NEW BOLDENONE HYDROXYL METABOLITES IN CATTLE URINE

G. Ferretti, L. Palleschi, C. Ferranti, F. delli Quadri, M. Fiori, A. Macrì and R. Draisci

Istituto Superiore di Sanità

Viale Regina Elena, 299 – Roma, Italy

Department of Food Safety and Veterinary Public Health

Section of Chemical risk in the chain of production and control quality
General Outline

- Introduction
- Boldenone hydroxyl metabolites
- *In vitro* LC-MS/MS studies
- *In vivo* LC-MS/MS studies
- Preliminary results
- Conclusions
Introduction

- **17β-Boldenone** (17β-Bol) is an androgenic steroid of synthetic origin endowed of potent anabolic properties, and forbidden for meat production.

- It is illegally used for treatment of athletes and racehorses to improve sport performance and in cattle.
Introduction

- As for other androgenic steroids, 17β-Bol is classified by the IARC as a probable human carcinogen

- Role of 17α-Bol in the development of human prostate carcinomas

- *In vitro* and *in vivo* metabolism studies (phase I and phase II) can be of help in efficiently comparing urinary excretion profiles of “control” and “treated” animals
Structures

ADD (1,4-androstadiene-3,17-dione)

17β-Bol
(1,4-androstadiene-17β-ol-3-one)

17α-Bol
(1,4-androstadiene-17α-ol-3-one)
Investigated hydroxyl metabolites of Boldenone:

- \(16\beta,17\beta\text{-OH-Bol} \)
- \(16\alpha,17\alpha\text{-OH-Bol} \)
- \(6\beta,17\beta\text{-OH-Bol} \)
- \(6\beta,17\alpha\text{-OH-Bol} \)
LC-MS/MS system

GRADIENT ELUTION

(A) CH$_3$COOH 1%
(B) ACN

Flow 200 μL/min

- AB API 3000 mass spectrometer - triple quadrupole
- TIS (Turbo Ion Spray source, PI mode)
- $T = 300 \, ^\circ$C
LC-MS/MS studies

- Q1 scan
- Product Ion scan (mass fragments)
- Q1-Q3 (MRM, Multiple Reaction Monitoring)
LC-MS/MS studies: \((6\beta,17\alpha-\text{OH-Bol})\)

Product Ions of 303

Collision Energy = 30

Selected fragments
LC-MS/MS Analysis

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Precursor m/z</th>
<th>Product m/z</th>
<th>t_R (min)</th>
<th>CE (eV)</th>
<th>CC_{β} (ng mL^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6β,17β-OH-Bol</td>
<td>303 (M + H)^+</td>
<td>121, 171, 147</td>
<td>6.0</td>
<td>30</td>
<td>0.6</td>
</tr>
<tr>
<td>6β,17α-OH-Bol</td>
<td>303 (M + H)^+</td>
<td>121, 171, 147</td>
<td>7.0</td>
<td>30</td>
<td>0.3</td>
</tr>
<tr>
<td>16β,17β-OH-Bol</td>
<td>303 (M + H)^+</td>
<td>121, 147, 171</td>
<td>7.8</td>
<td>30</td>
<td>0.6</td>
</tr>
<tr>
<td>16α,17α-OH-Bol</td>
<td>303 (M + H)^+</td>
<td>121, 147, 171</td>
<td>9.1</td>
<td>30</td>
<td>0.6</td>
</tr>
<tr>
<td>β-Bol</td>
<td>287 (M + H)^+</td>
<td>121, 135, 173</td>
<td>11.7</td>
<td>21</td>
<td>0.4</td>
</tr>
<tr>
<td>α-Bol</td>
<td>287 (M + H)^+</td>
<td>121, 135, 173</td>
<td>13.3</td>
<td>21</td>
<td>0.4</td>
</tr>
<tr>
<td>ADD</td>
<td>285 (M + H)^+</td>
<td>121, 147, 151</td>
<td>13.1</td>
<td>21</td>
<td>0.5</td>
</tr>
<tr>
<td>17β-T-d_{2}</td>
<td>291 (M + H)^+</td>
<td>99.1</td>
<td>13.4</td>
<td>27</td>
<td>-</td>
</tr>
</tbody>
</table>

- Product ions are the same, but ion ratios are different
LC-MS/MS

16β,17β → 6β,17α → 16α,17α

6β,17β → 17β-Bol

17α-Bol → ADD

Standard solution
While in literature m/z 121 and 147 are well documented, we hypothesized the structure of m/z 171.

Dehydration of 6-OH
Hypothesis of fragmentation

Incubation with β-Bol

6β, 17β-OH, or ?? 16α, 17β-OH

16β, 17α-OH
Hypothesis of fragmentation

Incubation with ADD

Product Ions of 301
Collision Energy = 30
Putative 6-OH ADD

Dehydration of 6-OH
Sample Extraction

Urine (4mL)

Spiking IS, on blank matrix

2 mL of ABS 0.9 M

pH 5 with acetic acid 2M

50 µL enzyme β-glucuronidase/arylsulphatase

IS (17β-T-d₂)
Sample Extraction

vortex for 15”

Overnight incubation under stirring at 37 °C

1 mL NaOH 1M

(2 x 15 mL) DCM
Sample Extraction

Evaporation under reduced pressure

Dissolution in 6 mL ABS

C18 SPE

LC-MS/MS analysis
LC-MS/MS: in vivo

Spiked blank matrix – I cal. level
$6\beta,17\alpha-\text{OH BOL}$ is present in the treated, but not in the control sample.
Conclusions

- 17β-Bol is confirmed as a marker of illegal use of anabolic agents.

- The presence after treatment of the hydroxyl metabolite $6\beta,17\alpha$-OH-Bol, even though additional studies on other metabolites are currently in due course, candidate this as another possible marker of anabolic abuse.
Conclusions

RESEARCH is ongoing.........
Acknowledgements

University of Padua

C. Montesissa, Igino Andrighetto, Roberta Merlanti, Francesca Capolongo, Severino Segato, Lisa Poppi, Mauro Dacasto

Financial Support

- Veterinary Services Regione del Veneto Dr Giovanni Vincenzi
- Ministry of Health – Ricerca finalizzata 2003 – Progetto SARA
Thank you!!!