

Letter report 601716018/2008 C.J.A.M. Posthuma-Doodeman

Environmental risk limits for imidacloprid

RIVM Letter report 601716018/2008

Environmental risk limits for imidacloprid

C.J.A.M. Posthuma-Doodeman

Contact: C.J.A.M. Posthuma-Doodeman Expertise Centre for Substances Connie.Posthuma@rivm.nl

This investigation has been performed by order and for the account of Directorate-General for Environmental Protection, Directorate for Soil, Water and Rural Area (BWL), within the framework of the project 'Standard setting for other relevant substances within the WFD'.

© RIVM 2008

Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication.

Rapport in het kort

Environmental risk limits for imidacloprid

Dit rapport geeft milieurisicogrenzen voor het insecticide imidacloprid in water. Milieurisicogrenzen zijn de technisch-wetenschappelijke advieswaarden voor de uiteindelijke milieukwaliteitsnormen in Nederland. De milieurisicogrenzen zijn afgeleid volgens de methodiek die is voorgeschreven in de Europese Kaderrichtlijn Water. Hierbij is gebruikgemaakt van de beoordeling in het kader van de Europese toelating van gewasbeschermingsmiddelen (Richtlijn 91/414/EEG), aangevuld met gegevens uit de openbare literatuur.

Contents

1	Introduction	7
1.1	Background and scope of the report	7
1.2	Status of the results	7
2	Methods	8
2.1	Data collection	8
2.2	Data evaluation and selection	8
2.3	Derivation of ERLs	9
2.3.1	Drinking water	9
2.3.2	MAC _{eco, marine}	10
3	Derivation of environmental risk limits	11
3.1	Substance identification, physico-chemical properties, fate and human toxicology	11
3.1.1	Identity	11
3.1.2	Physico-chemical properties	12
3.1.3	Behaviour in the environment	12
3.1.4	Bioconcentration and biomagnification	13
3.1.5	Human toxicological treshold limits and carcinogenicity	13
3.2	Trigger values	13
3.3	Toxicity data and derivation of ERLs for water	13
3.3.1	MPC _{eco, water} and MPC _{eco, marine}	13
3.3.2	MPC _{sp, water} and MPC _{sp, marine}	15
3.3.3	MPC _{hh} food, water	15
3.3.4	MPC _{dw, water}	15
3.3.5	Selection of the MPC _{water} and MPC _{marine}	15
3.3.0	MAC _{eco}	15
5.5.7	SKC _{eco, water}	10
3.4	Toxicity data and derivation of ERLs for sediment	16
4	Conclusions	17
Reference	res	18
Appendi	x 1. Detailed aquatic toxicity data	19
Appendi	x 2. Description of mesocosm studies	23
Appendi	x 3. References used in the appendices	25

1 Introduction

1.1 Background and scope of the report

In this report, environmental risk limits (ERLs) for surface water (freshwater and marine) are derived for the insecticide imidacloprid. The derivation is performed within the framework of the project 'Standard setting for other relevant substances within the WFD', which is closely related to the project 'International and national environmental quality standards for substances in the Netherlands' (INS). Imidacloprid is part of a series of 25 pesticides that appeared to have a high environmental impact in the evaluation of the policy document on sustainable crop protection ('Tussenevaluatie van de nota Duurzame Gewasbescherming'; MNP, 2006) and/or were selected by the Water Boards ('Unie van Waterschappen'; project 'Schone Bronnen'; http://www.schonebronnen.nl/).

The following ERLs are considered:

- Maximum Permissible Concentration (MPC) the concentration protecting aquatic ecosystems and humans from effects due to long-term exposure
- Maximum Acceptable Concentration (MAC_{eco}) the concentration protecting aquatic ecosystems from effects due to short-term exposure or concentration peaks.
- Serious Risk Concentration (SRC_{eco}) the concentration at which possibly serious ecotoxicological effects are to be expected.

More specific, the following ERLs can be derived depending on the availability of data and characteristics of the compound:

MPC _{eco, water} MPC _{sp, water} MPC _{hh food, water}	MPC for freshwater based on ecotoxicological data (direct exposure) MPC for freshwater based on secondary poisoning MPC for fresh and marine water based on human consumption of fishery products
MPC _{dw, water}	MPC for surface waters intended for the abstraction of drinking water
MAC _{eco, water}	MAC for freshwater based on ecotoxicological data (direct exposure)
SRC _{eco, water}	SRC for freshwater based on ecotoxicological data (direct exposure)
MPC _{eco, marine} MPC _{sp, marine}	MPC for marine water based on ecotoxicological data (direct exposure) MPC for marine water based on secondary poisoning
MAC _{eco, marine}	MAC for marine water based on ecotoxicological data (direct exposure)

1.2 Status of the results

The results presented in this report have been discussed by the members of the scientific advisory group for the INS-project (WK-INS). It should be noted that the Environmental Risk Limits (ERLs) in this report are scientifically derived values, based on (eco) toxicological, fate and physico-chemical data. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs). ERLs should thus be considered as proposed values that do not have any official status.

2 Methods

The methodology for the derivation of ERLs is described in detail by Van Vlaardingen and Verbruggen (2007), further referred to as the 'INS-Guidance'. This guidance is in accordance with the guidance of the Fraunhofer Institute (FHI; Lepper, 2005).

The process of ERL-derivation contains the following steps: data collection, data evaluation and selection, and derivation of the ERLs on the basis of the selected data.

2.1 Data collection

In accordance with the WFD, data of existing evaluations were used as a starting point. For pesticides, the evaluation report prepared within the framework of EU Directive 91/414/EC (Draft Assessment Report, DAR) was consulted (EC, 2006; further referred to as DAR). An on-line literature search was performed on TOXLINE (literature from 1985 to 2001) and Current contents (literature from 1997 to 2007). In addition to this, all potentially relevant references in the RIVM e-tox base and EPA's ECOTOX database were checked.

2.2 Data evaluation and selection

For substance identification, physico-chemical properties and environmental behaviour, information from the List of Endpoints of the DAR was used. When needed, additional information was included according to the methods as described in Section 2.1 of the INS-Guidance. Information on human toxicological threshold limits and classification was also primarily taken from the DAR.

Ecotoxicity studies (including bird and mammal studies) were screened for relevant endpoints (i.e. those endpoints that have consequences at the population level of the test species). All ecotoxicity and bioaccumulation tests were then thoroughly evaluated with respect to the validity (scientific reliability) of the study. A detailed description of the evaluation procedure is given in the INS-Guidance (see Section 2.2.2 and 2.3.2). In short, the following reliability indices were assigned:

 Ri 1: Reliable without restriction
 'Studies or data ... generated according to generally valid and/or internationally accepted testing guidelines (preferably performed according to GLP) or in which the test parameters documented are based on a specific (national) testing guideline ... or in which all parameters described are closely related/comparable to a guideline method.'

- Ri 2: Reliable with restrictions

'Studies or data ... (mostly not performed according to GLP), in which the test parameters documented do not totally comply with the specific testing guideline, but are sufficient to accept the data or in which investigations are described which cannot be subsumed under a testing guideline, but which are nevertheless well documented and scientifically acceptable.'

- Ri 3: Not reliable

'Studies or data ... in which there are interferences between the measuring system and the test substance or in which organisms/test systems were used which are not relevant in relation to the exposure (e.g., unphysiologic pathways of application) or which were carried out or generated

according to a method which is not acceptable, the documentation of which is not sufficient for an assessment and which is not convincing for an expert judgment.'

- Ri 4: Not assignable

'Studies or data ... which do not give sufficient experimental details and which are only listed in short abstracts or secondary literature (books, reviews, etc.).'

All available studies were summarised in data-tables that are included as Annexes to this report. These tables contain information on species characteristics, test conditions and endpoints. Explanatory notes are included with respect to the assignment of the reliability indices.

With respect to the DAR, it was chosen not to re-evaluate the underlying studies. In principle, the endpoints that were accepted in the DAR were also accepted for ERL-derivation with Ri 2, except in cases where the reported information was too poor to decide on the reliability or when there was reasonable doubt on the validity of the tests. This applies especially to DARs prepared in the early 1990s, which do not always meet the current standards of evaluation and reporting.

In some cases, the characteristics of a compound (i.e. fast hydrolysis, strong sorption, low water solubility) put special demands on the way toxicity tests are performed. This implies that in some cases endpoints were not considered reliable, although the test was performed and documented according to accepted guidelines. If specific choices were made for assigning reliability indices, these are outlined in Section 3.3 of this report.

Endpoints with Ri 1 or 2 are accepted as valid, but this does not automatically mean that the endpoint is selected for the derivation of ERLs. The validity scores are assigned on the basis of scientific reliability, but valid endpoints may not be relevant for the purpose of ERL-derivation (e.g. due to inappropriate exposure times or test conditions that are not relevant for the Dutch situation).

After data collection and validation, toxicity data were combined into an aggregated data table with one effect value per species according to Section 2.2.6 of the INS-Guidance. When for a species several effect data were available, the geometric mean of multiple values for the same endpoint was calculated where possible. Subsequently, when several endpoints were available for one species, the lowest of these endpoints (per species) is reported in the aggregated data table.

2.3 Derivation of ERLs

For a detailed description of the procedure for derivation of the ERLs, reference is made to the INS-Guidance. With respect to the selection of the final MPC_{water} and the derivation of the $MAC_{eco, marine}$ some additional comments should be made:

2.3.1 Drinking water

The INS-Guidance includes the MPC for surface waters intended for the abstraction of drinking water (MPC_{dw, water}) as one of the MPCs from which the lowest value should be selected as the general MPC_{water} (see INS-Guidance, Section 3.1.6 and 3.1.7). According to the proposal for the daughter directive Priority Substances, however, the derivation of the AA-EQS (= MPC) should be based on direct exposure, secondary poisoning, and human exposure due to the consumption of fish. Drinking water was not included in the proposal and is thus not guiding for the general MPC value. The exact way of implementation of the MPC_{dw, water} in the Netherlands is at present under discussion within the framework of the "AMvB Kwaliteitseisen en Monitoring Water". No policy decision has been taken yet, and the MPC_{dw, water} is therefore presented as a separate value in this report. The MPC_{water} is thus

derived considering the individual MPCs based on direct exposure (MPC_{eco, water}), secondary poisoning (MPC_{sp, water}) or human consumption of fishery products (MPC_{hh food, water}); the need for derivation of the latter two is dependent on the characteristics of the compound.

Related to this is the inclusion of water treatment for the derivation of the $MPC_{dw, water}$. According to the INS-Guidance (Section 3.1.7), a substance specific removal efficiency related to simple water treatment should be derived in case the $MPC_{dw, water}$ is lower than the other MPCs. For pesticides, there is no agreement as yet on how the removal fraction should be calculated, and water treatment is therefore not taken into account. In case no A1 value is set in Directive 75/440/EEC, the $MPC_{dw, water}$ is set to the general Drinking Water Standard of 0.1 µg/L for organic pesticides as specified in Directive 98/83/EC.

2.3.2 MAC_{eco, marine}

The assessment factor for the MACeco, marine value is based on

- the assessment factor for the MAC_{eco, water} value when acute toxicity data for at least two specific marine taxa are available, or
- using an additional assessment factor of 5 when acute toxicity data for only one specific marine taxon are available (analogous to the derivation of the MPC according to Van Vlaardingen and Verbruggen, 2007), or
- using an additional assessment factor of 10 when no acute toxicity data are available for specific marine taxa.

If freshwater and marine data sets are not combined (which is generally the case for pesticides) the $MAC_{eco, marine}$ is derived on the marine toxicity data using the same additional assessment factors as mentioned above. It has to be noted that this procedure is currently not agreed upon. Therefore, the $MAC_{eco, marine}$ value needs to be re-evaluated once an agreed procedure is available.

3 Derivation of environmental risk limits

- 3.1 Substance identification, physico-chemical properties, fate and human toxicology
- 3.1.1 Identity

Figure 1. Structural formula of imidacloprid.

Table 1. Identification of imidacloprid.

Parameter	Name or number	Source
Common/trivial/other name	imidacloprid	
Chemical name	1-[(6-chloro-3-pyridinyl)methyl]-N-nitro-2-	EC, 2006
	ımıdazolıdınımıne	
CAS number	[138261-41-3]	EC, 2006
	[105827-78-9] former number	Tomlin, 2003
EC number	-	
SMILES code	C1CN(C(=N1)N[N+](=O)[O-])CC2=CN=C(C=C2)Cl	
Use class	systemic insecticide	
Mode of action	Binds to postsynaptic nicotinic receptors in the insect	Tomlin, 2003
	central nervous system	
Authorised in NL	Yes	
Annex 1 listing	Yes	

3.1.2 Physico-chemical properties

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	255.7		EC. 2006
Water solubility	[mg/L]	610	20 °C	EC, 2006
pK _a	[-]	-		
$\log K_{\rm OW}$	[-]	0.57		EC, 2006
		0.41	KowWin	US EPA, 2007
		-1.56	ClogP	BioByte, 2006
$\log K_{\rm OC}$	[-]	2.36	K _{oc} 212 L/kg (mean of 12 soils)	EC, 2006
Vapour pressure	[Pa]	$4 \ge 10^{-10}$	20 °C	EC, 2006
		9 x 10 ⁻¹⁰	25 °C (extrapolated; 50 - 70 °C)	
Melting point	[°C]	144 °C		EC, 2006
Boiling point	[°C]			
Henry's law	[Pa.m ³ /mol]	1.7 x 10 ⁻¹⁰		EC, 2006
constant				

Table 2. Physico-chemical properties of imidacloprid.

3.1.3 Behaviour in the environment

Table 3. Selected environmental properties of imidacloprid.

Parameter	Unit	Value	Remark	Reference
Hydrolysis	DT50 [d]	appr. 1 year	No degradation at pH 5, slight	EC, 2006
half-life			degradation at pH 9.	
Photolysis half-	DT50	57 min.	pH 7, 23-24.5 °C, artificial light,	EC, 2006
life			sterile water	
		4.2 h.	environmental, calculated	Liu et al., 2006
		4.7-18 min.	25 °C, 254 nm	Moza et al., 1998
		1.2 h.	24 ± 1 °C, ≥ 290 nm, deionised	Wamhoff &
			water	Schneider, 1999
		43 min.	HPLC grade water	Wamhoff &
				Schneider, 1999
		126 min.	Confidor in tap water	Wamhoff &
				Schneider, 1999
		144 min.	Confidor + TiO_2 in tap water	Wamhoff &
				Schneider, 1999
Degradability			not readily biodegradable	EC, 2006
Water/sediment	DT50 [d]	129	Stillwell, Kansas, silty clay	EC, 2006
systems		32	NL, loamy silt	
		142	NL, loamy sand	
Relevant	photometab	olites: NTN338	393-desnitro-olefine	EC, 2006
metabolites	NTN33893	-desnitro		
	NTN33893	-urea		

3.1.4 Bioconcentration and biomagnification

There are no experimental data available for imidacloprid.

Table 4. Overview of bioaccumulation data for imidacloprid.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	0.61	calculated with log Kow 0.57	Veith et al., 1979
BMF	[kg/kg]	1	Default value for log $K_{ow} < 4.5$	

3.1.5 Human toxicological treshold limits and carcinogenicity

Imidacloprid is not classified as being carcinogenic. The following R-phrase related to human toxicology is proposed in the DAR: R22. No data are available in ESIS (<u>http://ecb.jrc.it/esis/</u>; date of search 4 April 2008). An ADI of 0.06 mg/kg_{bw} is proposed in the DAR, based on a 2-year rat study with a NOAEL value of 6 mg/kg_{bw}/d with a safety factor of 100.

3.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Parameter	Value	Unit	Method/Source	Derived at section
$\text{Log } K_{\text{p,susp-water}}$	1.326	[-]	$K_{\rm OC} \times f_{\rm OC,susp}^{1}$	K _{OC} : 3.1.2
BCF	-	[L/kg]		3.1.4
BMF	-	[kg/kg]		3.1.4
$Log K_{OW}$	0.57	[-]	mean value	3.1.2
R-phrases	R22, R50/R53	[-]		3.1.5
A1 value	-	$[\mu g/L]$	Total pesticides	
DW standard	0.1	[µg/L]	General value for or	ganic pesticides

Table 5. Imidacloprid: collected properties for comparison to MPC triggers.

 $1 f_{OC,susp} = 0.1 \text{ kg}_{OC}/\text{kg}_{solid}$ (EC, 2003).

• Imidacloprid has a log $K_{p, susp-water} < 3$; derivation of MPC_{sediment} is not triggered.

- Imidacloprid has a log $K_{p,susp-water} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.
- Imidacloprid is classified as R22 but has a log $K_{ow} < 3$; derivation of an MPC_{water} for human health via food (fish) consumption (MPC_{hh food, water}) is not triggered.
- For imidacloprid no specific A1 value or Drinking Water Standard is available from Council Directives 75/440, EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.

3.3 Toxicity data and derivation of ERLs for water

3.3.1 MPC_{eco, water} and MPC_{eco, marine}

Imidacloprid is rapidly degraded under the influence of light (see Table 3). Endpoints from tests that were not performed in the dark were considered not reliable (Ri 3), unless concentrations were measured.

An overview of the selected freshwater toxicity data for imidacloprid is given in Table 6. Marine toxicity data are given in Table 7. Detailed toxicity data for imidacloprid are tabulated in Appendix 2.

Table 6. Imidacloprid: selected freshwater toxicity data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10	Taxonomic group	L(E)C50
	(µg/L)		(µg/L)
cyanobacteria	24900	cyanobacteria	32800
algae	6690	crustacea	85000^{b}
crustacea	1800	crustacea	832 ^c
insecta	0.67	crustacea	1 ^d
pisces	1200	crustacea	$10^{\rm e}$
		crustacea	55 ^r
		crustacea	3 ^g
		insecta	10.5 ^h
		insecta	8.10^{1}
		pisces	> 83000 ^j
		pisces	$> 105000^{j}$

^a For detailed information see Appendix 1. Bold values are used for ERL derivation.

^b Most sensitive endpoint for *Daphnia magna*, parameter mortality

^c Most sensitive endpoint for *Chydorus sphaericus*, parameter immobility

- ^d Most sensitive endpoint for *Cypretta seuratti*, parameter immobility
- ^e Most sensitive endpoint for *Cypridopsis vidua*, parameter immobility
- ^f Most sensitive endpoint for *Hyalella azteca*, parameter immobility
- ^g Most sensitive endpoint for *Ilvocypris dentifera*, parameter immobility
- ^h Most sensitive endpoint for *Chironomus tentans*, parameter mortality
- ⁱ Geometric mean of 6.75, 8.25 and 9.54 µg/L, parameter mortality for *Simulium vittatum*
- ^J Data for fish show that fish are not the most sensitive species. Valid tests did not result in effects > 50% at highest treatment level resulting in LC50 values of > 83 mg/L for *Oncorhynchus mykiss* and > 105 mg/L for *Lepomis macrochirus*.

Table 7. Imidacloprid: selected marine toxicity data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10	Taxonomic group	L(E)C50
	(µg/L)		(µg/L)
		crustacea	35.9 ^b
		pisces	16100 [°]

^a For detailed information see Appendix 1. Bold values are used for ERL derivation.

^b Geometric mean of 36, 37.7 en 34.1 μ g/L, parameter mortality for *Americanysis bahia*

^c Most sensitive endpoint for *Ilyocypris dentifera*, parameter immobility

3.3.1.1 Treatment of fresh- and saltwater toxicity data

ERLs for freshwater and marine waters should be derived separately. For pesticides, data can only be combined if it is possible to determine with high probability that marine organisms are not more sensitive than freshwater organisms (Lepper, 2005). For imidacloprid, too few data are available to make a valid comparison, and datasets are kept separated.

3.3.1.2 Mesocosm and field studies

A mesocosm experiment is included in the DAR, a summary is given in Appendix 2. The impact of Imidacloprid SL 200 (17.3% w/w) on freshwater microcosm pond communities was investigated under

outdoor conditions. Experimental ponds were exposed to imidacloprid in two peaks and actual concentrations declined rather rapidly. Therefore, the results of the underlying study are not suitable for $MPC_{eco, water}$ derivation but will be considered for derivation of the $MAC_{eco, water}$. The 0.6 µg/L-treatment is considered as the NOEC, actual initial concentrations at this level were similar to the nominal.

3.3.1.3 Derivation of MPC_{eco, water} and MPC_{eco, marine}

The acute base set is not complete. No valid data for algae are available, while for fish valid tests did not result in effects > 50% at concentrations of 83 and 105 mg/L. However, both algae and fish are present in the chronic data set, and as expected from the mode of action, they appear not to be sensitive in comparison with crustacea and insects. It is therefore accepted that the absence of acute data for algae and fish is compensated for by the presence of chronic studies, and the MPC_{eco, water} can be derived by applying an assessment factor of 10 to the lowest NOEC of 0.67 μ g/L for *Chironomus tentans*. The MPC_{eco, water} is 0.067 μ g/L.

The marine base-set is not complete because data for algae are missing. However, in view of imidacloprid being an insecticide with a specific mode of action, it is not expected that algae are more sensitive than crustacea and the data are treated as if the base set were complete. The MPC_{eco, marine} is therefore derived by putting an assessment factor of 10000 to the LC₅₀ of 35.9 μ g/L for *Americanysis bahia*. The MPC_{eco, marine} is 3.6 x 10⁻³ μ g/L.

3.3.2 MPC_{sp, water} and MPC_{sp, marine}

Imidacloprid has a BCF < 100 L/kg, thus assessment of secondary poisoning is not triggered.

3.3.3 MPC_{hh} food, water

Derivation of MPC_{hh food, water} for imidacloprid is not triggered (Table 5).

3.3.4 MPC_{dw, water}

An A1 value is not available. The Drinking Water Standard is 0.1 µg/L, the MPC_{dw, water} is 0.1 µg/L.

3.3.5 Selection of the MPC_{water} and MPC_{marine}

The lowest value of the routes included (see Chapter 2.3) is the MPC_{eco, water}. Therefore, the MPC_{water} is $0.067 \mu g/L$.

Therefore, the MPC_{marine} is based on the MPC_{eco, marine} and set to $3.6 \times 10^{-3} \mu g/L$.

3.3.6 MAC_{eco}

3.3.6.1 MAC_{eco, water}

The acute base set is not complete, because data on algae are missing. As stated above, algae are not expected to be the most sensitive species, which is confirmed by the chronic data. Imidacloprid has no potential to bioaccumulate, has a known mode of action (systemic insecticide) and the potentially most sensitive group (insects) is included in the data set. Therefore, an assessment factor of 10 is applied to the lowest acute EC_{50} value of 1 µg/L for *Cypretta seuratti*. This results in a MAC_{eco, water} of 0.1 µg/L.

A NOEC of 0.6 μ g/L was derived from a mesocosm experiment. Insects (Chironomids and Baetidae) appeared to be most sensitive. From a comparison of mesocosm studies with the insecticides chlorpyrifos and lambda-cyhalothrin, it can be concluded that an assessment factor of 3 may be

necessary to cover variation at the level of the NOEAEC¹ in case one reliable study is available (De Jong et al., 2008, based on Brock et al., 2006).

Lepper (2005) argues that the scope of protection of an environmental quality standard under the WFD is broader than that of the "acceptable concentration" under Directive 91/414. It should be considered that the quality standard must be protective for all types of surface waters and communities that are addressed by the respective standard. Mesocosm studies performed in the context of 91/414 are normally focused on agricultural ditches that can be characterised as eutrophic shallow water bodies. Environmental quality standards under the WFD, however, must assure protection also for water bodies that significantly differ from this paradigm (Lepper, 2005). It is therefore in principle proposed to use an assessment factor of 3 on the NOEC instead of on the NOEAEC.

For derivation of an ERL, it is therefore considered adequate to put the assessment factor of 3 to the NOEC. The MAC_{eco, water} is set to 0.2 μ g/L.

3.3.6.2 MAC_{eco, marine}

The MAC_{eco, marine} is provisionally derived using the assessment factor for freshwater (10), with an additional factor of 10 because no specific marine taxa (as defined in the TGD: echinoderms, molluscs, coelenterata) are present (see Section 2.3.2). The total assessment factor of 100 is put on the lowest LC_{50} of 35.9 µg/L for *Americamysis bahia* (Crustacea). The provisional MAC_{eco, marine} is 0.36 µg/L.

3.3.7 SRC_{eco, water}

NOECs are available for five taxa, including algae, *Daphnia* and fish. The SRC_{eco} is based on the geometric mean of all available NOECs with an assessment factor of 1 and is 752 μ g/L.

3.4 Toxicity data and derivation of ERLs for sediment

The log $K_{p, susp-water}$ of imidacloprid is below the trigger value of 3, therefore, ERLs are not derived for sediment.

¹ NOEAEC = No Observed Ecologically Adverse Effect Concentration. Concentration at which effects observed in a study are considered acceptable from a regulatory point of view.

4 Conclusions

In this report, the risk limits Maximum Permissible Concentration (MPC), Maximum Acceptable Concentration for ecosystems (MAC_{eco}), and Serious Risk Concentration for ecosystems (SRC_{eco}) are derived for imidacloprid in water. No risk limits were derived for the sediment compartment because exposure of sediment is considered negligible.

The ERLs that were obtained are summarised in the table below. The MPC value that was set for this compound until now, is also presented in this table for comparison reasons. It should be noted that this is an indicative MPC ('ad-hoc MTR'), derived using a different methodology and based on limited data.

ERL	Unit	MPC	MAC _{eco}	SRC
Water, old ^a	μg/L	0.013	-	-
Water, new ^b	μg/L	0.067	0.2	752
Drinking water ^b	µg/L	0.1 ^d	-	-
Marine	μg/L	3.6×10^{-3}	0.36 ^e	-

Table 8. Derived MPC, MACeco, and SRC values for imidacloprid.

^a indicative ERL ('ad-hoc MTR'), source: Helpdesk Water

http://www.helpdeskwater.nl/emissiebeheer/normen_voor_het/zoeksysteem_normen/

^b The MPC_{dw, water} is reported as a separate value from the other MPC_{water} values (MPC_{eco, water}, MPC_{sp, water} or MPC_{hh food, water}). From these other MPC_{water} values (thus excluding the MPC_{dw, water}) the lowest one is selected as the 'overall' MPC_{water}.

^c n.d. = not derived due to lack of data

^d provisional value pending the decision on implementation of the MPC_{dw, water} (see Section 2.3.1)

^e provisional value pending the decision on implementation of the MAC_{eco, marine} (see Section 2.3.2)

References

- BioByte. 2006. BioLoom [computer program]. version 1.5. Claremont, CA, USA: BioByte Corporation.
- Brock TCM, Arts GHP, Maltby L, Van den Brink PJ. 2006. Aquatic risks of pesticides, ecological protection goals and common claims in EU legislation. Integrated Environmental Assessment and Management 2: E20-E46.
- EC. 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Ispra, Italy: European Chemicals Bureau, Institute for Health and Consumer Protection. Report no. EUR 20418 EN/2.
- EC. 2006. Imidacloprid, Draft Assessment Report. Rapporteur Member State: Germany. Public version February 2006. With Addendum.
- De Jong FMW, Brock TCM, Foekema EM, Leeuwangh P. 2008. Guidance for summarizing and evaluating aquatic micro- and mesocosm studies. A guidance document of the Dutch Platform for the Assessment of higher Tier Studies. Bilthoven, The Netherlands: National Institute for Public Health and the Environment (RIVM). Report no. 601506009/2008. 59 pp.
- Lepper P. 2005. Manual on the Methodological Framework to Derive Environmental Quality Standards for Priority Substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). 15 September 2005 (unveröffentlicht) ed. Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology.
- Liu W, Zheng W, Ma Y, Liu KK 2006. Sorption and degradation of imidacloprid in soil and water. J. Environ. Science and Health Part B, 41: 623-634.
- Moza PN, Hustert K, Feicht E, Kettrup A 1998. Photolysis of imidacloprid in aqueous solution. Chemosphere 36: 497-502.
- MNP. 2006. Tussenevaluatie van de nota Duurzame gewasbescherming. Bilthoven, The Netherlands: Milieu- en Natuurplanbureau. MNP-publicatienummer: 500126001.
- Tomlin CDS. 2003. e-Pesticide Manual 2002-2003 (Twelfth edition) Version 2.2. British Crop Protection Council.
- US EPA 2007. EPI SuiteTM [computer program] Version 3.2. Washington DC, USA: United States Environmental Protection Agency, Office of Pollution Prevention Toxics and Syracuse Research Company (SRC).
- Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of the project 'International and National Environmental Quality Standards for Substances in the Netherlands' (INS). Bilthoven, The Netherlands: National Institute for Public Health and the Environment (RIVM). Report no. 601501031. 117 pp.
- Wamhoff H, Schneider V 1999. Photodegradation of imidacloprid. J. Agric. Food Chem. 47: 1730-1734.

	1
•	-

Appendix 1. Detailed aquatic toxicity data

 Table A1.1. Acute toxicity of imidacloprid to freshwater organisms.

 Species
 A Test Test
 Purity

Species	Species	A Tes	t Test	Puritv	Test Hardness p		Exp. Criteric	n Test	Value	Ri Notes	Reference
	properties	tvpe	compound	ſ	water CaCO ₃		time	endpoint			
				[%]	[mg/L]	2	G		[mg/L]		
Cyanobacteria											
Anabaena flos-aquae	log phase growth	≺ ×	NTN 33893 2F	21.6	7	.5	4 96 h EC50	growth rate	32.8	2	Anatra-Cordone and Durkin, 2005
Algae											
Pseudokirchneriella		S N	imidacloprid	98.6			72 h EC50	biomass	> 100	3 1, 13	DAR, 2005
subcapitata											
Pseudokirchneriella		S	imidacloprid	98.6			72h EC50	growth rate	~ 100	3 1, 13	DAR, 2005
Subcapitata		0 N	imidoolooridi					occorrid	0	0 7 7	
Scenedesmus subspicatus			imidaciopria						29	, - - 5 5	DAR, 2005
ocerregesmus subspicatus Scenedesmus subspicatus		ით z z	imidacloprid	92.8	8	.1-9.2 2	3 96 h EC50	growth rate	00	3 - <u>-</u> 1, 13 -	UAR, 2003 Heimbach, 1986
Crustacea											
Daphnia magna	< 24 h	S N	imidacloprid	ta	MU	2	0 48 h LC50	mortality	17.36	3 1.2	Song <i>et al.</i> , 1997
Danhnia madna	< 24 h	S Z	imidacloprid	, t	MU	~	7 48 h I C50	mortality	10.44	3 1 2 11	Sond et al. 1997
Daphnia magna	< 24 h	o s :≻	imidacloprid	95.4		I	48 h EC50	immobility	85	; ; ; σ ο ο	EC. 2006
Daphnia magna	24 h	SZ	imidacloprid	ta	tw 7	5-7.8 2	2 48 h LC50	mortality	64.87	3 1.4	Sanchez-Bavo and Goka. 2006
Daphnia magna	24 h	S N	imidacloprid	, p	tw 7	.5-7.8 2	2 48 h EC50	immobility	6.029	3 1,4	Sanchez-Bayo and Goka, 2006
Chydorus sphaericus	collected from rice fields	N N	imidacloprid	đ	tw 7	.5-7.8 2	2 48 h LC50	mortality	132.7	3 1,4	Sanchez-Bayo and Goka, 2006
Chydorus sphaericus	collected from rice fields	S N	imidacloprid	đ	tw 7	.5-7.8 2	2 48 h EC50	immobility	2.209	3 1,4	Sanchez-Bayo and Goka, 2006
Chydorus sphaericus	collected from rice fields	N N	imidacloprid	tg	tw 7.	.5-7.8 2	2 48 h EC50	immobility	0.832	2 5,12	Sanchez-Bayo and Goka, 2006
Cypretta seuratti	collected from rice fields	S N	imidacloprid	ţġ	tw 7	.5-7.8 2	2 48 h LC50	mortality	0.301	3 1,4	Sanchez-Bayo and Goka, 2006
Cypretta seuratti	collected from rice fields	SN	imidacloprid	tg	tw 7	.5-7.8 2	2 48 h EC50	immobility	0.016	3 1,4	Sanchez-Bayo and Goka, 2006
Cypretta seuratti	collected from rice fields	SN	imidacloprid	tg	tw 7	.5-7.8 2	2 48 h EC50	immobility	0.001	25,12	Sanchez-Bayo and Goka, 2006
Cypridopsis vidua	collected from rice fields	SN	imidacloprid	tg	tw 7	.5-7.8 2	2 48 h LC50	mortality	0.715	3 1,4	Sanchez-Bayo and Goka, 2006
Cypridopsis vidua	collected from rice fields	SN	imidacloprid	tg	tw 7	.5-7.8 2	2 48 h LC50	mortality	0.273	25	Sanchez-Bayo and Goka, 2006
Cypridopsis vidua	collected from rice fields	SZ	imidacloprid	tg	tw 7	.5-7.8 2	2 48 h EC50	immobility	0.003	3 1,4	Sanchez-Bayo and Goka, 2006
Cypridopsis vidua	collected from rice fields	SN	imidacloprid	tg	tw 7	.5-7.8 2	2 48 h EC50	immobility	0.01	25,12	Sanchez-Bayo and Goka, 2006
Hyalella azteca	2-3 mm juveniles	S ≻	imidacloprid				96 h LC50	mortality	0.526	2	EC, 2006; Anatra-Cordone and
Hvalalla aztaca	2_3 mm inveniles	0 >	imidaclonrid				QR H ECSO	immobility	0.055	0	outnit, 2003 addanditm DAR 2007.
) -						6	0	1	Anatra-Cordone and Durkin, 2005
Ilyocypris dentifera	collected from rice fields	SN	imidacloprid	ţa	tw 7	.5-7.8 2	2 48 h LC50	mortality	0.517	3 1,4	Sanchez-Bayo and Goka, 2006
Ilyocypris dentifera	collected from rice fields	N N	imidacloprid	tg	tw 7.	.5-7.8 2	2 48 h LC50	mortality	0.214	25	Sanchez-Bayo and Goka, 2006
Ilyocypris dentifera	collected from rice fields	SZ	imidacloprid	ţġ	tw 7	.5-7.8 2	2 48 h EC50	immobility	0.003	3 1,4	Sanchez-Bayo and Goka, 2006
Ilyocypris dentifera	collected from rice fields	S N	imidacloprid	đ	tw 7.	.5-7.8 2	2 48 h EC50	immobility	0.003	2 5, 12	Sanchez-Bayo and Goka, 2006
Insecta											
Aedes aegvoti (L.)	first instar. 24 h old	S N	imidacloprid	ţa	am	2	0 48 h LC50	mortality	0.045	3 1.2	Song <i>et al.</i> 1997
Aedes aeavoti (L.)	first instar. 24 h old	s Z	imidacloprid	p q	am		7 48 h LC50	mortality	0.044	3 1 2 1	Song et al. 1997
Aedes aeavoti	4th instar	SZ	imidacloprid	97.4	dw		5 72 h LC50	mortality	0.084	, ,	Paul et al., 2006
Aedes aeavoti	adults	s Z	imidacloprid	97.4	dw		5 48 h LC50	mortality	≥ 6.3	3 1.6	Paul <i>et al.</i> , 2006
Aedes albopictus	4th instar. strain MAmAal	s Z	imidacloprid	97.7	tv		5 24 h LC50	mortality	0.6	, - -	Liu <i>et al.</i> . 2004a
			-								

RIVM Letter report 601716018

apada	ŝ	A Tes	t lest	Furity	lest Hard	ness pH	_	Exp. Criterior	1 lest	Value	Ri Notes	Reference
roper	ties	type	; compound		water cact	ຕິ		ume	enapoint			
				[%]	[mg/L	-	ົ			[mg/L]		
tth insi	tar, strain HAmAal	s N	imidacloprid	97.7	tw		25	24 h LC50	mortality	0.3	3 1	Liu <i>et al.</i> , 2004a
th insi	tar, strain VBFmAal	SN	imidacloprid	97.7	tw		25	24 h LC50	mortality	0.8	ა 1	Liu <i>et al.</i> , 2004a
Ith ins	tar, strain SFmAal	SN	imidacloprid	97.7	tw		25	24 h LC50	mortality	0.6	з 1	Liu <i>et al.</i> , 2004a
4th insi	tar, strain Ikaken	s N	imidacloprid	97.7	tv		25	24 h LC50	mortality	0.5	3 1	Liu <i>et al.</i> , 2004a
1st inst	tar larvae	SN	imidacloprid	6.66				24 h LC50	mortality	0.0552	3 1,7	EC, 2006
2nd ins	star	≻ R	imidacloprid	95.0%				96 h LC50	mortality	0.0105	2	Anatra-Cordone and Durkin, 200
4th insi	tar, VBFmCq	s Z	imidacloprid	97.7%	tw		25	24 h LC50	mortality	0.3	з 1	Liu <i>et al.</i> , 2004b
4th insi	tar, HAmCq	s N	imidacloprid	97.7%	tw		25	24 h LC50	mortality	0.2	3 1	Liu <i>et al.</i> , 2004b
4th insi	tar, MAmCq	s Z	imidacloprid	97.7%	tw		25	24 h LC50	mortality	0.4	з 1	Liu <i>et al.</i> , 2004b
4th insi	tar, S-Lab	S N	imidacloprid	97.7%	tw		25	24 h LC50	mortality	0.04	3 1	Liu <i>et al.</i> , 2004b
5th ins	tar	S ≻	imidacloprid	≥ 98%	Ž	7.3-7.7	7 20	48 h LC50	mortality	0.00675	1 4, 9, 14	Overmyer <i>et al.</i> , 2005
5th ins	tar	≺ s	imidacloprid	≥ 98%	N	7.3-7.7	7 20	48 h LC50	mortality	0.00825	1 4, 9, 14	Overmyer et al., 2005
5th ins	tar	≺ s	imidacloprid	≥ 98%	۲w	7.3-7.7	7 20	48 h LC50	mortality	0.00954	1 4, 9, 14	Overmyer <i>et al.</i> , 2005
1 mont	h old	R R	imidacloprid	> 95%	dw		20	96 h LC50	mortality	82	ა 1	Feng <i>et al.</i> , 2004
1.5 mo	nths old	R R	imidacloprid	> 95%	dw		20	96 h LC50	mortality	129	3 1	Feng <i>et al.</i> , 2004
5.3 cm	, 1.3 g	SN	imidacloprid	95.3				96 h LC50	mortality	211	3 1, 10	EC, 2006
4.4 cm	, 1.07 g	S ≻	imidacloprid	95.0				96 h LC50	mortality	83	2	EC, 2006
	I	s N	imidacloprid	95.3				96 h LC50	mortality	237	3 1	EC, 2006
27 mm	. 0.46 a	S ≻	imidacloprid	97.4 %				96 h LC50	mortality	> 105	7	Anatra-Cordone and Durkin, 200

Notes

inc. solvent concentrations not measured; therefore validity 3 inc. solvent controls.
OECD guideline 202.
16:8 light/dark.
Dark conditions, used for MPC derivation.
in ng/cm2.
method equiv. to OECD 202.
study with formulation, results in mg as/L argo of init.+ final conc., DO 92.0.
OECD 203.
Dest sensitive endpoint for this species
OECD guideline 201.

RIVM Letter report 601716018

rivm

	organisms.
•	marine
,	5
	pud
	5
Ī	acı
7	Ð
•	Ē
•	Ξ
د	y ot
	Ħ
•	toxic
	cute
1	<.
(7
۲	
1	\triangleleft
- -	lable

	•)									
Species	Species	Analyse	ed Tes	t Test	Purity	/ Test	Hd	F	Salinity	Exposure	Criterion	Test Value Ri Notes	Reference
	properties		typ∈	ecompound compound	[%]	wate	jr.	្ល៊	[0%]	time		endpoint [mg/L]	
Crustacea Artemia sp.	4th naupliar stage	z	S	imidacloprid	đ	an	ø	27	38	48 h	LC50	mortality 361.23 3 1, 5, 9	Song and Brown, 1998;
Artemia sp. Americamusis hahia	4th naupliar stage < 24 h old	z>	ωп	imidacloprid	بہ tg 22 ہ	am	8 8 2_8 5	27 19 7-25 0	9.5 20	48 h 06 h	LC50	mortality > 300 3 1, 6, 9 mortality 0 036 2 2 4 10	Song and Brown, 2000 Song and Brown, 1998 Anatra-Cordone and Durkin 2005
Americamysis bahia	< 24 h old	- ≻	- ഥ	imidacloprid	96.25	%	2.0-4.0	0.04-1.01	0	96 h	LC50	mortality 0.0377 2 3, 7, 10	EC, 2006;
Americamysis bahia	< 24 h old	≻	ш	imidacloprid	96.2%	<u>~</u>				96 h	LC50	mortality 0.0341 2 3, 7	Anatra-Cordone and Durkin, 2005 EC, 2006;
Insecta													Anatra-Cordone and Durkin, 2005
Aedes taeniorhynchus Aedes taeniorhynchus	1st instar 1st instar	zz	ათ	imidacloprid imidacloprid	ta ta	am	ω α	27 27	38 12.7	48 h 72 h	LC50 LC50	mortality 0.013 3 1, 5, 8, 9 mortality 0.021 3 1, 6, 9	Song and Brown, 1998; 2006 Song and Brown, 1998
Pisces		:)		ņ)	i	į	: 			
Cyprinodon variegatus	29 mm, 0.77 g	≻	S	imidacloprid	96.2					96 h	LC50	mortality 161 2	addendum DAR, 2007;
													Anatra-Cordone and Durkin, 2005

Notes

- 0 c 4 u o r a o c

Ight, actual concentrations not measured; therefore validity 3 mg as/L. additional study, results reported briefly in monograph, no summary. DO was below protocol requirement hyperosmotic conditions isosmotic conditions isosmotic conditions moditional test not formally required for dossier submitted within European Union most relevant duration and lowest toxicity endpoint for the species including solvent controls. Former name: *Mysidopsis bahi*a

Table A1.3. Chronic toy Species	cicity of imidacloprid Species properties	A Test type	cshwater organ t Test compound	Purity	Test Hardnes water CaCO ₃	Hd s	⊢│	Exp. Criterion time	Test endpoin	Value t	Ri Notes	Reference
Cyanobacteria Anabaena flos-aquae	log phase growth	s >	NTN 33893 2F	[%] 21.6	[mg/L]	7.5	[°C] 24	96 h growth rate	NOEC	[mg/L] 24.9	4	Anatra-Cordone and Durkin, 2005
Algae Navicula pelliculosa Pseudokirchneriella subcapitata Pseudokirchneriella subcapitata Scenedesmus subspicatus Scenedesmus subspicatus Scenedesmus subspicatus	log phase growth	∽	NTN 33893 2F imidacloprid imidacloprid imidacloprid imidacloprid imidacloprid imidacloprid	21.6 98.6 98.6 92.8		8.1-9.2	23 24	96 h 72 h growth rate 72 h biomass 72 h biomass 72 h biomass 96 h growth rate	NOEC NOEC NOEC	6.69 6.69 100 100 100 100 100 100 100 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Anatra-Cordone and Durkin, 2005 EC, 2006 EC, 2006 EC, 2006 EC, 2006 EC, 2006 Heimbach, 1986
Crustacea Daphnia magna Daphnia magna Daphnia magna Gammarus pulex	< 24 h < 24 h < 24 h < 24 h different ages	\succ \succ \succ \succ \succ \succ \succ \sim	imidacloprid Confidor SL 200 imidacloprid imidacloprid	99 99 tg	an a		21±1 21±1	21 d reproduction 21 d reproduction 21 d reproduction 28 d	LOEC LOEC NOEC	2.5 5 1.8 0.064	0000 - 010 0	Jemec <i>et al.</i> , 2007 Jemec <i>et al.</i> , 2007 EC, 2006 EC, 2006
Pisces Oncorhynchus mykiss Oncorhynchus mykiss	length 5.3 cm, bw 1.3 g newly fertilized eggs, < 4 h	шш Z≻	imidacloprid imidacloprid	95.3 tg				91 d developmen 98 d growth	t NOEC NOEC	9.02 1.2	3 1,8 2 10	EC, 2006 Anatra-Cordone and Durkin, 2005
Insecta Chironomus riparius Chironomus riparius Chironomus tentans	1st instar larvae 1st instar larvae 2nd instar	ა ა გ გ გ ≻	Confidor SL 200 imidacloprid imidacloprid	98.4 95.0				28 d emergence 28 d emergence 10 d growth	NOEC NOEC	0.01320 0.00209 0.00067	3 1,6,7 3 1,6,7 2 1,6,7	EC, 2006 EC, 2006 Anatra-Cordone and Durkin, 2005
Notes light, actual concentrations former name: Selenastrum a term rame: Selenastrum a scpressed as number of n a scpressed as number of n a scpressed as number of n b a study with formulation, rest north (d north test) 10 OECD 201, limit test.	not measured; therefore val capricomutum. sonates per adult. al for OECD 219. Endpoints was not a NOEC 210 value reported in the stu	idity 3 but an 1 idies. point	EC15-value. Since	the EC:	10 value was al:	so reporte	sd in the	s studies, according t	o the TGL) this valu	e should be	used as NOEC, therefore

Appendix 2. Description of mesocosm studies

Study 1: Ratte and Memmert, 2003

Microcosm study with natural populations of algae, invertebrates and zooplankton

Reference	Ratte, H.T., Memmert, A. (2003) Biological effects and fate of imidacloprid SL 200 in outdoor micorocosm ponds, RCC Ltd, unpublished report No. 811766. WAT2003-633.
Species: Population:	Phytoplankton, periphyton, invertebrates, zooplankton
Community	
Test Method	Microcosm
System properties	2.0-2.2 m diameter, 1.0 m deep, 3100-3800 l
Formulation	Imidacloprid SL 200
Exposure regime	0, 0.6, 1.5, 3.8, 9.4 and 23.5 µg/L; 2 applications (May 2 and May 23)
Analysed	Y
Temperature [°C]	Not in summary
pH range	Not in summary
Hardness [mg	Not in summary
CaCO ₃ /L]	
Exposure time	182 d
Criterion	NOEC
Test endpoint	Population response of benthic invertebrates and zooplankton
Value [µg/L]	< 0.31 (mean actual concentration).
GLP	Y
Guideline	SETAC, 1991, OECD, 2000
Notes	
Ri	2

DESCRIPTION

Test system

Thirteen microcosms of 2.0-2.2 m diameter, 10 cm natural sediment and 1.0 m water, total 3100-3800 l, Aachen, Germany, sediment not specified. Organisms were added with the sediment and phytoplankton and zooplankton were obtained from natural ponds. Ponds were left to establish during 6 months. Application took place on May 2 and 23, 2001, Treatments, 0, 0.6, 1.5, 3.8, 9.4 and 23.5 a.s. μ g/L in duplicate, untreated in triplicate. The substance was sprayed on the pond surface. Analytical sampling

Concentration was measured in the application solutions, and in initial concentrations in pond water samplings, and regularly during the experiment in water and sediment.

Effect sampling

Effect parameters zooplankton, phytoplankton, chlorophyll-a, emerging insects and macrozoobenthos (by artificial substrate and sediment) were regularly monitored.

Statistical analysis

Univariate and multivariate analyses, PRC.

RESULTS

Chemical analysis

The DT_{50} ranged from 5.8 to 13.0 days at all test concentrations after both applications, average DT_{50} 8.2 d. Initial measured concentrations not reported, but it was concluded that nominal concentrations could be used to express initial exposure.

Imidacloprid was found in the sediment, with the highest concentrations one week after second application. Thereafter, the concentration decreased to below LOQ of 7 μ g/kg in the highest concentrations after 56-70 d. In the lower treatments, a similar pattern was seen, however the concentrations were close to the LOQ. DT₅₀ for imidacloprid in the whole system (determined in the two highest dosages only) is 14.8 d.

Biological observations

Insects (caught by the emergence traps) were the most significantly affected organisms, from 1.5 μ g/L upwards. Effects were found on community parameters such as taxa richness, diversity, similarity and

principal response. Chironomidae and Baetidae were the most sensitive taxa. No effects were found at 0.6 μ g/L, which can be seen as the NOEC. Indirect effects are found on algae, but only the NOEAEC (defined as recovery within 8 weeks after last application) of 23.5 μ g/L is reported. For zooplankton NOEC of 9.4 μ g/L is reported for copepods and cladocerans, for macrozoobenthos the NOEC for the most sensitive species (*Chaoborus* spp.) is 9.4 μ g/L.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- 1. Does the test system represent a realistic freshwater community? Yes, natural populations of algae, zooplankton and macroinvertebrates were present. Macrophytes and fish were not present.
- 2. Is the description of the experimental set-up adequate and unambiguous? Unclear, not all details are reported in the available summary.
- 3. Is the exposure regime adequately described? Yes.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes.
- 5. Is it possible to evaluate the observed effects statistically? No, no details concerning measurement endpoint are given for concentrations and effect data. The data are analysed according to up-to-date methods, however.

These criteria result in an overall assessment of the study reliability. The study is considered to be less reliable (Ri 2) mainly due to the lack of details in the available summary.

The RMS and the notifier appointed the 0.6 μ g/L-treatments as the NOEC. The notifier and RMS did not agree on the level of the NOEAEC. Both RMS and notifier agreed on a small TER trigger, because uncertainty of the NOEC is considered to be relatively low. The notifier proposes a factor of two as TER trigger.

Conclusion

For ERL-derivation, the NOEC based on the 0.6 μ g/L-treatment with an actual initial concentration similar to the nominal concentration is used. Experimental ponds were exposed to imidacloprid in two peaks and actual concentrations declined rather rapid. Therefore, the results of the underlying study can be used for derivation of the MAC, but the study is not suitable for derivation of the MPC.

Appendix 3. References used in the appendices

- Anatra-Cordone M, Durkin P. 2005. Imidacloprid Human Health and Ecological Risk Assessment -Final Report. USDA, Forest Service.
- EC. 2006. Imidacloprid, Draft Assessment Report. Rapporteur Member State: Germany. Public version February 2006. With Addendum.
- Feng SL, Kong ZM, Wang XM, Zhao LR, Peng PG. 2004. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N-Hallowell. Chemosphere 56: 457-463.
- Heimbach F. 1986. Growth inhibition of green algae (*Scenedesmus subspicatus*) caused by NTN 33893. Leverkusen, Germany: Report no. HBF/A1 27. 14 pp.
- Jemec A, Tisler T, Drobne D, Sepcic K, Fournier D, Trebse P. 2007. Comparative toxicity of imidacloprid, of its commercial formulation and of diazinon to a non-target arthropod, the microcrustacean *Daphnia magna*. Chemosphere 68: 1408-1418.
- Liu H, Cupp EW, Guo AG, Liu NN. 2004a. Insecticide resistance in Alabama and Florida mosquito strains of *Aedes albopictus*. J Med Entomol 41: 946-952.
- Liu HQ, Cupp EW, Micher KM, Guo AG, Liu NN. 2004b. Insecticide resistance and cross-resistance in Alabama and Florida strains of *Culex quinquefaciatus*. J Med Entomol 41: 408-413.
- Overmyer JP, Mason BN, Armbrust KL. 2005. Acute toxicity of imidacloprid and fipronil to a nontarget aquatic insect, *Simulium vittatum* Zetterstedt cytospecies IS-7. Bull Environ Contam Toxicol 74: 872-879.
- Paul A, Harrington LC, Scott JG. 2006. Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol 43: 55-60.
- Ratte HT, Memmert A. 2003. Biological effects and fate of imidacloprid SL 200 in outdoor micorocosm ponds, RCC Ltd, unpublished report No. 811766. WAT2003-633.
- Sanchez-Bayo F, Goka K. 2006. Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans. Aquat Toxicol 78: 262-271.
- Song MY, Brown JJ. 2006. Influence of fluctuating salinity on insecticide tolerance of two euryhaline arthropods. J Econ Entomol 99: 745-751.
- Song MY, Brown JJ. 1998. Osmotic effects as a factor modifying insecticide toxicity on *Aedes* and *Artemia*. Ecotoxicol Environ Saf 41: 195-202.
- Song MY, Stark JD, Brown JJ. 1997. Comparative toxicity of four insecticides, including imidacloprid and tebufenozide, to four aquatic arthropods. Environ Toxicol Chem 16: 2494-2500.

RIVM

National Institute for Public Health and the Environment

P.O. Box 1 3720 BA Bilthoven The Netherlands www.rivm.com