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Abstract

Supporting REACH — Development of building blocks of a module for intelligent testing of

data-poor organic substances

The new EU legislation for industrial chemicals, REACH, obliges registrants to collect all
available relevant information on the intrinsic properties of a substance. Many of these properties
are unknown and/or even impossible to measure. For this reason, one of the so-called REACH
implementation projects provides a general guidance on Intelligent (or Integrated) Testing
Strategies (ITSs), with the aim of optimizing the use of available data and reducing animal testing.
In this context, data-poor chemicals are a particularly difficult challenge. We report here the first
steps towards the development of a module for dealing with data-poor chemical classes. The focus
of our research was on the development of methods that use chemical structure as the sole input
parameter for predicting the toxicity of specific organic substances (in this case, carbamates and
organophosphate esters, and their metabolites) to aquatic organisms. Methods such as these are
eagerly awaited as they are essential for the successful implementation of REACH. Carbamates
and organophosphate esters were selected as the chemical classes to be studied because, despite
their large application volumes, a relatively limited amount of information is available on their
fate and effects in the environment. The report describes how the formation of metabolites of the
specific chemicals can be predicted with the QSAR-based computer programme CATABOL.
Quantum-chemical descriptors of the substances and their metabolites were computed by
CHEMS3D. Based on these descriptors, structure—activity relationships were developed to predict

the toxicity of the starting compounds and their metabolites to aquatic organisms.

Key words:
REACH, risk assessment, integrated testing strategy, RIP, carbamates, organophosphates, QSAR
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Rapport in het kort

Ondersteuning van REACH - Ontwikkeling van bouwstenen voor een module voor het

intelligent testen van data-arme organische stoffen

De nieuwe EU-regelgeving met betrekking tot de productie en het gebruik van chemische stoffen
(REACH) streeft naar een verbetering van de kwaliteit van een gezonde leef- en werkomgeving.
Stoffen komen direct en indirect in het arbeids- en leefmilieu terecht. Op dit moment is voor veel
stoffen onbekend wat de gevaren zijn voor de volksgezondheid en de effecten op de leefomgeving.
Binnen REACH wordt onder andere gestreefd naar een minimalisatie van het gebruik van
proefdieren. Aan de andere kant moet in de komende jaren een inhaalslag gemaakt worden om
essentiéle kennislacunes weg te nemen. Hierbij dient zoveel mogelijk gebruik gemaakt te worden
van bestaande stofgegevens, waarbij het essentieel is om de beschikbare informatie zo efficiént
mogelijk te gebruiken. In dit rapport worden enkele bouwstenen uitgewerkt van een module voor
een geintegreerde teststrategie (ITS in REACH-termen) voor data-arme stoffen. Dit is gedaan voor
twee stofgroepen: carbamaten en organofosfaat-esters. Dit zijn twee stofgroepen met diverse
toepassingen terwijl het ontbreekt aan kennis over hun lot en effecten in het milieu. De aandacht
ligt bij dit uitgewerkt voorbeeld op het voorspellen van de aquatische toxiciteit van zowel de

uitgangsstoffen als van hun metabolieten.

Trefwoorden:
REACH, risicobeoordeling, teststrategie, carbamaten, organofosfaten, QSAR
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Summary

The new EU regulation regarding the production and use of chemical substances (REACH) is
aimed at improving the quality of the environment for humans (include workers) and ecosystems.
Chemicals are emitted directly and indirectly in these environments. At this moment, the extent of
adverse effects on humans and ecosystems following emissions is virtually unknown for many
chemicals. REACH requires making up for the lack of essential information on chemical
substances within a limited period of time. Thereupon, REACH is aimed at minimizing animal
testing. Within so-called Integrated Testing Strategies (ITSs), existing chemical data are to be used
as efficiently as possible in connection with newly to be developed assessment tools like read-
across methodologies, structure-activity relationships, weight-of-evidence reasoning based on
several independent sources of information, and in vitro testing. Some of the building blocks of a
module for an ITS for data-poor chemicals are designed in this report. This design was performed
for two chemical classes that despite their widespread use are to be considered as being data-poor:
carbamates and organophosphate esters. The focus is on prediction of the aquatic toxicity of the

metabolites of the chemical substance classes investigated.
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1. Introduction

The implementation of the new EU legislation concerning the Registration, Evaluation,
Authorization and restriction of CHemicals (REACH) requires amongst others the implementation
of a multitude of tools that will assist in meeting the main objectives of REACH of efficient safety
management of chemicals whilst minimizing the use of test animals. The array of tools to be
optimized in Intelligent (or Integrated) Testing Strategies (ITSs) include non-testing information
on top of a minimum amount of newly generated data. Read-across methodologies, computational
methods like Quantitative Structure-Activity Relationships (QSARs), as well as Weight-Of-
Evidence reasoning (WOE) based on several independent sources of information, and in vitro
testing are to supplement existing experimental and historical data and substance-tailored exposure

driven testing.

Despite efforts to supplement available data by newly generated properties, most chemicals to be
assessed are to be considered as being data-poor with regard to physico-chemical properties and
effect data. This necessitates to have operational a multitude of alternatives like the ones
mentioned above. RIP 4 (RIP = REACH Implementation Project, RIP 4 deals with the technical
guideline documents for authorization. This includes issues like dossier evaluation (4.1), substance
evaluation (4.2), priorities for authorisation (4.3), restriction / derogation of chemicals (4.4), and
priorities for evaluation (4.5)) provides general guidance on dealing with (data-poor) chemicals.
RIP 4 deals (amongst others) in a generic sense with ITS, although guidance on this issue is not
detailed. ITSs have been defined for a number of assessment endpoints but the building blocks are

in a state of design at best and further efforts are needed to generate robust ITSs.

Metabolites are a special class of data-poor chemicals. Metabolites are chemicals that are formed
following release of a chemical in the environment as a result of the interaction with abiotic or
biotic phenomena; metabolites are the result of incomplete degradation of the parent compound.
As for most chemicals to be evaluated, the chemical structure is the sole piece of information that
is always available. Predictive tools based solely on the chemical structure are therefore one of the
methods of choice for inclusion in ITSs. Quantumchemical descriptors (i.e. descriptors based upon
the basic properties of a chemical, like the charge of atoms in the molecule, the energy of
molecular orbitals, dipole moment, polarity, the total energy of the chemical, the heat of
formation, etc.) are the tools of choice in this respect as they only require the molecular structure
as input. Quantumchemical descriptors are currently made available in an increasing user-friendly
mode via, amongst others, the internet. Basically, information on the chemical structure is the sole
requirement for the derivation of quantumchemical descriptors. Recent progress in computational
hardware and the development of efficient algorithms has assisted the routine development of

molecular quantum-mechanical calculations. Quantumchemical calculations are thus an attractive
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source of new molecular descriptors which can in principle express all of the electronic and
geometric properties of molecules and their interactions, turning them well-suited to provide the
building blocks for modelling fate and effects of data-poor chemicals. So far, QSARs based upon

quantumchemical descriptors are scarce.

The main objective of the study reported here is to explore the possibilities of using
quantumchemical descriptors as the basis for deriving QSARs for prediction of the aquatic toxicity
of data-poor chemicals and their (predicted and/or measured ) metabolites. The latter allows
assessment of the possibility of formation of more toxic metabolites following environmental
release of a chemical. Carbamates and organophosphate-esters (OP-esters) were selected as
chemical classes as, despite their large usage volumes and despite their toxic profiles, these
compound classes are typical examples of data-poor chemicals that require assessment within
REACH. Experiences gained with these chemical classes may serve in setting-up specific modules
within ITSs for assessing the risks of data-poor chemicals. Metabolite formation was predicted by
means of the application of CATABOL. CATABOL is a model which can be used for quantitative
assessment of the biodegradability of chemicals. The model allows for identifying potentially
persistent catabolic intermediates, their molar amounts, and solubility (water solubility, log Koy,
BCF). Presently, the system simulates the biodegradability in MITI-I OECD 301 C and Ready
Sturm OECD 301 B tests. Other simulators will be available in the program upgrades. The latest
version of CATABOL (version 5) allows defining the degree of belonging of chemicals into the

domain of the biodegradation simulator.

It should be noted that the objective is NOT to develop an ITS for biodegradation or for
assessment of toxicity. Instead we intend to develop building blocks for filling in the ITS on these

endpoints.

The report is structured as follows: following an overview of the regulatory background as related
to REACH (chapter 2), models are derived in chapter 3 for predicting the aquatic toxicity of a
selected number of carbamates and OP-esters. Chapter 4 deals with the validation of CATABOL,;
predicted metabolite formation patterns are compared to experimental observations. Chapter 5
deals with toxicity prediction of the metabolites identified during validation of CATABOL using
the models reported in chapter 3. Finally, chapter 6 provides a short overview of the highlights of
this study.
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2. Regulatory background

2.1 REACH and the need for alternative testing

The implementation of REACH requires demonstration of the safe manufacture of chemicals and
their safe use throughout the supply chain. REACH is based on the precautionary principle, but
aims to achieve a proper balance between societal, economic and environmental objectives. Both
new and existing chemicals will be evaluated within REACH, on the one hand aiming to speed up
the slow process of risk assessment and risk management of existing substances whilst on the
other hand attempting to efficiently use the scarce and scattered information available on the
majority of new and existing substances. REACH thus aims at closing huge gaps of knowledge on
physico-chemical properties and adverse effects of large numbers of chemicals. Thereupon
REACH aims to reduce animal testing by optimized use of qualitative and quantitative
information on related compounds. Detailed information on all aspects of the implementation of

REACH can be found on the website: http://ec.europa.eu/enterprise/reach/prep_guidance_en.htm.

The basic elements of REACH are as follows:

Registration - In principle REACH covers all substances, but some classes of substances are
exempted (e.g. radioactive substances, polymers and substances for research and development).
The safety of substances is the responsibility of industry. Manufacturers and importers of
chemicals are therefore required to obtain information on their substances in order to be able to
manage them safely. The extent of the obligations depends upon the quantity of the substances
manufactured or imported. For quantities of 1 tonne or more per year a complete registration has
to be submitted. For substances of 10 tonnes or more per year, a Chemical Safety Report (CSR)
has to be included. Since one of the goals of REACH is to limit vertebrate testing and reduce

costs, sharing of data derived from in vivo testing is mandatory.

The information on hazards and risks and how to manage them is passed up and down the supply
chain. The main tool for downstream information is the safety data sheet (SDS), for dangerous
substances only. An SDS contains information which is consistent with the chemical safety
assessment. Relevant exposure scenarios are annexed to the SDS. The downstream user is required

to apply appropriate measures to control risks as identified in the SDS.

Evaluation - Evaluation will be performed on registration dossiers, to check the testing proposals

and the compliance with the requirements of registration. In addition, substances which are
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suspicious of being a threat to human health or the environment can be evaluated by a Member

State.

Authorisation - Authorisation of use and placing on the market is required for all substances of

very high concern, regardless of tonnage level.
Restrictions - Restrictions may apply to all substances, regardless of tonnage level.

Classification and labelling inventory - Directives 67/548/EEC on classification and labelling of
substances and 1999/45/EC on classification and labelling of preparations will be amended to

align them with REACH.

Currently, around 100,000 different substances are registered in the EU, of which around 30,000
are manufactured or imported in quantities above 1 tonne. The existing regulatory system inherent

in current EU policy for dealing with the majority of these chemicals - known as ‘existing’

substances - has been in place since 1993 and has prioritised 140 chemicals of high concern.
Although a programme of work has been drawn up, the current EU legislation on chemicals has
several drawbacks. Firstly, a substantial number of existing chemicals which are marketed have
not been adequately tested. Information related to their hazard potential is minimal (less than base-
set), and they may be harmful to human health or the environment. This contrasts sharply with
new chemicals which have to be notified and tested starting from volumes as low as 10 kg per
year, discouraging research and invention of new substances. Secondly, there is a lack of
knowledge on use and exposure. Thirdly, the present process of risk assessment and chemical
management in general is relatively slow, and certainly too ineffective and inefficient to take care
of the problems raised by the huge data gap in the field of the existing chemicals. And last but not
least, the current allocation of responsibilities is not appropriate: public authorities are responsible
for the risk assessment of substances, rather than the enterprises that produce or import them (JRC,

2005).

The 30,000 existing substances manufactured or imported in quantities above 1 tonne are to be
assessed through the REACH process within a proposed time-window of eleven years. A major
topic within the assessments is the availability of data. On the basis of experiences within the US
Challenge Program on regulation of High Production Volume Chemicals, it is expected that
adequate data are available only for about 50 % of the endpoints to be assessed, various estimation
methods and strategies to limit data needs will substitute for the majority of the lacking data, and
about 6-7 % of the lacking data are expected to be derived by means of additional testing
(Table 1).
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Table 1: Experience from the US HPV Challenge Program.

Human health data | Environmental effects
Adequate studies 50% 58%
Estimation 44% 35%
Testing 6% 7%

The REACH proposals advocate the use of non-animal testing methods for the generation of
lacking data, but guidance is needed on how these methods should be used. As an example: the
REACH system requires that non-animal methods should be used for the majority of tests in the 1-
10 tonne band, even though such methods are not yet available for most of the endpoints relevant

at this tonnage.

In an attempt to resolve the issue of lack of guidance, the European Commission made suggestions
on how reduction, refinement and replacement strategies could be applied to animal use in the

REACH system:
1 — encouragement of the use of validated in silico techniques such as (Q)SAR models.
2 — encouragement of the development of new in vitro test methods.

3 — minimization of the actual numbers of animals used in the required tests, and replacement of

animal tests wherever possible by alternative methods.

4 — formation of Substance Information Exchange Forums (SIEFs) for the obligatory provision of

data and cost sharing.

5 - requirement of official sanctioning of proposals for tests for compounds with production

volumes of above 100 tonnes to minimize animal testing.

The consequence of REACH is that in a relative short time period the risk of a large group of
chemicals has to be assessed, which implies that also a large amount of information on the fate
and effects of chemicals has to become available. In principle, this can be achieved by conducting
a large number of human toxicity and ecotoxicity studies as well environmental fate and behaviour
studies. However, not only in REACH but in OECD as well, there is understanding that for
reasons of animal welfare, costs and logistics, it is important to limit the number of tests to be
conducted. In line with ANNEX XI of the REACH proposal, the generation of a comprehensive
test dataset for every chemical will not be needed if these test data can be replaced by the

following methods:
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e non testing methods:
1 - the application of grouping (categories) and read-across
2 - computational methods (SARs, QSARs and biokinetic models);
e invitro tests;
e cxisting experimental and historical data;
e substance-tailored exposure driven testing;
o weight-of-evidence reasoning (WOE) based on several independent sources of
information.
This means that alternative methods (non-testing methods or in vitro tests) have to be developed as
well as weight-of-evidence schemes that allow regulatory decisions to be made. These have until
now been used but to a varying degree and in different ways for risk assessment, classification &
labelling, and PBT assessment of chemicals (EC 2003, EC 2004). The benefits of using such non-

testing methods have included:

+ avoiding the need for (further) testing, i.e. information from non-testing methods has

been used to replace test results;

« filling information gaps, also where no test would be required according to current

legislation;

» improving the evaluation of existing test data as regards data quality and for choosing
valid and representative test data for regulatory use. Furthermore, use of non-testing data
in addition to test data employing weight of evidence could increase the confidence in the

assessments;

Thus, the use of non-testing information has improved the basis for taking more appropriate
regulatory decisions (as well as for voluntary non-regulatory decisions taken by industry). In
effect, use of non-testing information has decreased uncertainty, or even made it possible to
conclude on a classification or the need for more information in relation to hazard, risk and PBT

assessment.

Alternative methods are in several stages of development, verification and validation, and they
therefore cannot yet be used as stand alone. Other information gaps will exist. It is therefore
necessary to integrate all available information into a so called integrated or intelligent testing
strategy (ITS). In this way, all possible available information on a substance can be optimally used
and further testing will only be required where essential information is lacking (Bradbury et al.,
2004; Combes et al., 2003; Vermeire et al., 2006). Figure 1 schematically depicts the various
approaches that may provide the building blocks for Intelligent Testing Strategies.
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Intelligent Testing Strategies (ITS)

Read-across

Exposure
Scenarios N Existing
(Annex VII/VIII) information

[TESTING]|

Figure 1. Constituents of an Intelligent (or Integrated) Testing Strategy (ITS). Taken from a

presentation of Van Leeuwen and Bradbury (2005).
Six components are currently proposed for inclusion in ITSs (IHCP, 2005):

Exposure-based waiving. In a tiered approach to evaluating the risk associated with chemical
substances, derogation of testing requirements can be justified at an early stage if the exposure is
known to be negligible in the environmental compartments of interest. To this end, increased
realism in regulation-relevant exposure assessment is required. This will include refinement of
exposure models targeted for triggering ITSs accordingly, elaboration and harmonization of the
meaning of low exposure, and development of procedures for incorporating relevant use pattern

information, taking into account the European diversity.

Read-across and chemical categories. Read-across has great potential to reduce animal testing,
and contributes to achieve better-informed decisions through evaluating the chemistry-specific
context. However, transparent extrapolation from information gained for chemically similar
compounds requires specifying how to define chemical similarity covering both the structural
domain and property profile, and to develop guidance for the qualitative and quantitative

extrapolation of biological testing results in a regulatory context.

Structure-activity relationships and computational chemistry. Qualitative and quantitative
structure-activity relationships (QSARSs) are used to predict the toxicity and fate of chemicals from
molecular structure information, employing different levels of computational chemistry. They are

sometimes called ‘in silico’ models because they can be applied by using a computer. Both
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categorical data and continuous data can be addressed. Besides regulatory endpoints for
classification, labelling and hazard evaluation, in silico methods may also generate mechanistic
knowledge that guides targeted testing and enables informed extrapolation across species as well
as between human health and ecotoxicology. In silico methods need to be made fit for regulatory
purpose, and should include technical issues such as applicability domain (one of the OECD

principles for QSAR validation), prediction power, and also metabolism simulators.

Thresholds of toxicological concern. Thresholds of toxicological concern (TTCs) are exposure
thresholds below which no significant risk is expected. The TTC concept relies on the assumption
that one can identify a concentration threshold below which the risk of any chemical for any harm

is acceptably low, as has been proposed for food additives by the FDA (1995).

In vitro tests. In vitro systems implicitly require the use of prediction models to extrapolate from
in vitro data to in vivo information. Since one decade there is a focus on the development and
validation of alternative test methods within ECVAM and OECD. So far, eight in vitro methods
have been proposed as scientifically valid for the assessment of chemicals, and a full replacement
of animal testing may not be possible for the majority of endpoints because of the reductionistic
nature of in vitro cell cultures as compared to in vivo systems. The mechanistic basis of in vitro
approaches needs further study. Focus should be on their great potential to contribute significantly
to the reduction and refinement of animal tests, particularly when combined in an intelligent

manner with other ITS components such as QSARs and genomics.

Optimized in vivo tests. Strategies to reduce the use of laboratory animals include elimination of
redundant tests, use one sex whenever possible, greater use of screens, and threshold approaches
instead of full dose-response. Another route of optimization concerns the refinement of animal
testing through introduction of non-lethal endpoints. Procedures for the regulatory acceptability of
the various optimization strategies need development, and new opportunities to refine and reduce
animal testing through guidance from mechanistic non-testing information provided by QSARs,
read-across and in vitro data as well as through species-species extrapolation (biological read-

across) need further attention.
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2.2 Alternatives for testing within REACH

REACH implicitly requires that operational procedures are developed, tested, and disseminated
that guide a transparent and scientifically sound evaluation of chemical substances in a risk-
driven, context-specific and substance-tailored manner. The procedures include alternative
methods such as chemical and biological read-across, in vitro results, in vivo information on
analogues, qualitative and quantitative structure-activity relationships (SARs and QSARs,
respectively), thresholds of toxicological concern, and exposure-based waiving. As stated in
paragraph 1.1, the concept of ‘Intelligent Testing Strategies’ (ITSs) for regulatory endpoints has
been outlined to facilitate the assessments. The basic idea is to obtain the information needed for
carrying out hazard and risk assessments for large numbers of substances by integrating multiple
methods and approaches with the aim to minimize testing, costs, and time. The goal is to feed
regulatory decision making through a targeted exploitation of exposure, chemical and biological
information with minimal additional testing. For example, (Q)SARs have been used in regulatory
assessment of chemical safety in some OECD member countries for many years, but universal
principles for their regulatory applicability were lacking. The OECD member countries agreed in
November 2004 on the principles for validating (Q)SAR models for their use in regulatory
assessment of chemical safety. In February 2007, the OECD published a ‘Guidance Document on
the Validation of (Q)SAR Models’ with the aim of providing guidance on how specific (Q)SAR
models can be evaluated with respect to the OECD principles (OECD/IPCS, 2005). An OECD
Expert Group on (Q)SARs was established for this purpose and a (Q)SAR Application Toolbox is
in development. Under the current EU legislation for new and existing chemicals, the regulatory
use of estimation models or (Q)SARs is limited and varies considerably among the member states.
This is probably due to the fact that there is no agreement in the scientific and regulatory
communities over the application of (Q)SARs and the extent to which (Q)SARs estimates can be
relied on. It is anticipated that these non-testing methods, in the interests of time- and cost-
effectiveness and animal welfare, will be used more extensively under the future REACH system,
and especially ECVAM (the European Centre for the Validation of Alternative Methods) is

playing an important role in the operationalization of (Q)SARs for regulatory endpoints.

As stated above, eight in vitro methods have been proposed so far as scientifically valid for the
assessment of chemicals (for example: methods for skin absorption, skin corrositivity,
genotoxicity and phototoxicity), but many more still need to be developed, validated and accepted
for regulatory use. For environmental endpoints, a number of fish cell lines, primary fish cell
cultures and fish embryos are currently being studied to assess acute toxicity, a new approach for
testing prolonged exposure in fish cells is being developed as alternative for chronic toxicity

testing, and metabolically competent fish cell lines and primary cell cultures as gill epithelial cell
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cultures are being used to mimic bioaccumulation as fish gills are the first point of contact for
water-borne toxicants. In vitro systems implicitly require the use of prediction models to
extrapolate from in vitro data to in vivo information, amongst others taking account of the
observation that further investigations are required to ascertain the reasons for the reduced
sensitivity of fish and mammalian cell lines to aquatic toxicants, compared with in vivo fish
systems. There is a focus on the development and validation of alternative test methods within
ECVAM and OECD. A full replacement of animal testing may not be possible for the majority of
endpoints because of the reductionistic nature of in vitro cell cultures as compared to in vivo
systems. Despite all progress achieved and promising future prospects, scientific advisory
committees of the Commission (Scientific Committee on Toxicity, Ecotoxicity and the
Environment [CSTEE] and Scientific Committee on Cosmetic Products and Non-Food products
intended for Consumers [SCCNFP]) raised serious doubts about the potential of in vitro methods

to fully replace in vivo experiments in the near future.

Concerted action and intensive efforts are needed to translate the ITS concept into a workable,
consensually acceptable, and scientifically sound strategy. Initial ITS work has been performed in
the REACH Implementation Project (RIP) scoping studies, amongst others attempting to develop
testing strategies on four specific endpoints (irritation, reproductive toxicity, biodegradation and
aquatic toxicity). One of the main conclusions was that existing strategies should be developed
further and that the concept of ITS has maximal applicability across the REACH regulatory
endpoints. Furthermore, the production of guidance and (web-based) tools was considered
essential, and the outcome of the strategies should be applicable for risk assessment, classification
and labelling, and PBT assessment. Thereupon, within the sixth Framework Programme the
Integrated Project OSIRIS (Optimized Strategies for Risk Assessment of Industrial Chemicals
through Integration of Non-Test and Test Information) has been initiated. The goal of OSIRIS is
to develop integrated testing strategies fit for REACH that enable to significantly increase the use
of non-testing information for regulatory decision making, and thus to minimize the need for

animal testing.

So far, the use of non-testing methods in the European regulatory context is quite limited and
fragmented. Reasons include the lack of distinct application criteria and guidance, and the fact that
uncertainty has not been addressed rigorously. Industry is primarily made responsible for carrying
out the risk assessments, and practical guidance is therefore needed on how to apply the elements

of the newly derived testing strategies in a consistent manner.
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2.3 Insilico alternatives for application within REACH

2.3.1 General

ITSs are guidelines for the effective testing of the hazards of chemical substances, showing which
tests or mathematical methods should be used for a particular substance, and in what order. ITSs
should be an answer to the ever increasing demand for testing in regulations for a great number of
substances with limited databases. Key for ITSs is the development of strategies on the basis of
test methods at cellular level (in vitro) and mathematical methods (in silico). The mathematical
methods are needed for the assessment of exposure and of the relation between adverse effects and
chemical structure. In addition, some tests with experimental animals (in vivo) will remain
necessary. Knowledge on the effects of chemical substances with sufficient certainty should be
derived by smart integration of these methods. In this way it is expected that chemical substances

can be assessed cheaper and faster and with less experimental animals.

Validated QSARs are powerful tools within ITSs. QSARs are used to predict the toxicity and fate
of chemicals from molecular structure information, employing different levels of computational
chemistry. Both categorical data (y/n) and continuous data can be addressed. Besides regulatory
endpoints for classification, labelling and hazard evaluation, in silico methods may also generate
mechanistic knowledge that guides targeted testing and enables informed extrapolation across
species as well as between human health and ecotoxicology. In silico methods need to be
optimized for regulatory purposes, and should include technical issues such as applicability
domain (one of the OECD principles for QSAR validation), prediction power, and also

metabolism simulators.

At the 37th Joint Meeting of the Chemicals Committee and Working Party on Chemicals,
Pesticides & Biotechnology, the OECD Member Countries adopted five principles for establishing
the validity of (Q)SAR models for use in regulatory assessment of chemical safety. The OECD
Principles for (Q)SAR Model Validation state that to facilitate the consideration of a (Q)SAR

model for regulatory purposes, the model should be associated with the following information:
1 - a defined endpoint

2 - an unambiguous algorithm

3 - a defined domain of applicability

4 - appropriate measures of goodness-of-fit, robustness and predictivity

5 - a mechanistic interpretation (if possible)
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Various QSARs are available and have been operationalized in (Q)SAR software tools like
ECOSAR and DEREK, whereas tools like DRAGON, OpenEye (electrostatic descriptors),
ChemAxon and many others, are available for calculation of descriptor values needed in the

(Q)SAR software.

As risk assessment usually boils down to comparison of predicted environmental concentrations
and no effect concentrations, predictive models are needed for both fate-related endpoint and
effect-related endpoints. Mackay (2007) and Mackay and Boethling (2000) presented two
handbooks which focus on environmental fate prediction and QSAR analysis. The Environmental
Fate Data Base of Syracuse Research Corporation (SRC, 1999) comprises a number of models for

prediction of fate-related endpoints.

Models for predicting ecological effects were reviewed by Cronin et al. (2003, and references
cited therein). Hermens and Verhaar (1996) are among the pioneers in the area of QSAR
modelling of aquatic toxicity, based upon assessing the mode of action. These authors developed a
framework that is especially applicable for modelling aquatic toxicity of organic compounds
acting primarily by the mechanism of apolar narcosis as the basic mechanism of toxicity. QSARs
for predicting adverse effects of chemicals acting via different modes of action are scarce. With
regard to computational toxicology, a major challenge is the identification of prevalent modes of
action of chemical compounds through suitable descriptors encoding local molecular reactivity.
Existing parameter motifs for identifying specifically acting compounds such as electrophiles,
redox cyclers and endocrine disrupters are not sufficiently specific to apply across chemical
classes, and little work has been devoted to parameterizing the bioreactivity of radical

intermediates.

Hulzebos and Posthumus (2003), Hulzebos et al. (2005), and Posthumus et al. (2005) provide

examples of the outcome of validation efforts of QSAR models and expert systems.

2.3.2 Biodegradation and biodegradation prediction

Introduction

During production and use, organic chemicals can be released into sewers, soil, surface water, sea,
and air, dumped or incinerated after use. Their fate and potential environmental hazard is strongly
determined by the potential of degradability. Substances that do not degrade rapidly have a higher
potential for longer term exposures and may consequently have a higher potential for causing long
term adverse effect on biota and human than degradable substances. Prediction and understanding
of the fate of the chemicals are therefore essential so that measures can be taken to avoid effects
on humans and the environment. For this reason information on the biodegradability is used for
different regulatory purposes: (1) environmental hazard classification, (2) PBT and vPvB

assessment and (3) exposure assessment for use in the risk characterization.
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Transformation of chemicals in the environment involves abiotic degradation and biodegradation.
Abiotic degradation includes hydrolysis, oxidation, reduction, and photolysis. Biodegradation is
defined as the transformation of substances caused by micro-organisms. Primary biodegradation
of a molecule refers to any microbial process which leads to the formation of metabolites and
thereby contributes to the degradation of the original substance. Ultimate biodegradation is known

as the complete mineralization of a substance into carbon dioxide, water, and mineral salts.

Testing

In order to investigate biodegradation, standardized biodegradation tests have been developed by
different organizations (amongst others: OECD, ISO, EU, US-EPA and STM), which can roughly
be divided into three groups:

e screening (ready or ultimate biodegradation) tests

e intermediate (inherent or primary biodegradation) tests

o definitive (simulation) tests

Screening studies

A positive result in the screening studies can be considered as indicative of rapid ultimate
degradation in most aerobic environments including biological sewage treatment plants (Struijs
and Stoltenkamp, 1994) and may take away the necessity for further testing. A negative result in a
test for ready biodegradability does not necessarily mean that the chemical will not be degraded
under relevant environmental conditions, but it means that it should be considered to progress to

the next level of testing, i.e. either an inherent biodegradability test or a simulation test.

Inherent or primary biodegradation tests

Using favourable conditions, the tests of inherent biodegradability have been designed to assess
whether the chemical has any potential for biodegradation under aerobic conditions. Compared
with the ready biodegradability tests, the inherent biodegradability tests are usually characterized
by a high inoculum concentration and a high test substance concentration. A negative result will
normally be taken as an indicator of that non-biodegradability (persistence) should be assumed for

precautionary reasoning.

Simulation studies

Compared to ready and inherent biodegradability tests, simulation tests are higher tier tests that are
more relevant to the real environment. These tests aim at assessing the rate and extent of
biodegradation in a laboratory system designed to represent either the aerobic treatment stage of
STPs or environmental compartments like surface water, sediment, and soil. They usually employ
specific or semi-specific analytical techniques to assess the rate at which a substance undergoes

degradation and to provide insight into subsequent metabolite formation and their decay. The fate
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of chemicals in STPs can be studied in the laboratory by using the simulation tests: activated
sludge units (OECD 303) and biofilms (TG 303B). Simulation tests in soil (OECD 307), in aquatic
sediment systems (OECD 308), and in surface water (OECD 309) have been also included in the
guidelines of OECD (OECD, 1981-2006). No specific pass-levels have been defined for the
simulation tests. Simulation tests are especially useful, if it is known from other tests that the test

substance can be mineralized and that the degradation covers the rate determining process.

The tests complexity and the economic consequences bond to the tests increases from the simple
screening test for ready biodegradability to the more complex simulation tests. For this reason, the
standard information requirements within REACH are based on the tonnage of chemicals. The

requirements for these tonnage-driven degradation tests are listed in Table 2.

Table 2: REACH tonnage-driven degradation tests requirements

Tonnage (tpa) | Degradation tests

1-10 Ready biodegradation test
10-100 Ready biodegradation test, hydrolysis test
100-1000 Ready biodegradation test, hydrolysis test, and simulation test, identification of
the most relevant degradation products
>1000 Ready biodegradation test, hydrolysis test, and simulation test. Further

confirmatory testing on rates of biodegradation with specific emphasis on the
identification of the most relevant degradation products

Biodegradation estimation

Under the current EU legislation for new and existing chemicals, the regulatory use of estimation
models or (Q)SARs is limited and varies considerably among the member states, which is
probably due to the fact that there is no agreement in the scientific and regulatory communities
over the applications of (Q)SARs and the extent to which (Q)SARs estimates can be relied on. In
contrast, it is anticipated that these non-testing methods like (Q)SARs and read-across, in the
interests of time- and cost-effectiveness and animal welfare, will be used more extensively under
the future REACH system. Below, we briefly review the current status of QSAR application for

abiotic degradation and biodegradation.

(Q)SARs for biodegradation can potentially be used to supplement experimental data or to replace
testing. The current generation of generally applicable biodegradation models focuses on the
estimation of readily and non-readily biodegradability in screening tests. This is because most
experimental data are from such tests. In the past decade, the development of QSAR modelling is
mainly via three approaches: group contribution approaches, statistical/chemometric approaches,
and expert system/Artificial Intelligence (Al) approaches. Table 3 summarizes the most often used

QSAR models for biodegradation.
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There are six models in BIOWIN. A description of these six BIOWIN models and their
application for biodegradation can be found in Posthumus et al. (2005), Hulzebos et al. (2005),
and Hulzebos and Posthumus (2003). Briefly, BIOWIN probability models include the linear and
non-linear BIODEG and MITI models for estimating the probability of rapid aerobic
biodegradation and an expert survey model for primary and ultimate biodegradation estimation.
Another model is MultiCASE, which combines a group-contribution model and an expert system
to simulate aerobic biodegradation pathways (Klopman and Tu, 1997). This model has also been
used by Rorije et al. (1998) to predict anaerobic biodegradation. A promising model which can be
used for quantitative assessment of biodegradability in biodegradation pathways of chemicals is
CATABOL. The model allows for identifying potentially persistent catabolic intermediates, their
molar amounts, solubility (water solubility, log K.y, BCF) and toxic properties (acute toxicity,
phototoxicity, mutagenicity, ER/AR binding affinity). Presently, the system simulates the
biodegradability in MITI-I OECD 301 C and Ready Sturm OECD 301 B tests. Other simulators
will be available in the program upgrades. The latest version of CATABOL (version 5) allows

defining the degree to which chemicals belong into the domain of the biodegradation simulator.

Table 3: QSAR models for biodegradability

Group Biodegradability BIODEG models BIOWIN 1
contribution probability program
approaches BIOWIN BIOWIN 2

Expert survey | BIOWIN 3

models
BIOWIN 4
MITI models BIOWIN 5
BIOWIN 6
MULTICASE To model anaerobic aquatic biodegradation rates
anaerobic
biodegradation
program

Statistical or | Ready biodegradability is modelled more adequately than not-ready

chemometric biodegradability.

approaches

Expert Biodegradability Qualitative, aerobic biodegradation pathways
system/Al evaluation and | The model needs to be validated.
approaches simulation system

MultiCASE/META | Aerobic biodegradation pathways

CATABOL Quantitative assessment of biodegradability
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An evaluation of the predictions of the models for the high production volume chemicals showed
that all models are highly consistent in their prediction of not-ready biodegradability, but much
less consistency is seen in the prediction of ready biodegradability. This complies with the
observation that the models show better performance in their predictions of not-ready

biodegradability (Rorije et al., 1999).

Degradation products - metabolites

When assessing the biodegradation of organic chemicals, it may also be needed to consider the
fate and toxicity of the resulting biodegradation products, especially when they have the potency
to persist in the environment. The concentration of these products in the different environmental
compartments depends on numerous factors and processes, including how the parent compound is
released to the environment; how fast it degrades; the half-lives of the degradation products;
partitioning to sludge, soil, and sediment; and subsequent movement to air and water. In general,
microbial degradation processes lead to the formation of more polar and more water soluble
compounds. Hence, the resulting transport behaviour of degradation products may be different.
The available data on pesticides demonstrate that in most cases degradation products are as toxic
as or less toxic than the parent compounds. However, in some instances, degradation products can
be more toxic. In general, the biggest increases in toxicity from parent to degradation products
were observed for parent compounds that had a low toxicity. Possible explanations for an increase
in toxicity are: (1) the active moiety of the parent compound is still present in the degradation
product; (2) the degradation product is the active component of a pro-compound; (3) the
bioaccumulation potential of the degradation product is greater than that of the parent; (4) the
transformation pathway results in a compound with a different and more potent mode of action

than that of the parent (Boxall et al., 2004).

Although the EU TGD (EC, 2003) highlights that, where degradation occurs, consideration should
be given to the properties (including toxic effects) of the products that might arise, that
information does not exist for many compounds. REACH will introduce a range of required tests
which could lead to metabolite investigations, e.g. hydrolysis is required for substances produced
in quantities above 10 ten tonnes per year and biodegradation simulation tests in surface water,
sediment and soil are required at production volumes above 100 tonnes per year. There might be
some concern that such a requirement will lead to an over emphasis on the behaviour of
metabolites and that e.g. for such low production volumes, or in the case of inherently degradable
substances such investigations will not be cost effective. As >100,000 chemicals are commonly
used worldwide every day, pragmatic approaches are needed to identify the primary degradation
products and those that are toxic, persistent, or bioaccumulative and/or which pose a risk to the

environment. For this purpose guidance is needed to establish the criteria upon which metabolites
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of concern may be identified and to determine when a metabolite would not be of concern (see

also Vermeire et al., 20006).

2.4 CATABOL

A promising model which can be used for quantitative assessment of biodegradability in
biodegradation pathways of chemicals is CATABOL. This system generates most plausible
biodegradation products and provides quantitative assessment for their physicochemical properties
and toxic endpoints. The possibilities of QSARs in a framework of intelligent testing strategy have

been described in the previous paragraphs.

CATABOL was created to predict the most probable biodegradation pathway, the distribution of
stable metabolites and the extent of biological oxygen demand or CO, production compared to
theoretical limits. It can be considered as a hybrid system, containing a knowledge-based expert
system for predicting biotransformation pathway combined with a probabilistic model that
calculates probabilities of the individual transformation and overall BOD and/or extent of CO,
production. The CATABOL system is trained to predict biodegradation within 28 days on the
basis of 743 chemicals from MITI database and another training set of 109 proprietary chemicals
from Procter & Gamble (P&G) obtained with the OECD 301C and OECD 301B tests,
respectively. In the first database biodegradation is expressed as the oxygen uptake relative to
theoretical uptake, while in the P&G database biodegradation is measured by CO, production.

Version 5.097 used in this study only contains information of the MITI dataset.

CATABOL is based on two sources of information:

1 - a training set containing 743 substances with measured BOD values in a MITI test.

2 - a library with transformations of chemicals fragments and their degradation products. Each
transformation has a corresponding probability, which is the likelihood that a particular reaction

step will be initiated.

For substances in the training set a measured BOD (y) is available, their transformation steps are
based on an observed transformation scheme (for approximately 90 out of 743 substances) or on a
pathway estimated by experts.

Probabilities of particular transformation steps have been derived from the training set (e.g. for a

sequential pathway):
V| V| Ak V|
_ Ak P+ k2 PP+ +—2 PIP2P3+...+—k1 PPP; .. P,
krop TOD TOD TOD

The TOD is defined as k., = Zi[:lAki
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For a branched pathway:
Ak Ak Ak Ak .
kTOD TOD TOD kTOD

Ak] ' '
.. P/P,P;...P,
TOD

The TOD is defined for a branched pathway as:
koop = Ak + Ak, + Akg +...+ Ak, + Aky + Ak, where P; is the probability of the "

transformation to be initiated.

The probabilities are subsequently used to create a hierarchy of most probable pathways and to
predict BOD values for the training set. However, some transformations can be grouped because
they have the same BOD and the same probability. Within these groups the hierarchy is
established by expert judgement, were the effect of neighbouring groups is taken into account. For
some transformations, fragments called ‘masks’ are attached to a source fragment. These
inactivating fragments prevent the performance of a specific transformation. With the fitted
probabilities it was possible to compute ‘predicted BOD’ for the training set. The correlation

between these predicted BODs and the observed BODs was 0.9.

For some of the substances in the training set the predicted BOD did not agree with the observed
BOD. These structures are ‘out of domain’. The criteria for a good prediction have been connected
to the reliability for a correct prediction of readily or not readily biodegradable. The areas for false
positives (wrongly predicted as ‘readily biodegradable’) and false negatives (wrongly predicted as

‘not readily biodegradable’) represent the limitations of the applicability domain.

The properties of substances in the training set are crucial in the determination of the applicability
domain. The applicability domain is defined as the group of chemicals for which the model is
valid.
CATABOL distinguishes three types of domains:

1 - the general parametric requirements domain

2 - the structure domain

3 - the metabolisation domain

The general parametric requirements restrict the applicability domain based upon variation of log

K,w and the molecular weight of the training set.

The structure domain defines the structural similarity with chemicals that are correctly predicted

by the model. It is based upon the principle that the properties of a substance depend on the nature



RIVM report 607220011 Page 29 of 78

of their atoms as well as of their arrangement. In order to check whether a new substance is in the
structure domain its fragments are compared with those substances in the training set that had
good BOD predictions. When the fragments of the substance of interest are not found in this group
within the training set, the substance is considered ‘out of domain’. The limitations in the structure
domain are very dependent upon the variety of structures in the training set; substances with
unknown structural fragments are by definition ‘out of domain’. A technical description about
how these molecular fragments are determined is described by Dimitrov et al. (2004). For
substances that are ‘out of structure domain’ this does not mean that the structure is unknown to
transformation library. A new substance, although ‘out of structure domain’ will be degraded
according to the hierarchy and probabilities in the transformation library. However, the predicted
BOD should be considered less reliable, because ‘out of structure domain’ only refers to the

dissimilarity with substances in the training set that had a good BOD prediction.

A third domain is the ‘metabolisation domain’. A list of reactions included in the library is given
in Table 4. The BOD is based on those pathways that can happen on familiar fragments of the
molecule and unknown fragments will remain as recalcitrant residues. Spontaneous reactions
obtain a probability of 1, the probabilities of microbial reactions have been derived statistically
from the training set. When a substance is ‘out of the metabolisation domain’, then there is no
pathway (and no probability) available for a particular (sub)structure. Structures that are unknown
to the library are ignored and do not contribute to the result. Consequently, CATABOL is unable
to mineralize the target substance - part of degradation pathway is not generated and predicted

BOD could be very wrong.

The most severe violation of the applicability domain is Metabolism Domain, followed by

Structural Domain and finally the General Requirements.

Another measure of the quality of generated pathways is the reliability which is expressed in a
value between 0 and 1. It is determined by making use of the reliability of transformations (their
successive use versus their total use within the training chemicals). Reliability close to 1 means
that all transformations used to generate a certain pathway were used correctly within the training
set. The Reliability is close to 0 should be interpreted as a warning message that some of the used

transformations may generate not realistic (not documented within the training set) pathways.

The interpretation of the combinations of ‘high reliability and out of domain’ or ‘low reliability
and in domain’ needs some expert knowledge and should be solved case by case analysing
causality for such a combination. Generally for BOD prediction: ‘high reliability and out of
domain (General or Structural)’ is an indication that the prediction could be correct if the target

chemical does not contain very ‘strange’ functionalities. Substances with a ‘low reliability and in



Page 30 of 78 RIVM report 607220011

domain’ requires an analysis of the effect of the used transformations with low reliability on the

predicted BOD.
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Table 4: List of metabolic steps in the CATABOL library

1. Spontaneous reactions 2. Microbially catalyzed reaction
3. Addition to ketenes and isocyanates 4. Alkyne hydrogenation

5. Alkaline salt hydrolysis 6. Aromatic ring cleavage

7. Aldehyde oxidation 8. Acetone degradation

9. Acyl halide hydrolysis 10. Aromatic ring oxidation

11. Alpha-pinene oxidation 12. Ammonium and iminium salt
13. Anhydride hydrolysis 14. Alkylammonium salt
15. Ammonium and iminium salt 17. Alkoxysilane hydrolysis

18. Alkoxide hydrolysis 19. Alkylphosphinite hydrolysis

20. Aromatic ring cleavage 21. Azo compounds reduction

22. Aziridine hydrolysis 23. Oxidative deamination and N-
24. Benzotriazole tautomerism 25. Beta-oxidation

26. Carbamate hydrolysis 27. Baeyer-Villiger oxidation

28. Cyclopropane oxidative 30. Beckmann rearrangement

31. Cyanuric acid isomerization 32. Bisphenol A cleavage

33. Diketone and unsaturated ketone 34. Carboxylation

35. Geminal derivatives decomposition 36. Carbodiimide hydrolytic

38. Hydrazine oxidation 39. Cycloalkadiene oxidative ring
41. Hydroxylation of substituted 43. Diketone and unsaturated

45. Hydroperoxide decomposition 46. Decarboxylation

47. Keto-enol tautomerism 48. Dehalogenation

49. Lactone hydrolysis and formation 50. Diarylketone oxidation

51. N-nitrosoamine hydrolysis 53. Dibenzofuran oxidative

55. Nitrate ester denitration 56. Epoxidation

57. Oxidative denitrification of azides 59. Ester hydrolysis

60. Oxirane hydration 61. Furans oxidation

62. Primary hydroxyl group oxidation 63. Hexahydrotriazine hydrolytic
65. Phosphine oxidation 66. Imine reduction

67. Polyphosphate decomposition 68. Imidazole and triazole C-
69. Quinone reduction 70. Lactone hydrolysis

72. Reductive deamination 73. Methyl group oxidation

74. Thiophosphate oxidative 76. Nitrogroup reduction and nitrite
77. Thiol-thion tautomerism 78. Nitrile and amide hydrolysis

79. Tetrahydrofuran oxidation 80. Omega oxidation

81. Thiol oxidation and reduction 82. Organotin compound oxidation
83. Thiolic acid and thioester 85. Oxidative desulfonation

86. 87. Oxidative thion desulfuration
88. 89. Oxidative S-dealkylation

90. 91. Organic sulfide S-oxidation

92. 93. Oxidative desulfuration

94. 95. Oxidative O-dealkylation

96. 97. Perfluoroketone degradation

98. 99. Pyridinium salt decomposition
100. 101. Phosphate hydrolysis

102. 103. Pyridine and azine ring

105. 106. Reductive deamination

107. 108. Sulfate hydrolysis

109. 110. Subterminal oxidation

111. 112. Sulfoxide reduction

113. 114. Sulfonyl derivative hydrolysis
115. 116. Thiol oxidation and reduction
117. 118. Tin and lead carboxylate
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2.5 Data-poor chemicals and I'TSs

Data-poor chemicals cannot only be defined in a literal sense as chemicals for which few
experimental fate and effect data are available, but subsequently also as chemicals for which
inherently also no or only very few predictive models have been developed. As a matter of course,
data-poorness hinders proper risk assessment of chemicals and necessitates the optimum use of the
scarce data available by means of the tools exemplified in Figure 1. ITSs for data-poor chemicals
are not existent yet but the contents of the building blocks of ITSs for data-poor substances start to
surface. An example of an assessment strategy is given in Figure 2. The example deals with a
framework used by Health Canada to evaluate whether metabolites are ‘a cause for concern’.
Metabolites are a special class of compounds as they are not the primary substances of focus,
which implies that in general even fewer data are available for metabolites as for the parent
compounds. The framework given in Figure 2 integrates QSAR models, read-across and testing
for both the parent compound and the metabolites to end up with an assessment of the properties

of the metabolite in terms of Persistence, Bioaccumulation and Toxicity.

(QSAR) models require as input one or more chemical-structure related properties. In numerous
cases, this information is not available for data-poor substances. Data-poor chemicals do however
share one communality, this being the availability of the chemical structure. Quantumchemical
descriptors (i.e. descriptors based upon the basic properties of a chemical, like the charge of atoms
in the molecule, the energy of molecular orbitals, dipole moment, polarity, the total energy of the
chemical, the heat of formation, etc.) are currently made available in an increasing user-friendly
mode via, amongst others, the internet. Basically, information on the chemical structure is the sole
requirement for the derivation of quantumchemical descriptors. Recent progress in computational
hardware and the development of efficient algorithms has assisted the routine development of
molecular quantum mechanical calculations. Novel semi-empirical methods supply realistic
quantum-chemical molecular quantities in a relatively short computational time frame. Quantum
chemical calculations are thus an attractive source of new molecular descriptors, which can in
principle express all of the electronic and geometric properties of molecules and their interactions.
Indeed, many recent QSAR/QSPR studies have employed quantum chemical descriptors alone or
in combination with conventional descriptors. Quantum chemistry provides a more accurate and
detailed description of electronic effects than empirical methods, turning them well-suited to

provide the building blocks for modelling fate and effects of data-poor chemicals.

Amongst various other chemical classes, carbamates and organophosphates are typical examples
of chemicals that are widely used in a variety of applications ranging from pesticides/herbicides to

flame retardants. Nevertheless, data on the fate and effects of carbamates and organophosphates
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are scarce, despite their large number of applications. With regard to their aquatic toxicity,
carbamates and organophosphates are known to act by a specific mode of action. No QSARs have
been developed to predict their toxicity to aquatic species, let alone that estimation methods are

available based on quantumchemical structure properties.
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Carbamates or urethanes are a group of organic compounds sharing a common functional group
with the general structure -NH(CO)O-. Carbamates are esters of carbamic acid, NH,COOH, an
unstable compound. Since carbamic acid contains a nitrogen atom attached to a carboxyl group it
is also an amide. Therefore, carbamate esters may have alkyl or aryl groups substituted on the
nitrogen, or the amide function. For example, urethane or ethyl carbamate is unsubstituted, while

ethyl N—-methylcarbamate has a methyl group attached to the nitrogen.

A group of insecticides also contain the carbamate functional group: for example Aldicarb,
Carbofuran, Furadan, Fenoxycarb, Carbaryl, Sevin, Ethienocarb and 2-(1-Methylpropyl)phenyl N-
methylcarbamate. These insecticides can cause cholinesterase inhibition poisoning by reversibly
inactivating the enzyme acetylcholinesterase. The organophosphate pesticides also inhibit this

enzyme, though irreversibly, and cause a more severe form of cholinergic poisoning.

Organophosphate (sometimes abbreviated OP) is the general name for esters of phosphoric acid.
Phosphates are probably the most pervasive organophosphorus compounds. Many of the most
important biochemicals are organophosphates, including DNA and RNA as well as many
cofactors that are essential for life. Organophosphates are also the basis of many insecticides,
herbicides, and nerve gases. Organophosphates are widely used as solvents, plasticizers, and EP
additives. Organophosphates are widely employed both in natural and synthetic applications
because of the ease with which organic groups can be linked together. In health, agriculture, and
government, the word ‘organophosphates’ refers to a group of insecticides or nerve agents acting
on the enzyme acetylcholinesterase (the pesticide group Carbamates also act on this enzyme, but
through a different mechanism). The term is used often to describe virtually any organic
phosphorus(V)-containing compound, especially when dealing with neurotoxins. Many of the so
called organophosphates contain C-P bonds. For instance, sarin is O-isopropyl
methylphosphonofluoridate, which is formally derived from HP(O)(OH)2, not phosphoric acid.
Also many compounds which are derivatives of phosphinic acid are used as organic phosphorus

containing neurotoxin.

Organophosphate pesticides (as well as Sarin and VX nerve gas) irreversibly inactivate
acetylcholinesterase, which is essential to nerve function in insects, humans, and many other
animals. Organophosphate pesticides affect this enzyme in varied ways, and thus in their potential
for poisoning. For instance, parathion, one of the first OPs commercialized, is many times more
potent than malathion, an insecticide used in combating the Mediterranean fruit fly (Med-fly) and

West Nile Virus-transmitting mosquitoes.

The carbamates and OP esters used in this study are given in Table 5.
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Table 5: Selected carbamates and O-P and S-P esters.
are indicated in bold.

Pesticides not registered in the Netherlands

O-P and S-P esters Carbamates

Chlorfenvinphos Aldicarb

Diazinon Propoxur

Parathion, methyl 1-Naphthalenol, methylcarbamate
Fenitrothion Nabam

Malathion Carbofuran

Methylazinphos Methiocarb

Phosphoric acid, 2,2-dichloroethenyl, dimethyl Phenol,2-(1-methylethyl)-
Dimethoate Trimethacarb

Parathion Phenol, 2-(1-methylpropyl)-,
Fenthion Methomyl

Dipterex 1,3-Benzodioxol-4-0l,2,2-dimethyl-
Ethoprophos Pirimicarb

Profenofos Oxamyl

Phosphamidon Butoxycarboxim

Methamidphos Thiodicarb - symmetrical carbamate
Demeton Benfuracarb

Fonophos

Phosmet
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3. Prediction of aquatic toxicity

3.1 General

QSAR-models were derived for predicting the aquatic toxicity of carbamates and OP-esters. The
models are based on quantumchemical structure descriptors and use the molecular structure as the
sole input, taking advantage of the premises that the molecular structure is the minimum amount
of information always available on a chemical. Quantumchemical descriptors are calculated on the
basis of the optimized geometry (i.e. energy-minimized three-dimensional structure) of the
chemical. Actually, the numerical values of quantumchemical descriptors are strongly dependent
on this energy-minimized three-dimensional structure. Software-packages are freely available on
the internet to optimize the geometrical structure of the chemical of interest and to actually
calculate descriptor values. To gain experience with this software and to make sure that the
software used is indeed capable of reproducing the optimal 3-D structure, first of all an initial
study was carried out in which a QSAR (based on quantumchemical descriptors) was reproduced,
that has already been reported in literature. Subsequently, QSARs were developed for predicting
acetyl cholinesterase inhibition of a test set of carbamates and OP-esters in fish. The basic
assumption is that variances in the toxic interactions between the chemical and the fish species

tested are proportional to variations in the chemical structure of the tested carbamate or OP-ester.

3.2 Operationalization of software

3.2.1 — Methods used

Before performing quantumchemical calculations, a geometry optimization was carried out with
the aid of CHEMFINDER. The optimized geometry was subsequently used as input for the
software package MOPAC (version 6.0: JJP Stewart, Frank J. Seiler Research Laboratory, US Air
Force Academy, Co 80840) used to calculate descriptor values. MOPAC further optimizes the
geometry. Chen et al. (2001) report on a QSAR based on quantumchemical descriptors. These
descriptors were selected for this part of the project. The publication of Chen et al. is on a study on

quantumchemical parameters to predict the rate of photolysis of dioxins and furans.

3.2.2 — Results
The results of the calculations following structure-optimization were compared to the results

reported by Chen et al. (2001).
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Table 6 provides an overview of the results of the calculations as carried out within this project
(referred to as ‘RIVM”) and the results reported by Chen et al. in 2001. The following parameters
were calculated for this purpose:

1 — heat of formation of the chemical (HOF — Heat of Formation)

2 —total energy of the chemical (TE - Total Energy)

3 — electronic energy (EE)

4 — the energy level of the occupied molecular orbital (Ehomo)

5 - the energy level of the lowest unoccupied molecular orbital (Elumo)

6 — the highest positive charge on a chlorine-atom (Qc)

7 — the most negative charge on the carbon atom to which the chlorine-atom indicated under 6 is
connected (Qc.c)

8 — the most positive charge on a H-atom (Qp-+)

9 — the most negative charge on a carbon atom (Qc.)

10 — the most negative charge on an O-atom (Qo.)

11 — the average polarisability of the molecule (o)

These 11 parameters jointly give a good description of the impact of molecular structure on rates
of photolysis of dioxins and furans. It is, however, evident that for the purpose of modelling the
toxicity of carbamates and OP-esters, other descriptors are to be used, especially to better reflect
the specific interactions between these chemicals and the receptors for acetyl-cholinesterase

inhibition.

Table 6 shows that the results published by Chen et al. are well reproducible using the approach
described above. The average deviation between calculated descriptor values and the values
reported by Chen et al. is no more than 0.6 %. It may thus be concluded that it is not to be
expected that large deviations will pop up between calculated descriptor values and their ‘real

value’ in case of carbamates and OP-esters.
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Table 6: Overview of the differences between quantumchemical descriptors for the photolysis of six dioxins and furans, as calculated by Chen et al., and as
calculated in the study reported here. See body text for explanation of the symbols used. RIVM = this study, Chen = results of Chen et al., 2001.

Chemical | HOF (KJ) TE (eV) EE (eV) Epomo (€V) Ejumo (€V) Qa
A A A A A A
RIVM  Chen (%) | RIVM Chen (%) | RIVM Chen (%) | RIVM Chen (%) | RIVM  Chen (%) | RIVM Chen (%)
2378TCDD -32.8 -32.6 -0.7 -3336.1 3336.1 0.0 18441.7  18441.7 0.00 | -8.799 -8.800  0.01 -0.784 -0.785 0.1 0.105 0.106 1.2
OCDD -47.9 -47.7 -0.5 -4541.2 45412 0.0 27151.7  27151.5  0.00 | -9.005 -9.009  0.04 -1.037 -1.037 0.0 0.146 0.146 -0.1
2378TCDF 1.6 1.8 9.7 -3042.7 3042.7 0.0 16417.6  16417.1  0.00 | -9.035 -9.033  -0.02 | -1.074 -1.076 0.2 0.103 0.104 1.0
123678HCDF | -6.8 -6.6 2.7 | -36453 36453 0.0 20439.6 204385  -0.01 | -9.099 9.099  0.00 | -1.262 -1.262 0.0 0.137 0.136  -0.7
12347PCDD -35.2 -35.0 -0.6 -3637.3 36373 0.0 207343 207364  0.01 -8.895 -8.898  0.03 -0.823 -0.822  -0.1 0.141 0.141 0.3
27DCDD -22.4 -22.2 -0.9 -2733.4 27334 0.0 14957.2 149574  0.00 | -8.764 -8.768  0.05 -0.523 -0.522 0.2 0.076 0.076 0.6
Chemical Qcic Qu+ Qc. Qo. o (atomic units)
A A A A A
RIVM Chen (%) | RIVM Chen (%) | RIVM Chen (%) | RIVM Chen (%) | RIVM Chen (%)
2378TCDD -0.136 -0.136 0.1 0.138 0.138 0.3 -0.136 -0.136 0.1 -0.092 -0.094 1.9 159.6 159.5 -0.01
OCDD -0.138 -0.138  -0.2 -0.140 -0.140  -0.1 -0.075 -0.075 0.2 200.7 200.6 -0.02
2378TCDF -0.112 -0.112 0.0 0.138 0.138 0.2 -0.161 -0.161 0.1 -0.073 -0.074 1.2 157.2 157.2 0.02
123678HCDF | -0.143 -0.142  -04 0.140 0.140 -0.2 -0.174 -0.174  -0.2 -0.061 -0.061 -0.4 177.3 177.3 0.01
12347PCDD | -0.140 -0.140 0.2 0.138 0.127 -85 | -0.141 -0.141 0.1 -0.085 -0.085 0.3 167.9 167.9  -0.02
27DCDD -0.124 -0.124  -0.3 0.136 0.136 0.2 -0.124 -0.124  -0.3 -0.095 -0.095 -0.3 135.0 134.9 -0.04
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3.3 Development of QSARs for acetylcholinesterase inhibition of
carbamates and organophosphate esters

1 - Introduction

Carbamates and OP-esters are classes of chemicals for which the toxicity stems from their
acetylcholinesterase-inhibiting mode of action. Acetylcholinesterase is an enzyme that makes sure
that stimules of the central nerves caused by any stress factor and that are passed on to the brain,
is stopped following termination of the stress. Acetylcholinesterase inhibitors like carbamates and
OP-esters limit the functioning of the enzyme, causing the nerves to remain stimulated. Adverse
effects are observable at low doses. Interactions between the receptors for acetylcholinesterase
inhibition and the carbamates and OP-esters result from specific polar, hydrophobic and steric
interactions. Thus, the acetylcholinesterase inhibiting action of carbamates and OP-esters is more
specific than the general mechanism of polar narcosis. It is to be expected that molecular descrip-
tors that are directly or indirectly related to the interactions between the active substance and the
receptor, are adequate to model experimentally observed differences in toxicity between the
various substances tested, i.e. descriptors that provide information on the charge distribution in
the toxicant and differences in the energy content of the test compound. In this study it was
investigated to which extent these types of descriptors can be used to predict the toxicity of
carbamates and OP-esters. Sterical descriptors were not taken into account, but these could
provide additional possibilities of increasing the predictive capabilities of the QSARs reported

here.

The research was split up in three steps:

1 — Selection of toxicity data. The main source used was the database collected within the
Laboratory for Ecological Risk assessment RIVM on aquatic toxicity data. The database contains
a total of 595 toxicity data on carbamates and 2369 data on OP-esters. The toxicity of both
chemical classes was assessed for a large number of species but the number of chemicals tested
per species, is limited. This limits the possibility of selecting a sufficiently large test set of
uniformly determined toxicity data, suited for QSAR-modelling. For four species, relatively many
data are available in the database: Crassostrea virginica (Oyster), Aedes aegypti (midge larvae),
Cyprinus carpio (carp) and the fish Brachydanio rerio. This implies that toxicity data are
available for three trophic levels.

2 — For all carbamates and OP-esters for which one or more toxicity data were available, the
quantumchemical properties explained above were calculated using the methods described in this

paragraph.
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3 — For each organism, the experimental toxicity data were correlated to the calculated
quantumchemical descriptors. This was done by means of linear regression, using the statistical
software package SYSTAT. Principle Component Analysis (PCA) was used apart from linear
regression. PCA is a more advanced data processing technique, capable of visualizing non linear
(multivariate) links between datasets. The number of toxicity data for each organism was however
too small to retrieve statistically significant relationships by means of PCA. Multivariate data
processing will therefore not be discussed any further in this report. Please note that this does not

mean that multivariate techniques do not have an added value over regression analysis.

Note ad 1 and 2:

The procedure commonly employed in developing QSARs, involves a reverse order of the steps 1
and 2, i.e. first a suited test set of chemicals to be tested is selected, and subsequently the toxicity
data (or data related to other endpoints of interest) are collected or generated. The main advantage
of this latter procedure is that the final QSAR to be developed is applicable to a larger range of
structurally well-defined chemicals (the so-called chemical domain). The chemical domain is
limited in this study due to the initial approach taken here as the domain is determined by the
properties of the carbamates and OP-esters for which experimental toxicity data were available.
The lack of toxicity data for these important classes of chemicals was the main limitation in this
respect. This limitation on the other hand clearly shows the need of applying predictive methods

to enable proper estimation of the risk of chemicals within these classes of chemicals.

Appendix 1 contains an overview of the toxicity data used. Thereupon, this appendix contains the
numerical values of the quantumchemical descriptors calculated. Appendix 1 shows that the set of
toxicity data for each chemical differs for each organism considered, both with regard to the
number of chemicals as with regard to the variance in structure properties. Appendix 1 shows that
in case of OP-esters, toxicity data are available for both O-substituted and S-substituted phosphate
esters. It is to be expected that separate models are to be developed for both substance classes

with clearly distinct properties.

2 — Results

Available toxicity data

Appendix 1 shows that toxicity data are available for a limited number of chemicals. Apart from
the obvious necessity of having available a sufficient test set of toxicity, derivation of predictive

models also requires variance in the observed effect data.

Most data are available for Cyprinus carpio: for 8 carbamates and 18 (7 O-P esters, 10 S-P esters,
while 1 compound was both an O-P and an S-P ester ). EC50-values range in between 0.5 — 3.5

mg L™ for the carbamates, from 0.0015 tot 69.01 mg L™ for the O-P esters and from 0.002 - 4.65
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mg L' for the S-P esters. This implies a range of EC50-values of a factor of 7, 46007 and 2325
respectively, which in turn implies a priori that the impact of chemical structure on the aquatic
toxicity of carbamates is limited.

EC50-data for the larvae of the midge Aedes aegypti are available for only 4 carbamates and 5
organophosphate esters (all S-P esters). Apart from the limited number of toxicity data, also the
variance in measured toxicity is limited for the carbamates tested (0.09 — 0.38 mg L™). The
toxicity of the S-P esters varies in between 0.00265 and 5.35 mg L' (factor 2019), which implies
a clear impact of molecular structure on toxicity.

No data on carbamate toxicity are available for the oyster Crassostrea virginica. The toxicity of
10 OP-esters (3 O-P esters and 7 S-P-esters) varied in between 0.33 and 9.07 mg L™ (factor 27).
Finally, also for the fish Brachydanio rerio no data were found on carbamate toxicity. EC50-
values of 6 OP-esters (5 of which were S-P-esters) vary in between 0.0012 and 100 mg L™ (factor
83333).

It may be concluded from these data that the number of toxicity data is limited for especially
carbamates. Also, the variance in toxicity is limited for this class of chemicals. Although the
number of toxicity data is limited for OP-esters, there is a clear impact of molecular structure on

the toxicity of these compounds.

Modelling of toxicity

Log transformed values of the toxicity data collected and log-transformed values of the
quantumchemical descriptors were used as the basis for obtaining relationships between the
structure of the carbamates and the OP-esters, and the measured toxicity. Log-transformation is
needed to meet one of the primary requirements of linear regression, i.e. a linear distribution of

the datasets used.

A - Cyprinus carpio

Al - Carbamates

Toxicity data are available for 8 carbamates. As indicated in the previous paragraph, EC50 values
range in between 0.5 and 3.5 mg L. In part related to this limited variance in cholinesterase
inhibition, no statistically significant relationship was found between individual quantumchemical
descriptors and carbamate-toxicity. A closer analysis reveals a significant relationship between
(log-transformed) toxicity and a combination of two descriptors: the (log-transformed) dipole
moment of the toxicant and the (log-transformed) sum of the electronic charges on the atoms of
the carbamate-moiety. Jointly, these descriptors explain about 55 % of the variance in the
measured toxicity. As a rule of thumb it has been postulated that a QSAR is suited for risk

assessment when the QSAR is capable of explaining over 50 % of the variance in the data. The
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correlation between on the one hand the measured toxicity of eight carbamates and on the other
hand the dipole moment of the toxicant and the sum of the electronic charges of the carbamate
moiety, thus satisfies this requirement. The observation of dipole moment and charge distribution
being of dominant importance in explaining toxicity, confirms previous findings that electronic
interactions play an important role in the mechanisms of toxicity of carbamates for Cyprinus

carpio.

Equation 1 gives both the multiple regression equation obtained as well as the most relevant
statistical parameters. Figure 3 graphically displays the relationship between observed and

predicted toxicity for Cyprinus carpio for the eight carbamates investigated.

Log EC50 (mg L") = 3.56 — 0.16 * Log Dipole moment (Debeye) + 8.2 * Log (Sum of the
charges of the atoms of the carbamate functionality) (1)

R*=0.55, p-value = 0.08, F-value = 2.41

Carbamates - C. carpio
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Figure 3: Relationship between measured cholinesterase inhibition in Cyprinus carpio by
carbamates (x-axis: log-transformed EC50-values) and predicted log-transformed EC50-values (y-
axis), using equation 1.

A2 — Organophosphate esters

Again, following log-transformation of the data no statistically significant linear relationship was
found between any of the individual descriptors and the experimental toxicity data for the whole
dataset of organophosphate esters. As it is to be expected that due to intrinsic differences between
the properties of S-P and O-P esters, there is an intrinsic difference in the impact of structure on

toxicity, the whole set of toxicity data was split up in data for these two categories.

The best prediction of toxicity in case of O-P esters is obtained by a combination of the (log-
transformed) heat of formation and the (log-transformed) electronic energy of the O-P esters as

descriptors. Equation 2 shows the relationship observed as well as the relevant statistical
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parameters, figure 4 provides a graphical representation of the relationship between measured and

calculated toxicity when using equation 2.

Log EC50 (mg L") =23.95 — 1.22 * Log Heat of Formation (KJoule) —
4.93 * Log electronic energy (eV) 2)
R?=0.79, p-value = 0.02, F-value = 7.38
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Figure 4: Relationship between measured cholinesterase inhibition in Cyprinus carpio by O-P esters
(x-axis: log-transformed EC50-values) and predicted log-transformed EC50-values (y-axis), using
equation 2.

The descriptors that best describe toxicity of S-P esters are electronic energy and the sum of the
atomic charges at the S- and P-atoms of the esters. Equation 3 provides the relationship found as
well as the relevant statistical parameters, figure 5 graphically displays this relationship by

comparing observed and predicted toxicity.

Log EC50 (mg L'l) =29.71 — 7.34 * Log electronic energy (eV) + 8.98 * Log (sum of the charges
of the atoms at the S-P moiety) 3)
R*= 0.55, p-value = 0.04, F-value = 4.26
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S-P esters C. carpio
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Figure 5: Relationship between measured cholinesterase inhibition in Cyprinus carpio by S-P-esters
(x-axis: log-transformed EC50-values) and predicted log-transformed EC50-values (y-axis), using
equation 3.

B - Aedes aegypti

B1 - Carbamates

Toxicity data are available for four compounds. These data correlate quite well (R* > 0.8) with
various descriptors. It should be noted however that the significance of relationships is strongly
reduced by the limited number of data. Equation 4 illustrates the relationships between individual
descriptors and toxicity, in this case exemplified using the log-transformed Heat of Formation of
the carbamates as molecular descriptor. Figure 6 shows the predictive capability of this descriptor,
by comparing measured and predicted toxicity on the basis of this descriptor. Given the limited

number of data, no significant relationships were found when applying multiple linear regression.

Log EC50 (mg L") =29.71 — 7.34 * Log Heat of Formation (kJ) 4)
R* = 0.88, p-value = 0.06, F-value = 15.0
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Figure 6: Relationship between measured cholinesterase inhibition in Aedes aegypti by carbamates
(x-axis: log-transformed EC50-values) and predicted log-transformed EC50-values (y-axis), using
equation 4.

B2 — Organophosphate esters

Toxicity data are available for five S-P esters. Similar to the carbamates, these data correlate well
with various individual descriptors. Equation 5 illustrates the relationship for the example of
Dipole moment as predictive molecular property. Figure 7 shows the predictive capability of this

descriptor.

Log EC50 (mg L") = 8.00 — 9.27 * Log Dipole moment (Debye) &)
R? = 0.83, p-value = 0.03, F-value = 14.3
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Figure 7: Relationship between measured cholinesterase inhibition in Aedes aegypti by
organophosphate esters (x-axis: log-transformed EC50-values) and predicted log-transformed EC50-
values (y-axis), using equation 5.
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C - Crassostrea virginica

C1 — Carbamates

No toxicity data are available in the database.

C2 — Organophosphate esters

Toxicity data are available for 3 O-P-esters and 7 S-P-esters. The toxicity data for the whole
dataset are not significantly correlated to any single molecular descriptor. A combination of three

descriptors yields the most significant relationship:

Log EC50 (mg L") = -50.16 + 14.7 * Log lonisation potential — 3.21 * Log Dipole moment +
8.34 * Log Electronic energy (6)
R* = 0.66, p-value = 0.12, F-value = 3.2

Figure 8 shows the relationship between measured and calculated toxicity when using equation 6

for the whole dataset of organophosphate esters.
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Figure 8: Relationship between measured cholinesterase inhibition in Crassostrea virginica by
organophosphate esters (x-axis: log-transformed EC50-values) and predicted log-transformed EC50-

values (y-axis), using equation 6.
Splitting of the dataset yields a subset of three O-P esters, which is too small for the derivation of
QSARs. On the other hand, the toxicity of the seven S-P esters is well correlated to the dipole

moment of the esters and their electronic energy (equation 7 and figure 9):

Log EC50 (mg L") =-25.85 — 1.07 * Log Dipole moment + 6.25 * Log Electronic energy (7)
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R* = 0.85, p-value = 0.02, F-value = 11.1

OP- and SP-esters C. virginica

1.6

1.2

0.8 ~

0.4 4

0.0 +

0.4 -

Log calculated EC50 (mg/L)

'0.8 T T T T
-1.0 -0.5 0.0 0.5 1.0 15

Log measured EC50 (mg/L)

Figure 9: Relationship between measured cholinesterase inhibition in Crassostrea virginica by S-P
esters (x-axis: log-transformed EC50-values) and predicted log-transformed EC50-values (y-axis),
using equation 7.

D - Brachydanio rerio

D1 — Carbamates

No toxicity data are available in the database.

D2 — Organophosphate esters

A limited dataset of six data was found. The descriptors calculated in this study correlate to a
varying extent of statistical significance with the observed toxicity of the chemicals in the dataset.
The energy level of the highest occupied molecular orbital, heat of formation and dipole moment
are examples of descriptors that are capable of explaining the variance in the toxicity data for
Brachydanio rerio to a large extent. The most significant relationship is obtained by a
combination of the energy level of the highest occupied molecular orbital (Ehomo) and the
difference in electronic charges between the P- and either the O- or the S-atoms of the

organophosphate ester (equation 8 and figure 10):

Log EC50 (mg L") =124.7 + 11.7 * Log Ehomo —
14.4 * Log (A electronic charges at P and O/S-atoms) ®)
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R*=0.95, p-value = 0.01, F-value = 30.9
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Figure 10: Relationship between measured cholinesterase inhibition in Crassostrea virginica by six
organophosphate esters (x-axis: log-transformed EC50-values) and predicted log-transformed EC50-
values (y-axis), using equation 8.

3 — Conclusions and recommendations

Conclusions

The database containing toxicity data that is used as the basis for this study, is to be considered as
being representative for the number of aquatic toxicity data reported in literature up till now. This
is despite the obvious fact that the database does not contain ‘all’ toxicity that have ever been
measured. The inventory does show, however, that the number of toxicity data available for both
carbamates and organophosphate esters, is quite limited. This is worrisome given the fact that we
are dealing here with two classes of specifically acting compounds that are toxic to large numbers
of aquatic species.

Within REACH the necessity is proclaimed of assessing the risk associated with the production
and use of large numbers of chemicals, given the pre-condition of minimizing the use of test
animals and optimizing the testing strategies. The lack of sufficient toxicity data for chemicals
like carbamates and OP-esters clearly shows the necessity within the REACH-legislation of
having methods available for estimating toxicity. Preferably, these estimation routines are based
on easily deducible descriptors. Quantumchemical parameters in this respect have the advantage
of being easy retrievable without any additional experimental effort: the software needed is
increasingly getting more user-friendly, it is freely available on the internet, the precision and
robustness of the parameter values calculated is increasing, and the number of parameters that is
to be calculated, is increasing. Potentially, quantumchemical descriptors are thus suited to quickly

and reliably estimate the toxicity of large numbers of chemicals.

The number of predictive methods based upon quantumchemical descriptors is currently still
limited. It is shown in this study that it is well feasible to generate predictive routines for

substances belonging to the chemical classes of carbamates and OP-esters. These QSARs are
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aquatic species-specific, whilst their robustness and predictive capabilities are strongly dependent
on the number of toxicity data available. The relationships are also chemical class-specific, albeit
that descriptors based upon the energy-content of the toxicants and descriptors related to the
charge distribution within the functional moiety in general are determining toxicity for both
chemical classes investigated. This finding confirms the general similarity (specific interactions

with the receptors of toxicity) of carbamates and OP-esters.

Recommendations

Quantumchemical descriptors are shown in this study to have an added value on top of existing
(partly experimentally derived) descriptors for calculating the toxicity of non-tested analogue
chemicals. Combining quantumchemical descriptors with descriptors of other natures (like
information on the size of the toxicant, the three-dimensional structure of the chemical, and more
specific indicators for the interactions between the toxicant and the receptors of toxicity) would
allow for further optimization of the predictive capabilities. Thus, the specific compounds class-
related interactions of chemicals like carbamates and organophosphate esters with the receptors of

toxicity would be modelled more optimally.

Apart from further optimisation of the QSARs for predicting toxicity of carbamates and OP-
esters, a similar approach may be taken to predict toxicity of other chemicals with a specific mode
of action. This initiates the construction of a module within ITSs for assessing the risks of data-
poor chemicals to be used within REACH for estimating toxicity of specifically acting toxicants.
This will in general involve polar and ionogenic chemicals like metabolites of pesticides,
endocrine disrupting chemicals, and pharmaceuticals and veterinary products, each of which
constitutes a diverse set of chemical classes for which limited numbers of toxicity data are

available.
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4. Validation of CATABOL

4.1 General

CATABOL is in principle applicable to a wide array of chemical substances that on forehand do
not share structural features. Given the current status of CATABOL as being in the later stages of
development and still prone to thorough validation, application of the tool on a diverse set of
chemicals is unlikely to increase the insight in the predictive capabilities. With one of the aims of
testing its applicability, we therefore applied CATABOL to a well-defined domain of chemical
structures and used CATABOL to predict metabolite formation of 16 carbamates and 18
organophosphate esters. These two classes of chemicals were selected as they constitute two
classes of chemicals that, given their emission patterns, and given their fate and effect profiles,
may pose a risk for the environment. Thereupon, as described in Chapter 3, QSARs based on
quantum chemical descriptors were developed to predict their toxicity for aquatic organisms. The
dataset used for the development of these QSARs was also used in the CATABOL-study reported
here. In addition to prediction of metabolite-formation by CATABOL, databases were searched to
find experimental data on metabolite formation in soil of the two compound classes, and the
toxicity of the measured and/or predicted metabolites was assessed using the previously
developed QSARS. The database used as the source for experimental data on metabolite

formation was: http://www.herts.ac.uk/aeru/footprint/. The website provides the following

indication of its content: ‘The best sources of information currently available for pesticide
properties are the monographs produced as part of the EU review process and these documents
have been used in priority for putting together the FOOTPRINT PPDB. Where EU documents
were not available, alternative sources were used:

- databases and documents from various national government departments including the UK’s
PSD, Germany’s Federal Environment Bureau, the EPA in the USA and the French Agritox
database;

- on-line databases including ARIS, EXTOXNET, ARS/OSU, PAN, GLEAMS, etc.;

- manufacturers safety datasheets and environmental fact sheets, on- and off-line;

- publications such as the Pesticide Manual;

- data derived from research projects such as the Pandora data set;

- peer reviewed scientific publications.

In a very limited of instances, data had to be retrieved from miscellaneous on-line sources. All
data held in the FOOTPRINT PPDB are ‘tagged’ with a code so that their source and quality can
be identified (see below).’
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Evaluation of the toxicity profile of the metabolites formed (or predicted to be formed) is an
essential part of the proposed framework for evaluating whether metabolites are a cause for

concern. This framework is depicted in Figure 2 of paragraph 2.4.

4.2 Results

Experimental data

Experimental data on metabolite formation were available for ten out of the sixteen (63 %)
carbamates, which implies that experimental data were lacking for the remaining six compounds
(37 %). In case of organophosphates, experimental data were lacking for twelve of the eighteen
compounds considered (67 %), clearly highlighting the need of having available estimation

methods for predicting metabolite formation.

CATABOL predictions

Twelve of the sixteen carbamates studied (75 %) were out of the structure domain of the
CATABOL model and hence also out of the total domain. Experimental BOD-data from the
MITI-test were available for three of the four carbamates that were in the structure domain.
Fourteen of the eighteen organophosphorus esters (78 %) were out of the structure domain of the
model and hence also out of the total domain. Experimental BOD-data from the MITI-test were

available for three of the four organophosphates that were in the structure domain.

Comparison between CATABOL predictions and experimental data

CATABOL in general predicts the formation of a large number of stable and less stable
intermediates. This is done according to a hierarchic systematic. When comparing predictions and
experimental data, it is important to realize that reports on metabolites observed during
biodegradation testing in soil, are not always encompassing ‘all’ metabolites formed. Apart from
analytical constraints (detection limits), there often is bias with regard to the expected metabolites
formed. The latter implies that not all metabolites predicted to be formed by CATABOL were
taken into consideration at the time of deciding on which metabolites to focus on during the
experimental degradation study. When comparing predicted and observed metabolites, it is
important to take note of these (and additional) considerations. In this study we therefore did not
focus on matching individual metabolites. Instead the focus was on deducing from the molecular
structure of the metabolites reported to be formed during biodegradation in soil, whether these
metabolites could be formed as the outcome of the pathways predicted by CATABOL. Or, in
other words, the focus was not on individual compounds but on degradation pathways,
investigating the possibility of the reported metabolites having the possibility of being formed
along one of the degradation pathways predicted by CATABOL to take place. To provide an

example: a common transformation step for S-P-esters containing a thiobenzene-group is the
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oxidation of the S-atom attached to the benzene-moiety. This transformation leaves the S=P
linkage intact and yields the corresponding sulfoxide as a stable metabolite. CATABOL, however,
predicts the oxidation of the P=S moiety to yield the corresponding P=O ester, with a probability
of 1. In this case, the experimentally observed S-P esters, oxidized at the benzenic S-atom cannot
be formed along the CATABOL-predicted pathway of S=P oxidation. This is graphically

illustrated in Figure 11.
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Figure 11: lllustration of the difference between the CATABOL-predicted metabolites of fenthion and
the metabolites found in soil.

Carbamates
CATABOL-predictions matched the experimental findings for three out of the ten compounds for
which experimental data were available: for seven of the carbamates studied with experimental

data on metabolite formation, the experimentally observed metabolites cannot be formed along
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the pathways predicted by CATABOL. Of the three compounds for which the CATABOL

predictions were correct, one carbamate was in the structural domain and two were out of domain.

Organophosphates

CATABOL-predictions matched the experimental findings for two out of the six compounds for
which experimental data were available. This was not the case for four organophosphates studied
(67 %). Of the two compounds for which the CATABOL predictions were correct, one was in the

structural domain and one was out of domain.

Overall
In Table 7 a more detailed comparison is given of the metabolites predicted to be formed by

CATABOL (indicated as ‘est.’), and the metabolites actually found in soil (indicated as ‘exp.’).

Table 7: Comparison between CATABOL predicted metabolites and metabolites found in soil. Est. =
Predicted by CATABOL, exp. = observed metabolite in soil.




RIVM report 607220011 Page 55 of 78




Page 56 of 78 RIVM report 607220011




RIVM report 607220011 Page 57 of 78




Page 58 of 78 RIVM report 607220011




RIVM report 607220011 Page 59 of 78




Page 60 of 78 RIVM report 607220011




RIVM report 607220011 Page 61 of 78

Overall, CATABOL predictions matched the experimental pathways for five of the sixteen

compounds for which experimental data were available (31 %). In general it may be concluded
that for specific classes of compounds like carbamates and organophosphorus esters, the
predictive capabilities of CATABOL are limited. This is independent of the chemicals being in
the structural domain. On the other hand it should be noted that more accurate predictions might
be obtained when studying less ‘exotic’ substance classes (think of aliphatic alcohols, ketones,

and similar chemicals with limited and non-diverse functionalities).
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5. Aquatic toxicity of metabolites formed

5.1 Carbamates

The QSAR that is most widely applicable for the prediction of aquatic toxicity of carbamates is
equation 1 (Cyprinus carpio): amongst other considerations as this equation is based on the
highest number of chemicals. The QSAR highlights the electronic interactions responsible for the
induction of toxicity by carbamates. As a matter of course, equation 1 is applicable only to
metabolites that themselves contain the carbamate moiety. In the dataset used in this study, this
was the case for seven out of the sixteen carbamates studied. In Table 8 a comparison is made
between the EC50-values of the parent compound and the CATABOL-predicted metabolites for
the carbamates for which the metabolites themselves are carbamates too. In all cases, equation 1

was used to predict the EC50-values for Cyprinus carpio.

Table 8: Predicted EC50-values (mg L) of carbamates and their metabolites for Cyprinus carpi
(equation 1). The predicted EC50-value of the parent compound is compared with the predicted
EC50-value of the metabolites. The predicted metabolite of the compounds in bold is more toxic than
the parent compound.

ECS0 EC50
Parent compound (mg | ) (mg | )
Parent CATABOL
compound | predicted
metabolite
Propoxur 0.33 8.50
Aldicarb 0.48 0.65
Nabam 0.03 0.02
Phenol, 2-(1-methylethyl)-methylcarbamate 0.34 0.09
2,2-Dimethyl-1,3-benzodioxal-4-ol
methylcarbamate 0.31 0.03
Thiodicarb 0.30 0.52
Benfuracarb 1.65 0.05

As can be deduced from Table 8 the carbamate-metabolites for four out of the seven compounds

are more toxic than the parent compound, with increases in EC50 values of up till a factor of 33.
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5.2 Organophosphates

In view of inherent differences in toxicity, a distinction needs to be made between O-P esters and
S-P esters. Equation 2 is suited to predict EC50-values for the cholinesterase inhibition of O-P
esters for Cyprinus carpio, whereas equation 3 is applicable for S-P esters. In Table 9 the
predicted toxicity of the parent compounds is compared to the predicted toxicity of the

metabolites.

Table 9: Predicted EC50-values (mg L) of O-P- and S-P-esters for cholinesterase inhibition of
Cyprinus carpio. The EC50-value of the parent compounds is compared with the EC50 of their
metabolites. The predicted metabolite of the compounds in bold is more toxic than the parent
compound.

EC50 (mg | ECS0 (mg
Parent LY LY
compound Parent CATABOL
compound | predicted
metabolite
O-P-esters
Dipterex 10.16 19.44
Dichlorvos 14.38 135.05
Chlorfenvinphos 0.42 8.76
Methamidphos >10000 >10000
Phosphamidon 0.15 4.23
Ethoprophos >200 1930.83
Profenofos >25 25.50
S-P-esters
Fenthion 1.05 0.91
Parathion 1.24 1.56
Dimethoate 9.98 14.32
Methylazinphos 0.33 0.29
Malathion 0.07 0.09
Fenitrothion 10.65 0.59
Parathion, methyl 13.17 1.16
Diazinon 0.17 0.05
Phosmet 0.41 0.07
Fonophos 0.11 2.03
Demeton 4.36 0.40

Table 9 shows that in all cases the metabolites predicted to be formed upon biodegradation of O-

P-esters are less toxic than their parent compound. In case of S-P-esters, however, seven out of the
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eleven esters form more toxic intermediates. In general, these are the compounds in which the
P=S-moiety is transformed towards the P=0O-moiety. This transformation usually constitutes the

first step in the mechanism of toxicity of the S=P-esters studied.

5.3 Conclusion

Tables 8 and 9 show that overall, eleven of the compounds studied are expected to yield more
toxic metabolites than their parent compounds: this is the case for four out of the seven
carbamates and for seven out of the eleven S-P-esters studied. None of the O-P-esters are
expected to yield more toxic metabolites, based upon the application of CATABOL in

combination with a QSAR for prediction of toxicity of the parent compounds and the metabolites.
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6. Main findings

As stated in the introductory chapter, the main objective of the study reported here was to design
of the building blocks of a future ITS-module for dealing with data-poor chemicals. This design
was performed for two chemical classes that despite their widespread use are to be considered as
being data-poor. Within this objective, the use of quantumchemical descriptors was explored
given the assumption that the chemical structure is the minimum piece of information always
available. Apart from prediction of aquatic toxicity, prediction of biodegradation by means of
CATABOL was explored and the findings on toxicity prediction and biodegradation modelling

were combined to explore the possibilities of formation of more toxic metabolites.

It is shown that quantumchemical descriptors for the example of carbamates and
organophosphates are suited as a starting point for deriving organism-specific QSARs that are
indicative of the supposed mechanism of toxicity. The predictive capabilities of the models are

depended on the size of the available test set of toxicity data.

CATABOL is shown to be a poor predictor of biodegradation pathways for the classes of
chemicals investigated here. This is due to the fact that degradation of these chemicals is to a
large extent via specific pathways that are not (yet?) included in CATABOL. This feature in itself
leads one to conclude that predictions generated with CATABOL need to be considered with care.
Despite favourable statistics, metabolites predicted by CATABOL as well as the likelihood may
be highly inaccurate and on a case by case basis it needs to be considered whether the chemicals

of interest are truly within the chemical domain of CATABOL.

Finally, it is shown that metabolites in case of carbamates and OP esters often are more toxic than
their parent compounds. This calls for explicit consideration of metabolite formation for data-poor
as well as for relatively data-rich compounds. A major conclusion to be drawn is that typically for
data-poor chemicals there is a need of well-validated models capable of reliably predicting fate
and effects. At the same time, however, the inherent lack of data precludes the generation of such
models. This observation in itself shows that the postulate of chemical risk assessment being
possible without any (animal) testing is invalid: reliable test data remain the basis for a thorough

risk assessment.

In a subsequent step, the building blocks reported here need to be combined with similar methods

for predicting the remaining endpoints that are essential for risk assessment of carbamates and OP
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esters, as well as for other classes of data-poor chemicals. Combined with available experimental
data, thus a module can be derived for the risk assessment of data-poor toxicants that does justice
to the objectives of REACH of efficient safety management of chemicals whilst minimizing the

use of test animals.
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Appendix I

Overview of the chemicals used in this study, the test set of toxicity data, and the molecular properties of each chemical. Symbols used: MW = Molecular weight, HOF =
Heat of Formation (KiloJoule), EE = Electronic Energy (eV), Ehomo = Energy level of the highest occupied molecular orbital (eV), Elumo = Energy level of the lowest
unoccupied molecular orbital (eV), IP = Ionization Potential (eV), Qc, Qo, Qn en Qg are the electronic charges of the theses atoms in the carbamate-moiety of the
chemical, MU = Dipole Moment (Debye). ECs, = the experimentally determined concentration at which an adverse effect is observable on 50 % of the organisms tested
(mg L™). In case of OP-esters are Qp, Qo en Qg the electronic charges of the atoms of the phosphate-moiety. A distinction is made between S-P and O-P esters: Qg is
equal to 0 in case of S-P esters, Qs is equal to 0 in case of OP esters.

A - Cyprinus carpio (karper)

A1l — Carbamates

Chemical MW HOF TE EE Ehomo Elumo | IP Qc Qo Qn Qs MU ECsy
Carbofuran 221.255 | -410.599 _2696.3 -17042.5 | -8.862 0.252 8.862 | 0.383 ;).434 ;).095 ;).181 2.812 | 0.5
Benfuracarb 410.527 | -864.048 ;1812.7 -43356.0 | -9.039 -0.733 | 9.039 | 0416 ;)4400 ;).236 ;) 177 | 2.167 | 0.65
Aldicarb 190.26 -139.273 _2141.8 -11618.4 | -9.168 -0.162 | 9.168 | 0.399 ;).385 ;).110 ;).251 4880 | 1
1-Naphthalenol, methylcarbamate 201.224 | -127.956 _2340.1 -14158.9 | -9.015 -0.791 9.015 | 0.360 ;).390 ;).106 ;) 170 | 4702 | 1.19
Methiocarb 225.305 | -278.197 ;470.7 -15001.3 | -8.792 -0.304 | 8.792 | 0.380 ;)4408 ;).093 ;).234 2451 | 1.58
Phenol,2-(1-methylpropyl)-, methylcarbamate 207.272 | -295.287 _2433.8 -16116.6 | -9.634 -0.118 | 9.634 | 0.359 ;).390 ;).105 ;).166 4543 | 1.6
Propoxur 209.244 | -401.802 _2577.5 -15892.2 | -9.204 0.167 9.204 | 0.382 ;).432 ;).095 ;).182 2.604 | 33
Phenol,2-(1-methylethyl)-, methylcarbamate 193.245 | -279.179 ;284.3 -14060.5 | -9.467 0.091 9.467 | 0.375 ;)4391 ;).102 ;).213 3.791 | 3.5




Page 74 of 78 RIVM report 607220011

A2 — Organophosphates

Chemical MW HOF IE EE Ehomo | Elumeo | IP QP Q0 | OS MU ECso
Phosphamidon 299.691 -426.687 ;542.0 -23567.4 | -12.626 | -4.19 13.309 | 2.397 ;).823 0.000 | 4.162 51.5
Phosphoric acid, 2,2-dichloro-ethenyl, dimethyl ester 220.977 | -211.489 ;505.9 -11162.0 | -14.48 -4.408 13.199 | 2.373 ;).848 0.000 | 1.801 0.0015
Dipterex 257438 | -114.733 ;836.7 -13934.6 | -14.46 -4.881 13.486 | 2.292 ;).834 0.000 | 1.599 6.2
Chlorfenvinphos 359.573 | -145.188 ;878.1 -25026.4 | -12.283 | -4.19 13.212 | 2.398 ;).793 0.000 | 7.574 0.045
Profenofos 373.628 153.952 ;386.9 -21058.5 | -13.322 | -5.425 12.882 | 2.164 ;).757 0.000 | 4.504 0.09
Ethoprophos 242.331 | 278.119 ;315.3 -13453.0 | -13.84 -6.578 15.527 | 2.075 ;).755 0.000 | 2.135 0.64
Malathion 330.35 -266.330 ;725.9 -24807.1 | -13.491 | -7.055 14.518 | 1.780 | 0.000 ;).352 8.170 0.002
Diazinon 304.343 | -42.824 ;254.5 -23251.6 | -13.367 | -5.304 12.426 | 1.753 | 0.000 ;).252 3.107 1.4
Fenitrothion 277.231 268.504 ;178.7 -19077.9 | -13.617 | -7.102 17.063 | 2.116 | 0.000 ;).099 11.833 | 0.006
Fonophos 246.322 | 621.596 ;195.8 -12620.2 | -13.27 -6.649 13.247 | 1.097 | 0.000 ;).231 2.113 0.088
Methylazinphos 317317 | 617.162 ;221.2 -20612.7 | -12.562 | -6.956 13.247 | 1.884 | 0.000 ;).426 6.667 0.695
Parathion 291.258 | 217.201 ;328.5 -20578.5 | -13.665 | -6.859 14.931 | 2.085 | 0.000 ;).396 13.433 | 0.85
Fenthion 278.32 174.169 ;784.3 -17172.7 | -12.616 | -4.978 12.592 | 2.043 | 0.000 ;).613 8.827 1.16
Phosmet 317314 | 303.826 ;310.0 -20473.5 | -13.054 | -6.948 15.050 | 1.840 | 0.000 ;).353 5.715 2.5
Parathion, methyl 263.204 | 326.380 ;028.8 -16980.3 | -13.88 -7.131 16.906 | 2.143 | 0.000 ;).265 13.779 |3
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Dimethoate 229.248 | 348.068 | 2306.1 | -11778.1 | -12.926 | -7.463 13.358 | 1.607 | 0.000 | 0.257 | 6.922 4.65
Demeton***
Methamidphos 141.124 | 70.534 1410.8 | -5535.7 -14.478 | -5.826 16.192 | 2.196 | 0.760 | 0.000 | 2.472 69.01
Demeton***

*** Demeton consists of a mixture of an S-P ester and an O-P ester.
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B - Aedes aeqypti (muggelarve)

B1 — Carbamates

Chemical MW HOF TE EE Ehomo | Elumo | IP Qc Qo O~ Qs MU ECs
Carbofuran 221.255 | -410.599 -269643 -17042.5 | -8.862 0.252 8.862 | 0.383 ;).434 ;).095 ;).181 2.812 | 0.09
Aldicarb 190.26 -139.273 _2141.8 -11618.4 | -9.168 -0.162 9.168 | 0.399 ;).385 ;).110 ;).251 4.880 | 0.28
1-Naphthalenol, methylcarbamate 201.224 | -127.956 _2340.1 -14158.9 | -9.015 -0.791 9.015 | 0.360 ;).390 ;).106 ;).170 4.702 | 0.38
Propoxur 209.244 | -401.802 -257745 -15892.2 | -9.204 0.167 9.204 | 0.382 ;).432 ;).095 ;).182 2.604 | 0.15

B2 — Organophosphates

Chemical MW HOF TE EE Ehomo | Elumo | IP (0) 4 QO (O] MU ECso
Malathion 330.35 -266.330 -372549 -24807.1 | -13.491 | -7.055 | 14.518 | 1.780 | 0.000 ;).352 8.170 0.108
Fenitrothion 277231 | 268.504 _3178.7 -19077.9 | -13.617 | -7.102 | 17.063 | 2.116 | 0.000 ;).099 11.833 | 0.0031
Parathion 291.258 | 217.201 -3328.5 -20578.5 | -13.665 | -6.859 | 14.931 | 2.085 | 0.000 ;).396 13.433 | 0.00265
Parathion, methyl 263.204 | 326.380 -302848 -16980.3 | -13.88 -7.131 16.906 | 2.143 | 0.000 ;).265 13.779 | 0.013
Dimethoate 229.248 | 348.068 _2306.1 -11778.1 | -12.926 | -7.463 13.358 | 1.607 | 0.000 ;).257 6.922 5.35
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C - Crassostrea virginica (Oester)

C1 — Carbamates

No toxicity data present in the database.

C2 — Organophosphates
Chemical MW HOF TE EE Ehomo | Elumo | IP QP Q0 QS MU ECs
Dipterex 257.438 | -114.733 _2836.7 -13934.6 | -14.46 | -4.881 | 13.486 | 2.292 ;).834 0.000 | 1.599 1
Chlorfenvinphos 359.573 | -145.188 ;878.1 -25026.4 | -12.283 | -4.19 13.212 | 2.398 ;).793 0.000 | 7.574 | 0.6
Ethoprophos 242.331 | 278.119 ;315.3 -13453.0 | -13.84 | -6.578 | 15.527 | 2.075 ;).755 0.000 | 2.135 16
Malathion 330.35 -266.330 _3725.9 -24807.1 | -13.491 | -7.055 | 14.518 | 1.780 | 0.000 ;).352 8.170 | 9.07
Diazinon 304.343 | -42.824 ;254.5 -23251.6 | -13.367 | -5.304 | 12.426 | 1.753 | 0.000 ;).252 3.107 | 84
Fenitrothion 277.231 | 268.504 ;178.7 -19077.9 | -13.617 | -7.102 | 17.063 | 2.116 | 0.000 ;).099 11.833 | 0.52
Fonophos 246.322 | 621.596 _2195.8 4126202 | -13.27 | -6.649 | 13.247 | 1.097 | 0.000 ;).231 2.113 | 033
Methylazinphos 317.317 | 617.162 ;221.2 -20612.7 | -12.562 | -6.956 | 13.247 | 1.884 | 0.000 ;).426 6.667 | 0.62
Parathion 291.258 | 217.201 ;328.5 -20578.5 | -13.665 | -6.859 | 14.931 | 2.085 | 0.000 ;).396 13.433 | 0.85
Fenthion 278.32 174.169 _2784.3 -17172.7 | -12.616 | -4.978 | 12.592 | 2.043 | 0.000 ;).613 8.827 | 0.58




Page 78 of 78 RIVM report 607220011

D - Brachydanio rerio (Vis)

D1 — Carbamates
No toxicity data present in the database

D2 — Organophosphates

Chemical MwW HOF TE EE Ehomo | Elumo | IP QP Q0 QS MU ECs
Phosphoric acid, 2,2-dichloro-ethenyl, dimethyl ester 220.977 | -211.489 ;505.9 -11162.0 | -14.48 -4.408 13.199 | 2.373 ;).848 0.000 | 1.801 100
Malathion 330.35 -266.330 ;725.9 -24807.1 | -13.491 | -7.055 14.518 | 1.780 | 0.000 ;)4352 8.170 0.035
Diazinon 304.343 | -42.824 ;254.5 -23251.6 | -13.367 | -5.304 12.426 | 1.753 | 0.000 ;).252 3.107 0.0012
Parathion 291.258 | 217.201 ;328.5 -20578.5 | -13.665 | -6.859 14.931 | 2.085 | 0.000 ;).396 13433 | 5.6
Dimethoate 229.248 | 348.068 ;306.1 -11778.1 | -12.926 | -7.463 13.358 | 1.607 | 0.000 ;)4257 6.922 6.2
Demeton*** 258.33 10.978 -2610.0 -15699.6 | -13.886 | -5.978 12.566 | 2.097 | 0.000 ;).540 2.773 10

*** Demeton consists of a mixture of an S-P ester and an O-P ester. The data reported here reflect the S-P ester.
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