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Rapport in het kort

Model-Then-Add
Berekening van de gebruikelijke inname bij multimodale innameverdelingen

Het RIVM heeft met de Wageningen Universiteit (WUR) software ontwikkeld
waarmee kan worden berekend hoeveel chemische stoffen mensen
binnenkrijgen via de voeding (Monte Carlo Risk Assessment; MCRA). Enkele
voorbeelden van zulke stoffen zijn contaminanten (acrylamide, dioxine, lood) en
micronutriénten. Om de inname op de lange termijn te kunnen berekenen, is
een module aan deze software toegevoegd, Model-Then-Add. De lange termijn
inname is relevant bij chemische stoffen die niet meteen maar pas na verloop
van tijd een gunstig of schadelijk effect op de gezondheid kunnen veroorzaken.
De Model-Then-Add-module kan worden gebruikt als de gemiddelde
innameverdeling bij een groep mensen statistisch gezien geen ‘normale’ curve
vertoont, bijvoorbeeld als de stof maar in een beperkt aantal producten
voorkomt. De module kan in dergelijke gevallen een realistischere inschatting
van de lange termijn inname geven.

Voor dit onderzoek is een case-study uitgewerkt naar de lange termijn inname
van rookaroma’s, een potentieel schadelijke groep stoffen bij hogere innamen.
De inname is berekend met de Model-Then-Add-module en de huidige
methodiek, waarvan bekend is dat het de lange-termijn inname overschat.
Hieruit blijkt dat de inname van rookaroma’s volgens de Model-Then-Add-
module lager is. Door dergelijke nauwkeurigere, lagere innamen van schadelijke
stoffen zijn mogelijk minder (kostbare) maatregelen nodig om
gezondheidsrisico’s te verlagen, zoals lagere normen voor concentraties in
producten.

Om de inname van chemische stoffen via de voeding met MCRA te berekenen,
worden concentraties van stoffen in de voeding gekoppeld aan gegevens over
wat mensen gedurende enkele dagen consumeren. In Nederland zijn dat de
gegevens van de Voedselconsumptiepeiling (VCP), waarin informatie over de
consumptie van voedingsmiddelen gedurende twee dagen wordt verzameld.
Statistische modellen zijn nodig om op basis van deze gegevens in te schatten
hoeveel van de chemische stoffen mensen op termijn via de voeding
binnenkrijgen.

Trefwoorden:
Gebruikelijke inname via de voeding, multimodaliteit, Model-Then-Add
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Abstract

Model-Then-Add
Usual intake modelling of multimodal intake distributions

The National Institute for Public Health and the Environment (RIVM) and
Wageningen University and Research Centre (WUR) have jointly developed
software to estimate the amount of chemicals ingested via the diet (Monte Carlo
Risk Assessment, MCRA). Examples of such chemicals include contaminants
(e.g. acrylamide, dioxins, lead) and micronutrients. To estimate the intake of
these chemicals in the long run, a module called Model-Then-Add has been
added to the software. The long-term intake is relevant for chemicals that exert
their beneficial or adverse health effect over a long period of ingestion. The
Model-Then-Add module can be used when the distribution of individual mean
intakes of the chemical in a population does not display a normal statistical
distribution after a logarithmic transformation. This may, for example, be the
case when the chemical is present in only a limited number of foods. In such
cases, the module can be used to obtain a more realistic estimation of the long-
term intake.

A case study was performed to assess the long-term intake of smoke aromas, a
group of chemicals that is potentially adverse at high intakes, using the Model-
Then-Add module and the presently used methodology, which is known to
overestimate the long-term exposure. The Model-Then-Add module resulted in
lower intakes. The use of this module may thus result in less risk mitigation or
environmental policy measures that need to be taken to reduce possible health
risks.

To estimate the intake of chemicals via the diet using MCRA, concentrations of
chemicals in foods and beverages are linked to information on the consumption
of these foods during a limited number of days. In the Netherlands, food
consumption data are typically obtained from the Dutch National Food
Consumption Surveys (Voedselconsumptiepeiling, VCP), in which information on
food consumption is collected during two days. Statistical models are necessary
to assess the long-term intake of chemicals based on these data.

Keywords:
Usual intake via the diet, multimodality, Model-Then-Add
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Introduction

To assess the long-term dietary intake of (or exposure to) chemical substances,
both beneficial and adverse, statistical models may be used in higher tier
assessments to estimate the long-term intake corrected for the within-person
variation (Hoffmann et al., 2002; Nusser et al., 1996; Slob, 1993). Long-term
intake is also termed usual or habitual intake. These two terms will be used
interchangeably in this report. Examples of models for usual intake are the
betabinomial-normal (BBN) and the lognormal-normal (LNN) model, which are
both implemented in the Monte Carlo Risk Assessment (MCRA) program

(de Boer and van der Voet, 2011). Both models are based on the principle of
separately modelling intake frequencies and intake amounts, followed by an
integration step. In both BBN and LNN, intake amounts, after a logarithmic or
power transformation, are assumed to be normally distributed. In MCRA, this
assumption can be checked by using the normal quantile—quantile (g—q) plot, a
graphical display of residuals (de Boer et al., 2009). If the criterion of normality
is severely violated, use of models like BBN and LNN may result in erroneous
intake estimates that are either too high or too low.

In those cases, the Observed Individual Mean (OIM) method is presently the
commonly used alternative method available within MCRA. This method
calculates the mean intake over the survey days present in the food
consumption database per individual as a proxy for long-term intake (see e.g.
Dodd et al., 2006). This approach is not dependent on model assumptions, but
is known to overestimate the intake in the upper tail of the intake distribution
(Boon et al., 2011; Boon et al., 2012; Goedhart et al., 2012).

Non-normality is a commonly found phenomenon when long-term intake is
considered. The development of the Model-Then-Add method within MCRA, as
an approach to address this, started when assessing the long-term exposure to
patulin, which was found to be multimodal due to the contributions of multiple
distinct foods to the exposure (de Boer et al., 2009). A simulation model,
available in MCRA 7.1 (de Boer and van der Voet, 2011) made it possible to
visualise the multimodal distributions that can arise from exposure via multiple
foods. Based on these and similar experiences the Model-Then-Add approach
was conceived, and a simple case was tested in a simulation study, with positive
results (Slob et al., 2010). In this study, the exposure per food or groups of
foods was modelled separately using BBN, and then estimates per food or food
group were added to estimate the overall exposure distribution. In a recent
simulation study, it was concluded that in cases of non-normality a Model-Then-
Add approach could be helpful (Goedhart et al., 2012). In the field of nutrition, a
comparable approach has been developed to address the total intake of
nutrients via the diet and other sources like food supplements (van Rossum

et al., 2012; van Rossum et al., 2011; Verkaik-Kloosterman et al., 2012;
Verkaik-Kloosterman et al., 2011).

In the research project described in this letter report, a Model-Then-Add
approach was fully developed and implemented in MCRA version 8.0*
(MCRA, 2013). To demonstrate how the approach works, we assessed the
exposure to smoke flavours, a potentially adverse group of chemicals at high
intakes, using OIM and the Model-Then-Add approach.

1 ; . .
Available via mcra.rivm.nl
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Methodology

Long-term dietary intake assessments usually proceed by first calculating the
intake per food for each person-day (e.g. intake to chemical X per person-day
via apple, intake to chemical X per person-day via pear, etc.). These intakes are
then summed over the foods (intake to chemical X per person-day) to calculate
the total intake per day, and finally to estimate the usual intake (intake to
chemical X per person, averaged over days) by applying a statistical model to
the person-day intakes. To apply these models (including MCRA’s BBN and LNN
models), the person-day intake distribution should be approximately normally
distributed after a suitable transformation. This traditional approach can also be
termed the Add-Then-Model approach, because adding over foods precedes the
statistical modelling.

An alternative approach developed in this research is Model-Then-Add?. In this
approach the statistical model is applied to subsets of the diet (single foods or
food groups), and then the resulting usual intake distributions per food or food
group are added to obtain an overall usual intake distribution. The advantage of
this approach is that the intake via separate foods or food groups may show a
better fit to a normal distribution than via all foods together. The concept was
tested and shown to work in previous studies (de Boer et al., 2009, Slob et al.,
2010, Goedhart et al., 2012). A practical approach to apply Model-Then-Add
within MCRA was however still missing. Therefore, a module in MCRA 8.0 was
developed to make this approach available for usual intake modelling. Below we
describe the principles behind the Model-Then-Add approach as implemented in
MCRA using the example of dietary exposure to smoke flavours in young
children (see section 3 for more details).

The Model step
The Model step starts with a separation of individual foods or food groups from
the total intake distribution. At this stage of model development, this separation

is performed in an interactive process, where the MCRA user is presented with a

visual display (see example in Figure 1), which shows:

1. The OIM intake distribution represented as a histogram, where each bar
shows the frequency of intakes (summed over foods) of individuals in a
certain intake interval. Each bar is subdivided according to the contributions
of the individual foods contributing to those intakes (left panel of Figure 1).

2. The contributions graph, where each of the bars in the OIM intake
histogram is expanded to 100%. This graph allows a better view of the
lower bars in the OIM intake histogram (right panel of Figure 1).

The visual display identifies the nine foods that contribute most to the total
intake. The remaining foods are grouped in a rest category to avoid
identification problems because of too many colours.

The user has now the possibility to select one food or food group and to
separate it from the main intake histogram. A separate graph shows the OIM
intake distribution for this food or food group. The graphs for the main group
(now called the rest group) are adapted to show the OIM intake distribution and
the contributions for the remaining foods (upper two panels of Figure 2).

2 The terminology of Add-Then-Model and Model-Then-Add is similar to the terminology of Add, then Shrink vs.
Shrink, then Add, as introduced by Kevin Dodd during various presentations. We prefer our terminology
because modelling has more aspects than only the shrinking towards the mean (e.g. the type of transformation
chosen).
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Log transformed exposure
distribution (54.9 % positives)
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Figure 1. Left panel: OIM exposure distribution to smoke flavours via the different
foods (excluding the zero exposures) in young children; Right panel: contribution of
foods to exposures within each bar of the OIM distribution histogram.

This separation of foods or food groups from the main intake histogram can be
repeated several times. In this way, the user can try to obtain foods or food
groups that show unimodal OIM intake distributions that can be modelled using
LNN or BNN. In an iterative process, a food or food group can be added

80, 100+ I SAUSAGE, SAL. .
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Figure 2. Result of a selection into two separate food groups and a rest group. The graph

bottom left represents the exposure via a food group containing ‘Sausage, frankfurter’ and
‘Sausage, smoked cooked’. The graph bottom right represents the exposure via a food group

containing ‘Sausage, luncheon meat’, ‘Herbs, mixed, main brands, not prepared’, ‘Soup,
pea’, ‘Ham’, and ‘Bacon’. The top graph represents the exposure via the rest group.
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Log transformed exposure distribution (54.9 % positives) Contribution per category to log transformed exposure distribution
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Figure 3. OIM exposure distribution showing the contributions from the three food
groups as constructed in Figure 2.

again or separated from the rest group until a satisfactorily result is obtained.
Per separate food or food group the usual intake can be modelled using BBN or
LNN, with a logarithmic or power transformation. The rest group, containing
foods for which no unimodal OIM intake distributions can be obtained, will be
modelled using OIM. It is possible that the rest group is empty, when the total
intake via the different foods and /or food groups can be modelled with BBN or
LNN.

After the separation of food or food groups is finalised, the OIM intake
distribution is summarised in terms of the defined grouping (Figure 3), and the
usual intake distribution per food or food group is fitted according to the chosen
modelling settings.

The Add step

In this step, the estimated usual intake distributions per food or food group are
combined to assess the total usual intake. The combination can be made in
several ways. In this report we describe only the simplest option. For this, the
intake distributions per food or food group, including the rest group if present,
are sampled independently (where the number of Monte Carlo iterations can be
chosen in MCRA) and subsequently added to obtain the overall usual intake
distribution (model-based approach®)*. In this approach, correlations in the
consumption of foods are not addressed as in the traditional Add-Then-Model
approach where the Add step automatically reflects any correlations that are
apparent in the consumptions at the individual-day or individual level.
Performing the Add step without considering possible correlations in food
consumption was investigated by Slob et al. (2010) and performed surprisingly
well, even if correlations in consumptions of foods were present.

3 An alternative ‘model-assisted’ approach allowing for correlations, is also available, and is described in the
Reference Manual (MCRA 2013). Also see the Discussion section.

4 Before the addition is made, the usual exposure estimates per food or food group modelled with BNN or LNN
are back-transformed, and the frequency distribution is sampled to decide if a simulated individual has
exposure via the food or food group or not.
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Case study: smoke flavours

Introduction

To show the potential of the Model-Then-Add approach, we performed a case
study on the exposure to smoke flavours using the concentration and food
consumption data used by Sprong (2013). In this study, the long-term exposure
to smoke flavours was estimated in three different age groups in the
Netherlands: young children (2-6 years), children (7-18 years) and adults (19-
69 years). The assessment was performed using the OIM approach (Sprong,
2013). A statistical model to assess the usual intake was not used by Sprong
(2013), because the transformed daily exposure data did not meet the normality
criterion in any of the age groups (de Boer et al., 2009). We used these data to
show the possibilities of the Model-Then-Add approach to refine the exposure
assessment for young children (2-6 years) and adults (19-69 years) as opposed
to the OIM model. The age group children (7-18 years) was not addressed. See
Appendix | for an overview of the concentration data used and Appendix Il for
the corresponding food consumption data for both age groups.

Results

Young children

The dietary exposure to smoke flavours using the OIM model was trimodal
(Figure 1, left panel). The use of BBN or LNN to assess the usual exposure to
smoke flavours was therefore not feasible as concluded by Sprong (2013). As a
first test, we calculated OIM exposure distributions for all 17 foods individually
(Appendix I11). For many foods the number of positive exposure values was very
limited. Grouping of foods had to be made for a meaningful parametric
modelling.

Visual inspection of the joint OIM exposure distribution (Figure 1) and a
comparison of the individual distributions (Appendix 111) showed that the
exposure in the upper part of the log-transformed exposure distribution in
children was mainly due to the consumption of ‘Sausage, frankfurter ‘, ‘Sausage,
smoked cooked’, and ‘Soup, pea’. We labelled these foods as the Top3 food
group. The middle peak in the exposure distribution seemed mainly to be
connected with the consumption of ‘Bacon, ‘Ham, ‘Herbs, mixed, main brands,
not prepared’, and ‘Sausage, luncheon meat’. We labelled these foods as the
Mid4 food group. The foods in the Top3 and Mid4 food groups explained most
(80%0) of the total exposure to smoke flavours (Figure 4). Therefore, the
remaining foods were left in the rest group to be modelled with OIM.

Several models were fitted to assess the long-term exposure (Table 1). Some of
the diagnostic plots are shown in Figure 5 and 6. Compared to the OIM exposure
results, high percentiles of exposure were much lower when the exposure via
the Top3 food group was modelled separately from the remainder of the foods
(with or without the Mid4 food group). Modelling the exposure separately per
food (AllSep) did only result in a slight reduction in exposure estimates in the
upper tail of the exposure distribution compared to OIM. A power transformation
improved the fit of the Top3 food group (but not the Mid4 food group) (Figures 5
and 6), and led to lower percentiles at the tail of the distribution (Table 1).

Adults

For adults, the OIM exposure distribution was also trimodal (Figure 7). As for
young children, foods contributing most to the upper tail of the OIM exposure
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Figure 4. Contribution of the individual foods to total exposure to smoke

flavours in young children.

-'-peanuts batter coated

distribution were ‘Sausage, smoked cooked’, ‘Sausage, frankfurter’, and ‘Soup,
pea’. These three foods were merged in a Top3 food group. The remainder of
the foods were kept in the rest group. We restricted the exposure assessment

for the adults to this scenario.

The exposure to smoke flavours was estimated using different models, as done
in young children (section 3.2.1). The results are presented in Table 2. Figure 8

shows the diagnostic plots for the Top3 exposure distribution for both

transformations (logarithmic and power). The high percentiles of exposure were
much lower when the Model-Then—Add approach was used (Table 2). A power
transformation resulted in the same outcome as a logarithmic transformation:

the estimated power was close to zero (Figure 8).

Table 1. Fitted smoke flavour long-term exposure percentiles for young children (2-6

years) according to several models (ug/kg bw per day).

Model* Foods* Percentile of exposure to smoke flavours
(ng/kg bw per day)
p50 p95 P99
OIM All foods 7 3307 5498
Model-Then-Add

LNN-log + OIM | Top3 + rest group 459 1247 1899

LNN-pow + OIM | Top3 + rest group 457 1040 1503

LNN-log +OIM | Top3 + Mid4 + rest group 531 1206 1747

LNN-pow + OIM | Top3 + Mid4 + rest group 534 970 1233

LNN-log | AllSep 644 1768 4757

LNN-pow | AllSep 642 1554 4634

1OIM = Observed Individual Means; LNN-log = LogisticNormal-Normal, logarithmic

transformation; LNN-pow = LogisticNormal-Normal, power transformation

2Top 3 and Mid4: exposure modelled per food group using LNN-log or LNN-pow; Rest
group: exposure modelled using OIM; AllSep = exposure modelled separately per food
using LNN-log or LNN-pow and then added. See text for definition of the three food

groups.
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Figure 5. Fit of normal exposure distribution to smoke flavours in young children
via the Top3 food group after a logarithmic (above) and power transformation
(below). Estimated power was 0.56.
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Figure 6. Fit of normal exposure distribution to smoke flavours in young children via
the Mid4 food group after a logarithmic (above) and power transformation (below).
Estimated power was 0.14.

Page 12 of 24



RIVM Letter report 090133001

frequency

Contribution per category to log transformed exposure distribution
(65.5 % positives)

Log transformed exposure distribution (65.5 % positives)

200+
W SAUSAGE, SMO
SAUSAGE, FRA
1504 I BACON
H B souP, PEA
El POTATO CRISP...
100+ 2 B HAM
£ SAUSAGE, LUN..
= B BISCUIT, SAL...
504 B others (n=18)
0+ 0.0001 0.01 1 100 10000
0.0001 0.001 o0.01 0.1 1 10 100 1000 10000 0.001 0.1 10 1000
exposure exposure

Figure 7. Left panel: OIM exposure distribution via the different foods (excluding the
zero exposures) for adults; Right panel: contribution of foods to exposures within
each bar of the OIM distribution histogram for adults.

Table 2. Fitted smoke flavour long-term exposure percentiles for adults according to three
models (ug/kg bw per day).

Model* Foods? Percentile of exposure to smoke flavours
(ug/kg bw per day)
p50 p95 p99
OIM All foods 14 1461 3234
Model-Then-Add
LNN-log + OIM | Top3 + rest group 186 668 1063
LNN-pow + OIM | Top3 + rest group 187 672 1061

1 OIM = Observed Individual Means; LNN-log = LogisticNormal-Normal, logarithmic
transformation; LNN-pow = LogisticNormal-Normal, power transformation

2 Top 3: exposure modelled per food group using LNN-log or LNN-pow; Rest group:
exposure modelled using OIM. See text for definition of the two food groups.
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Figure 8. Fit of normal exposure distribution to smoke flavours in adults via the Top3
food group after a logarithmic (above) and power transformation (below). Estimated
power was 0.02.
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Discussion and recommendations

In this report, we showed that the Model-Then-Add approach resulted in lower
estimates of exposure in the upper part of the long-term exposure distribution
compared to the Observed Individual Mean (OIM) approach.

OIM vs. Model-Then-Add

The OIM approach to assess the usual intake is a simple methodology to assess
the long-term intake to chemical substances present in food. This methodology
is presently used by the European Food Safety Authority (EFSA) to assess the
long-term exposure to contaminants (e.g. EFSA, 2012a, c; 2013). However, it is
generally known that this approach results in conservative estimates of the
upper percentiles of the usual exposure distribution (Boon et al., 2011; Boon et
al., 2012; Goedhart et al., 2012). To refine the usual exposure assessment,
statistical models such as the lognormal-normal (LNN) or betabinomial-normal
(BNN) models as implemented in MCRA (de Boer and van der Voet, 2011) can
be used by removing the within-person (between days) variation from the daily
exposure distribution. An important prerequisite for this is however that the
daily exposure distribution is normally distributed after a suitable transformation
(de Boer et al., 2009). This criterion cannot be met when the daily exposure
distribution is multimodal. To date, only the OIM approach within MCRA could be
used in this situation.

In this research project, we implemented in MCRA an alternative for OIM,
namely the Model-Then-Add approach, to assess the usual intake in cases of
multimodality (Goedhart et al., 2012). We demonstrated that this approach can
be applied in these cases and that this can result in lower, more refined upper
tail percentiles of exposure compared to the OIM exposure estimates. The
Model-Then-Add approach consist of carefully creating food groups or selecting
foods with unimodal OIM exposure distributions, and modelling the exposure per
food or food group using LNN or BBN (and OIM for the rest group) before adding
the exposures to obtain the total usual exposure distribution. A strategy where
all foods were modelled separately using LNN was not successful and led again
to high percentiles of usual exposure (Table 1), due to the limited exposure data
for a number of individual foods (Appendix II11).

Use of Model-Then-Add approach to assess the exposure to smoke flavours

To illustrate the use of the Model-Then-Add approach, we assessed the exposure
to smoke flavours using data from Sprong (2013). In that study, OIM was used
to assess the long-term exposure because the daily exposure distributions were
multimodal. We assessed the exposure in young children (2-6 years) and adults
(19-69 years) using OIM and the Model-Then-Add approach.

In both adults and young children, a Top3 food group was identified for separate
modelling of exposure using LNN. The exposure via the remainder of the foods
was modelled using OIM. In young children, the OIM exposure distribution via
this Top3 food group still had a non-symmetric distribution (Figure 5). However,
the distribution was unimodal, and therefore a power transformation could be
used to obtain a good fit (Figure 5). The P99 of exposure obtained in this
manner was a factor 3.7 lower than the OIM P99: 1503 vs. 5498 ug/kg bw per
day (Table 1). In adults, the exposure via the Top3 food group performed a
good fit for both types of transformations (Figure 8). The Model-Then-Add P99
of exposure to smoke flavours in this population was more than halved
compared to the OIM P99: 1063 vs. 3234 pg/kg bw per day (Table 2).
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In the young children, also a Mid4 food group was identified for possible
separate modelling of exposure using LNN. The OIM exposure distribution of this
food group showed still some multimodality, and in this case a transformation
did not help to achieve normality (Figure 6). Given that the major contributions
to the total exposure to smoke flavours came from the Top3 food group

(Figure 4), it may be acceptable to leave all other foods in the rest group to be
modelled via OIM. For this age group, the Top3 LNN, power transformation
model represented therefore the method of choice among the investigated
models to assess the usual exposure to smoke flavours.

The Add step: model-based vs. model-assisted

In the Add step of the Model-Then-Add approach the modelled exposures per
food or food group (including the rest group, if relevant) are added to obtain a
total exposure intake distribution. In the approach applied here, the exposures
were added using a model-based approach. In this approach, exposures per
food or food group are independently sampled from the separate exposure
distributions and subsequently added to obtain the total usual exposure
distribution. This approach ignores possible positive or negative correlations
between the foods consumed, and may result respectively in either an under- or
overestimation of the intake. Slob et al (2010) showed an example where
performing the Add step without considering possible correlations in food
consumption performed well, even if correlations in consumptions of foods were
present. More research is needed to establish how robust this result is.

In MCRA, an approach is available to take correlations between the consumption
of foods into account in the Add step, the so-called model-assisted approach
(van Klaveren et al., 2012, Goedhart et al., 2012)°. Goedhart et al. (2012)
concluded that in the traditional Add-Then-Model approach the model-assisted
percentiles appear to be more robust to departures from normality for the
positive amounts than the model-based percentiles.

Use of the Model-Then-Add approach

The Model-Then-Add approach is an alternative to the OIM approach in cases of
multimodality, and if a unimodal OIM intake distribution can be defined for one
or more foods or food groups that can be modelled. In food safety the interest
lies with the upper tail of the intake distribution. To refine an intake estimate
using Model-Then-Add as opposed to OIM preferably foods or food groups need
to be defined that contribute to the upper tail of the intake distribution, as was
done in the case study on smoke flavours (Top3).

Multimodality can arise when the intake to a chemical substance occurs via the
consumption of a limited number of foods, like smoke flavours or other food
additives that are not omnipresent in foods (like dioxins or lead). Another
example in which the Model-Then-Add approach may be useful to assess the
long-term exposure is when the exposure to a chemical substance via one food
is significantly higher than via the rest of the diet, due to high concentrations in
that food. An example of this is the setting of maximum residue levels for
pesticides that are already allowed on the market using a probabilistic approach
(EFSA, 2012b). In that case, the usual exposure to the relevant pesticide should
be calculated by using residue levels from supervised trials in the commodity of
relevance (focal commodity) and monitoring data in all other commodities in
which residues of the pesticide may be present (background commodities).

5 Model-assisted estimates of the usual exposure distribution are back-transformed values from a shrunken
version of the transformed OIM distribution, also done per food or food group, where the shrinkage factor is
based on the variance components estimated using the linear mixed model for amounts at the transformed
scale. For individuals with no observed exposure (OIM=0) no model-assisted estimate of usual exposure can be
made and a model-based replacement is used.
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Since concentrations found in monitoring are often much lower than the
concentrations analysed in field trial studies, the use of these two types of
concentration data will very likely result in a bimodal exposure distribution. By
modelling the exposure via the focal commodity separately from the exposure
via the background commodities, the Model-Then-Add approach can result in a
more refined exposure assessment compared to OIM, as is presently
recommended (EFSA, 2012b).

Recommendations

The case study addressing the exposure to smoke flavours has given a first
example of the Model-Then-Add approach. More research is needed on how the
approach would perform in other case studies, including the use of the model-
assisted approach to add the exposures per food or food group. It is also
relevant to consider whether the formation of relevant food groups can be
automated.

Another issue is that sometimes it may be better to construct food groups based
on foods-as-eaten instead of foods-as-measured. In the case study,
concentration data on smoke flavours were available in foods-as-eaten.
However, in, for example, exposure assessments to contaminants or pesticide
residues, these two are often not the same: chemical substances may be
measured on raw agricultural commodities that are ingredients of foods-as-
eaten. It is an open question for further research if the separation of foods or
food groups can be performed best at the level of foods-as-eaten or foods-as-
measured.

Furthermore, the present implementation of the Model-Then-Add approach does
not allow covariate modelling of exposure. It is however known that, for
example, young children and elderly or men vs. women have different
consumption patterns that may result in deviations from normality. Covariate
modelling, which is also available in MCRA, is thus a further possibility for
parametric modelling. How this should be used exactly in combination with the
Model-Then-Add approach remains to be investigated.

Finally, we tested the model using an example within the field of food safety.
This model can however also be applied within the field of nutrition, e.g. when
assessing usual total nutrient intake via the diet and dietary supplements. An
example of this can be found in Verkaik-Kloosterman et al. (2011).

Conclusion

The Model-Then-Add approach as implemented in MCRA is a welcome addition to
the models for usual exposure, and can provide more realistic estimates of
higher exposures when the assumption of a normal distribution for the positive
exposures after a suitable transformation is not met. Using this approach as
opposed to the more conservative OIM approach in such cases may result in
lower exposures and thus in less risk mitigation or environmental policy
measures that need to be taken to reduce possible health risks.
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Appendix |. Concentration data of smoke flavours

Concentration values smoke flavours per food as used in the exposure

assessments.

Concentration (mg/kg) Samples®
Food name Mean p25-p75
Bacon 1030 0.2 - 678 4
Biscuit, salty, maize/wheat based 256 0.005 - 13 11
Cheese, smoked 400 0.09 - 400 2
Crisps, corn 61 - 1
Crisps, potato based 1 0.002 - 0.002 9
Crisps, potato; pepper and other flavours 403 30 - 600 8
Fish, smoked 32 23 -32 2
Ham 238 176 - 238 2
Herbs, mixed, main brands, not prepared 35 11 - 49 6
Mix for marinade powder not prepared 2033 100 - 2800 6
Pate/mousse of smoked salmon 1650 300 - 2110 3
Peanuts batter coated 0.3 0.01-0.3 7
Pesto 10 - 1
Salad dressing 0.05 - 1
Sauce, barbecue 2.5 0.3-2.3 3
Sauce, other 0.6 - 1
Sauce, soy salt 1.1 - 1
Sausage, frankfurter 2279 1470 - 2500 24
Sausage, luncheon meat 500 - 1
Sausage, salami and Saveloy 16 13 - 17 3
Sausage, smoked cooked 1872 1690 -1940 18
Sausage with smoked bacon-bits? 38 - 1
Soup, pea 327 86 - 586 9
Soup,ready-to-eat 7.1 2.5-6.1 3

1 All samples had a positive concentration of smoke flavours

2 palingworst
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Appendix Il. Consumption of foods containing smoke

flavours

Consumption values per food as used in the exposure assessment to smoke

flavours in young children aged 2-6 years

Consumption (g/d)

Consumption days

Mean
Food name Mean all positive p25-p75 Number %
Bacon 0.2 14 4.7 - 15 46 1.8
Biscuit, salty, 0 0 - 0 0
maize/wheat based
Cheese, smoked 0.01 17 10 — 17 2 0.1
Crisps, corn 0.1 24 13— 24 9 0.4
Crisps, potato based 0.1 17 6 — 20 12 0.5
Crisps, potato; pepper 0 0 - 0 0
and other flavours
Fish, smoked 0.2 45 20 - 65 10 0.4
Ham 1.2 18 7.5-20 176 6.9
Herbs, mixed, main 0.3 7.6 3.5-9.9 106 4.1
brands, not prepared
Mix for marinade 0 0 - 0 0
powder not prepared
Pate/mousse of 0 0 - 0 0
smoked salmon
Peanuts batter coated 0.1 20 13 - 25 14 0.5
Pesto 0.02 7.2 4.2 -10 8 0.3
Salad dressing 0 0 - 0 0
Sauce, barbecue 0.004 5.2 4.2-5.2 2 0.1
Sauce, other 0 0 - 0 0
Sauce, soy salt 0.004 1.9 1.5-2.0 5 0.2
Sausage, frankfurter 1.7 47 30 - 60 90 3.5
Sausage, luncheon 1.4 14 8- 16 252 9.9
meat
Sausage, salami and 1.7 18 8 - 18 240 9.4
Saveloy
Sausage, smoked 1.7 46 30 - 60 94 3.7
cooked
Sausage with smoked 0.1 16 10 - 20 16 0.6
bacon-bits*
Soup, pea 1.0 224 215 - 231 11 0.4
Soup, ready-to-eat 0 0 - 0 0

! Palingworst
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Consumption values per food as used in the exposure assessment to smoke
flavours in adults aged 19-69 years

Consumption (g/d)

Consumption days

Mean
Food name Mean all positive p25-p75 Number %
Bacon 1.1 24 9.6 - 30 196 4.7
Biscuit, salty, 0.2 42 19 - 44 24 0.6
maize/wheat based
Cheese, smoked 0.1 46 18 — 52 9 0.2
Crisps, corn 0.1 36 19 — 48 13 0.3
Crisps, potato based 0.3 45 19 — 60 29 0.7
Crisps, potato; pepper 1.8 63 27 -79 119 2.8
and other flavours
Fish, smoked 1.3 57 21 -75 97 2.3
Ham 4.4 32 16 - 40 587 14
Herbs, mixed, main 0.1 11 5.6 —-12 56 1.3
brands, not prepared
Mix for marinade 0.02 5.5 3.0-5.9 19 0.5
powder not prepared
Pate/mousse of 0.07 63 6.9 - 40 5 0.1
smoked salmon
Peanuts batter coated 1.4 61 30-70 100 2.4
Pesto 0.2 17 5.2-20 42 1.0
Salad dressing 0.01 14 1.0 —18 4 0.1
Sauce, barbecue 0.2 41 15 — 60 18 0.4
Sauce, other 0.1 182 135 - 183 3 0.1
Sauce, soy salt 0.05 29 2.5-49 7 0.2
Sausage, frankfurter 0.8 70 36 — 87 50 1.2
Sausage, luncheon 1.3 24 14 — 32 221 5.2
meat
Sausage, salami and 3.4 33 16 — 45 433 10
Saveloy
Sausage, smoked 2.9 108 63 - 125 113 2.7
cooked
Sausage with smoked 0.2 20 15 - 28 31 0.7
bacon-bits*
Soup, pea 5.1 419 274 - 575 51 1.2
Soup, ready-to-eat 5.5 193 175 - 175 120 2.8

! Palingworst
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Appendix I1l. OIM exposure distributions to smoke flavours
for the 17 individual foods-as-measured (alphabetical order)
in young children
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PESTO SAUCE, BARBECUE
Model-based usual exposure distribution Model-based usual exposure distribution
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