60 – 800 nm
- Non-refractory aerosol components only (evaporate at 600°C)
 - In most conditions direct measurement of NH₄NO₃, (NH₄)₂SO₄, NH₄Cl
- Size-distributions
- Mass spectrum of bulk organic composition
 - Organic aerosol classes (primary hydrocarbon-like vs. secondary oxidised organic aerosol)
 - High resolution version: C/O/H/N ratios (OM/OC)
- New Aerodyne Aerosol Chemical Speciation Monitor (PM$_{2.5}$, but still NR)
Comparison AMS vs. MARGA

<table>
<thead>
<tr>
<th></th>
<th>AMS</th>
<th>MARGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>(NH₃, HNO₃, HCl, SO₂, HNO₂)</td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td>~PM₁</td>
<td>PM₂.₅ & PM₁₀/TSP</td>
</tr>
<tr>
<td>Sizing</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Aerosol fraction</td>
<td>Non-refractory only: NH₄⁺, NO₃⁻, SO₄²⁻, Cl⁻, OM</td>
<td>Water-soluble NH₄⁺, NO₃⁻, SO₄²⁻, Cl⁻, (Na⁺, K⁺, Ca²⁺, Mg²⁺)</td>
</tr>
</tbody>
</table>
Size-distributions
Auchencorth Moss EMEP Supersite

- Open moorland at 255 m asl 3.2°E, 55.8°N in Scotland.
- Background site, some large towns to the north-east, intensive farming to the south and south-east.
- Long term monitoring of SO$_2$, NH$_3$, CO$_2$, wet deposition
- MARGA operation since June 2006

Average wind speed: 4.75 m/s
Comparison with gravimetric measurements

![Graph of concentration over time with various markers and legends.]

Auchencorth Moss 2008
PM$_{2.5}$ and coarse monthly composition measured at Auchencorth Moss

2007 Annual average contributions

PM$_{2.5}$: 3.3µg m$^{-3}$
- NH$_4^+$: 29%
- NO$_3^-$: 16%
- SO$_4^{2-}$: 20%
- Crustal: 6%
- Sea Salt: 28%

PM$_{10}$-PM$_{2.5}$: 1.3µg m$^{-3}$
- NH$_4^+$: 7%
- NO$_3^-$: 17%
- SO$_4^{2-}$: 10%
- Crustal: 58%
Wind sector studies on Auchencorth Moss

- **u (m s⁻¹) av**
- **u (m s⁻¹) med**
- **Frequency**

- **HNO₃**
- **SO₄²⁻·PM₁₀**
- **SO₄²⁻·PM₂.₅**
- **NH₄⁺·PM₁₀**
- **NH₄⁺·PM₂.₅**

- **SO₂**
- **NH₃ Average**
- **NH₃ Median**
- **Na·PM₁₀**
- **Cl·PM₁₀**
- **NO₃⁻·PM₁₀**
- **NO₃⁻·PM₂.₅**
TSP in urban environment. London-BT tower

October 2006

October 2007

REPARTEE-CityFlux
Fine / coarse nitrate

• Chemical models do not normally predict PM$_{2.5}$ and PM$_{10}$, but e.g. ammonium nitrate and other nitrate (NaNO$_3$, Ca(NO$_3$)$_2$)
• Nitrate in PM$_{2.5}$ = NH$_4$NO$_3$ + tail of other nitrate
• Combination of MARGA & AMS:
 – AMS measures NR NO$_3^-$ (NH$_4$NO$_3$ only)
 – Coarse nitrate by difference (MARGA – AMS)

• Add Harwell nitrate plot
• Add size distribution plot of chemical components to illustrate problem of PM2.5
Coarse vs. Fine Mode NO$_3^-$

- Harwell (June 2006): 49% fine : 51% coarse
- Harwell (Jan 2007): 61% fine : 39% coarse
- BT Tower (Oct 2006): 34% non-refractory : 66% refractory
Comparison of MARGA with Filter Sampler (Harwell)

June 2006

Chloride

\[y = 1.000 \times + 0.239 \]
\[R^2 = 0.972 \]

Nitrate

\[y = 0.900 \times + 1.796 \]
\[R^2 = 0.518 \]

Sulphate

\[y = 1.385 \times - 0.842 \]
\[R^2 = 0.821 \]

January 2007

Chloride

\[y = 1.179 \times - 0.783 \]
\[R^2 = 0.943 \]

Nitrate

\[y = 0.925 \times - 0.127 \]
\[R^2 = 0.953 \]

Sulphate

\[y = 0.894 \times + 0.0933 \]
\[R^2 = 0.747 \]
Comparison filter sample (PM$_{10}$) vs. MARGA (TSP) (BT Tower)
AMS Size Distribution at CEH EMEP (Bush)
UK Non-Refractory Submicron Aerosol Composition Measured by Aerosol Mass Spectrometry

- Edinburgh 2000: 3.0 µg/m³
- Easter Bush 2002: 5.74 µg/m³
- Mace Head 2002: 1.53 µg/m³
- Edinburgh 2005: 7.42 µg/m³
- Bush Estate 2006: 8.54 µg/m³
- Mace Head 2006: 2.56 µg/m³
- Alice Holt 2005: 3.1 µg/m³
- Manchester 2002: 5.16 µg/m³
- Manchester 2001: 14.3 µg/m³
- Torch 2 2004: 7.5 µg/m³
- Manchester 2006: 9.27 µg/m³
- Torch 1 2003: 5.39 µg/m³
- London 2006: 10.43 µg/m³
- BT Tower 2006: 8.32 µg/m³

Legend:
- Green: Organics
- Blue: NO₃⁻
- Red: SO₄²⁻
- Yellow: NH₄⁺
- Pink: Cl⁻
EMEP Intensive Measurement Campaigns

<table>
<thead>
<tr>
<th></th>
<th>AMS</th>
<th>GRAEGOR</th>
<th>NH$_3$/HNO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>June ’06</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Jan ’07</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sep/Oct ’08</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Feb/Mar ‘09</td>
<td>10</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
June 2006: Nitrate

Aerosol Mass [µg m⁻³]
Averaged diurnal cycles
\(\text{NO}_3^- \) June 2006
AMS at Montseny
Collaboration Jimenez / Querol / Nemitz
New Aerodyne PM$_{2.5}$ Aerosol Chemical Speciation Monitor (ACSM)

Size:
18”D x 22”W x 24”H
(46 cm x 56 cm x 61 cm).

Weight: 140 lbs
(64kg)

Power: 300W
universal AC power; 120/240 VAC, 50/60hz

Average total loading: 5.4 µg/m3

Sulfate comparison
Application of the EMEP model over the UK - EMEP4UK

- EMEP model version 3.0
- Eulerian Chemical Transport and Deposition Model used by EMEP
- Driven by WRF 2.2 with FDDA (GFS reanalysis 1.0 °)
- EMEP4UK uses a one-way double nested domain approach
 - Outer domain covers Europe 50 km
 - British Isles 5 km
- 20 vertical layers in sigma coordinates: centre of grid point for the surface layer ~45 m, and ~16 km top.

NB: Chemical models do not normally predict PM$_{2.5}$ and PM$_{10}$, but e.g. fine nitrate (NH_4NO_3) and coarse nitrate (NaNO_3, $\text{Ca(NO}_3)_2$)
Application of EMEP4UK

Auchencorth SO$_4$$^{2-}$
June 2006 (hourly)

EMEP4UK (Auch)
MARGA (Auch)
AMS (Bush)

Application of EMEP4UK
Summary I

- Lowvol / highvol samplers (without denuder) are not suited for measurement of nitrate.

- Wet chemistry instruments (MARGA) provide chemical composition of PM$_{2.5}$ and PM$_{10}$ of inorganic aerosols with hourly resolution, 60-70% data coverage achievable.

- AMS measurements are complementary to the wet chemistry measurements adding information on NR submicron chemical composition and size distribution, organic speciation, OM/OC ratio.

- PMF can be used to distinguish the type of organic aerosols from AMS data.

- Both MARGA and AMS provide a good measure of volatiles (NH$_4$NO$_3$).
Summary II

- Hourly data provide test for models regarding emissions, transport, chemistry and thermodynamics (gas / aerosol partitioning).

- IMPs have provided first synchronised hourly measurements at European scale.

- June 2006/07 data more limited, but available through EMEP website.

- For measurement / model intercomparison need to consider what exactly the different instruments measure and how this relates to the modelled compounds. → Involve measurement providers!

- Largest AMS network achieved during EMEP/EUCAARI campaigns 2008/09, inorganic and organic European aerosol climatology.

- Data analysis May 2009.

- Not easy to implement highly time-resolved gas phase measurements (NH_3, HNO_3), database sparse.
Acknowledgements

• Defra (funding of UK EMEP measurements)
• NERC (CityFlux funding)
• Univ. of Manchester (Other UK Measurements)
• EMEP Groups
• EUCAARI IP (European AMS Network)
• BT (access to BT Tower)