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ABSTRACT

USES, the Uniform System for Evaluation of Substances, is a decision-supporting tool,
that can be used for rapid, quantitative risk assessments of chemical substances during
their life-cycle. Risk assessment is an inherently uncertain process due to the limited data
availability and lack of knowledge. Furthermore, many model parameters exhibit natural
variability (e.g., the flow rate of a river). Therefore, a thorough model analysis is
advisable. Uncertainty analysis shows the user of a model what amount of uncertainty
accompanies the model's results (the risk quotients or PEC/NEC ratios). In this manner,
the uncertainty can be taken into account in decision-making by indicating the probability
that a wrong decision is made. An additional benefit is that uncertainty analysis can steer
data gathering or research by pointing out the main sources of uncertainty in the model's
results. This can be used effectively, to refine a risk assessment.

Version 1.0 of USES already contained a limited uncertainty analysis for the aquatic
organisms and the micro-organisms in the sewage treatment plant. In this report, the
uncertainty analysis is extended to the other groups to be protected (humans, terrestrial
organisms, predating birds and mammals). In this report, only the local exposure model is
examined. Due to its technical nature, this report is primarily meant for the further
development of USES.

The described simple analytical method to combine uncertainties is limited to
multiplicative models and lognormal uncertainties. The advantage of this method is that an
exact answer can be calculated very rapidly. However, not all calculations are
multiplicative. Therefore, we have to resort to Monte Carlo approaches for several parts of
the system. One single uncertainty analysis of USES is not possible as the uncertainty in
the model's result will vary for different substance properties. Therefore, the analysis must
be performed 'on-line' by the user, for each substance to be assessed. Naturally, this poses
restrictions on the computer time required for the uncertainty calculations.

Each calculation or model of USES 1.0 is discussed separately with respect to uncertainty.
Furthermore, uncertainties in parameters are quantified. In many cases, this is done by a
thorough data analysis, in some cases by expert judgement. Not all sources of uncertainty
can be quantified. Only uncertainty and/or variability in model parameters is taken into
account. Uncertainty due to the exposure scenario cannot be quantified. Furthermore, the
uncertainties in the extrapolation procedure of No-Effect Concentrations (NECs) for
ecosystems, need further examination. Therefore, the absolute value of the uncertainty in
the model's result must not be exaggerated. In the interpretation of risk quotients with their
uncertainties, the limitations mentioned need to be taken into consideration. A thorough
testing of the proposed uncertainty analysis is therefore, advisable (testing may take place
in 1995).
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SAMENVATTING

UBS, het Uniforme Beoordelingssysteem Stoffen (in het engels: USES), is een beslissings-
ondersteunend gereedschap voor een snelle, kwantitatieve risico-analyse van een
chemische stof gedurende zijn levenscyclus. Risico-analyse is een inherent onzeker proces
door de beperkte beschikbaarheid van invoergegevens, en gebrek aan kennis. Verder
vertonen veel modelparameters natuurlijke variatie (zoals bijvoorbeeld de stroomsnelheid
van een rivier). Een grondige modelanalyse is daarom aan te bevelen. Onzekerheidsanalyse
toont de gebruiker van een model de onzekerheidsmarge van het eindresultaat (de risico-
quotiénten of PEC/NEC ratio's). Zo kan de onzekerheid worden meegenomen in de te
nemen beslissing door de kans op een verkeerde beslissing aan te geven. Een bijkomend
voordeel is de mogelijkheid tot sturing van verder onderzoek door de grootste bronnen van
onzekerheid in het eindresultaat te identificeren. Dit kan effectief gebruikt worden om een
risico-analyse te verfijnen.

Versie 1.0 van UBS bevatte reeds een beperkte onzekerheidsanalyse voor de aquatische
organismen en de micro-organismen in de rioolwaterzuivering. In dit rapport wordt de
onzekerheidsanalyse uitgebreid naar de andere beschermingsdoelen (mensen, terrestrische
organismen, vis- en wormetende vogels en zoogdieren). Alleen het lokale
blootstellingsmodel is onderzocht. Door het technische karakter is dit rapport met name
bedoeld ten behoeve van de verdere ontwikkeling van UBS.

De beschreven simpele analytische methode is beperkt tot multiplicatieve modellen met
lognormale onzekerheden. Het voordeel van deze methode is dat een exact antwoord op
een snelle manier berekend kan worden. Niet alle berekeningen zijn echter multiplicatief.
Daarom moet voor verscheidene delen van het systeem Monte Carlo methoden worden
toegepast. Een eenmalige onzekerheidsanalyse van UBS is niet mogelijk omdat de
onzekerheid in het eindresultaat anders zal zijn bij verschillende stofeigenschappen. De
analyse moet dus door de gebruiker van UBS gedaan kunnen worden bij elke stof die
doorgerekend wordt. Dit stelt natuurlijk beperkingen aan de computertijd die nodig is voor
de onzekerheidsberekeningen.

Elke berekening of model van UBS 1.0 wordt apart besproken voor wat betreft de
onzekerheden. Verder worden de onzekerheden gekwantificeerd. In veel gevallen is dit
door een nauwkeurige gegevensanalyse gebeurd, in een aantal gevallen werd gebruik
gemaakt van expert judgement. Niet alle bronnen van onzekerheid kunnen worden
gekwantificeerd. Alleen de onzekerheid en/of variabiliteit in modelparameters is
meegenomen. De onzekerheid ten gevolge van het blootstellingsscenario kan bijvoorbeeld
niet worden gekwantificeerd. Verder dienen de onzekerheden in de extrapolatie van No-
Effect Concentrations (NEC's) voor ecosystemen nader onderzocht te worden. Daarom
moet de absolute waarde van de onzekerheid in het eindresultaat niet overschat worden.
Bij de interpretatie van de risicoquotiénten met hun onzekerheidsmarge dienen de
genoemde beperkingen in overweging te worden genomen. Grondig testen van de
voorgestelde onzekerheidsanalyse is daarom aan te raden (testen kan mogelijk in 1995
plaatsvinden).

vii



1. INTRODUCTION

The Uniform System for the Evaluation of Substances (USES, RIVM et dl., 1994) is a
general risk assessment system for chemical substances. In principle, this system should
perform a risk assessment for all organic, non-ionic, non dissociating substances. This
immediately introduces the problem of uncertainty. If a system must work for this broad
range of substances, one will inherently have to deal with uncertainty in the model's
results. More specific models may produce less uncertain results, at a price of describing
only specific groups of substances. Furthermore, the amount of data available for risk
assessment is small (e.g, the EC Base Set), which makes uncertainty an important
property of risk assessment in this framework.

The modelling process may proceed through a
number of predefined steps, as for example
shown in Figure 1. Uncertainty analysis is an |[Fom sam
important aspect of the analysis of a model's 'L-::m;:::da‘a
performance. The other important aspect,

validation, is subject of a separate report
discussing the feasibility of wvalidating USES
(Jager, 1995). Analystical ;

Solutions

Define Purpose

Conceptual Model

Mathematical Model ]

Uncertainty analysis is an instrument to show
users of a model what amount of uncertainty
accompanies the model's results. The decision
makers may take the amount of uncertainty in
the model's result into account in the decision-
making process because it indicates the
probability that a wrong decision is made.
Uncertainty analysis also offers the possibility ||oed
to reward input of measured data by diminishing ||Lab.data

Data Specification

Uncertainty Analysis

uncertainty in the system's risk estimate. \,
Furthermore, uncertainty analysis can steer data |MODEL ANALYsIS

gathering and future research by identifying the Figure I The modelling process relevant
main sources of uncertainty in model results. to USES (adapted from

Research will be most efficient if it aims at Anderson & Woessner, 1992)

diminishing these main sources of uncertainty.

If the identification of these sources can be performed on-line, risk assessors will have the
opportunity to ask for specific data that are most effective in the refinement of the risk
assessment.

The aim of this report is to develop a framework for a complete uncertainty analysis for
the local exposure model of USES. The first thought was to aim at an analysis for human
exposure through the environment. When an uncertainty analysis for human exposure is
completed, uncertainty analysis for the other groups to be protected (predators, terrestrial
organisms) can easily be added, as it already covers all relevant routes. This report will
deal with the following steps:



+ Defining the purpose of the analysis.

* Defining the conceptual framework (e.g., what kinds of uncertainties are included).

» Per separate model: definition of scenario choices and parameters for which
uncertainty/variability must be quantified.

* Quantifying an uncertainty/variability distribution for each parameter.

* Developing calculation methodology to efficiently calculate uncertainty in the final
results.

The uncertainty analysis as proposed in this report, will focus on uncertainties in the
exposure side of the hazard quotient. The derivation of No-Effect Levels (NECs) with
extrapolation factors is, at this moment, a worst case approach (because the NECs
represent a safe level). Other scientists at RIVM are investigating the possibilities of
adapting the extrapolation factor approach to include a more stochastic approach. The
possibility to add this to USES can be investigated at a later stage.

Some choices must be made to restrict the analysis. This is necessary because of the
limited resources available for this subject. Furthermore, it is not advisable to make the
analysis very detailed at this stage, because the development of a European risk
assessment system, based on USES 1.0, is planned for 1995/1996.

1.1. Introduction to USES

The Uniform System for the Evaluation of Substances (USES, RIVM et al.,, 1994) is a
decision-supporting tool, that can be used for rapid, quantitative assessment of the hazards
and risks of chemical substances. USES was also described in a series of articles
(Vermeire et al., 1994; Jager et al., 1994a/b; Van der Poel, 1994; Linders & Luttik, in
prep.). Risks are expressed as the ratio of the PEC (Predicted Environmental
Concentration) to the NEC (No-Effect Concentration). Estimation of PECs starts with an
estimation of the emission of a substance followed by its subsequent distribution through
the environment, and completed with an estimate of exposure or intake. NECs are derived
from single-species toxicity data using extrapolation procedures.

In 1995/1996 USES will be developed towards a European risk assessment system for new
and existing chemicals. Model analysis will therefore be aimed at this European risk
assessment system. This report does not describe USES in detail. For more background
information and the actual mathematical process descriptions, the reader is referred to the
USES documentation (RIVM et al., 1994).



USES aims at the protection of the following:

1.
2.
3.

aquatic ecosystems;
terrestrial ecosystems;
predators indirectly exposed through the environment, represented by
birds/mammals that feed on fish or earthworms;
humans, exposed via:
- the environment (indirect exposure),
- consumer products (direct exposure),
micro-organisms residing in a sewage treatment plant;
specific terrestrial organisms residing in/on an agricultural area, treated with
pesticides;
specific aquatic organisms residing in a ditch, surrounding an agricultural area,
treated with pesticides.

The estimation of exposure levels requires the use of exposure scenarios for the specific
groups to be protected. Calculation of exposure concentrations takes place at three spatial
scales:

Local scale: emissions from a point source are considered, targets are exposed near this
source. In USES, the concept of a realistic worst case scenario is applied for the
individual protection targets. This creates a hypothetical, generic site: the standard
environment. Although this standard environment, in which all routes and protection
targets are combined, represents an unfavourable situation, it provides insight in all
processes encountered in the real world. In some cases, worst case scenario assumptions
are necessary due to lack of knowledge.

Regional scale: emissions are considered as diffuse; the default compartment definition
is an approximation of the average Dutch situation.

Continental scale: emissions are regarded as diffuse; the spatial scale is that of "Western
Europe'. No targets are considered, the only purpose is to compute continental
concentrations as background concentrations for the regional computations.

In the present version of USES, regional and local exposure estimations are made
separately. A specification of the targets and their exposure, as well as the scenario
assumed with this exposure, is given in Table 1. It includes aspects of the spatial and
temporal scales. USES calculates the continental and regional computations sequentially,
using the model SimpleBox (Van de Meent, 1993), which is a model of the so-called
'‘Mackay-type'. The continental concentrations are used as background conditions for the
regional system.



Table 1 Exposure scenarios.

L

target medium of exposure exposure scenario

regional local
aquatic surface water steady state surface water con- average concentration during an
ecosystemns centration emission episode
terrestrial agricultural soil steady state concentration in agri- concentration in agricultural soil*
ecosystems cultural soil

fish eating pre-
dators

worm eating
predators

micro-organ-
isms

specific non-
target
organisms (in
the case of
pesticide
application)
man (exposed
via the environ-
ment)

man (exposed
as consumer)

fish

worms

water in the STP**

aeration tank

exposure through
several pathways

possible

air

drinking water

fish

crops

meat, milk

consumer products

equilibrium concentration in fish
caught in surface water

equilibrium concentration in
worms from agricultural soil

not relevant (always lower than
local)

steady state concentration in air

steady state concentration in
groundwater or purified surface
water, supplied by sources in
agricultural areas

equilibrium concentration in fish,
from surface water (steady state
concentration used)

equilibrium concentration in crops
grown on agricultural soil

equilibrium concentration in
meat/milk of cattle grazing on
agricultural soil

not applicable

equilibrium concentration in fish
caught in surface water (annual
average water concentration
used)

equilibrium concentration in
worms from agricultural soil*

concentration during emission
episode

exposure concentrations are
defined through specific
appilication scenarios (short term
as well as long term)

annual average concentration in
air, at 100 m from point source
or STP**

annual average concentration in
purified surface water or maximal
concentration in ground water
below agricultural soil*

equilibrium concentration in fish,
from surface water (annual
average water concentration
used)

equilibrium concentration in crops
grown on agricultural soil*

equilibrium concentration in
meat/milk of cattle grazing on
agricuttural soit*

exposed on the personal scale
through concentrations in air, in
food or in contact media, defined
by specific scenarios

* On the local scale, concentrations in agricultural soil and ground water are principally estimated as long term

steady state concentrations due to atmospheric deposition and/or application of sludge from a sewage treatment
plant. The concentration in sludge is taken from an annual average emission.
** STP: Sewage Treatment Plant.



1.2. Introduction to uncertainty analysis

—
A model is never an exact representation "™ o

of reality. This i1s, among others, caused
by the complexity of reality, and lack of
knowledge of it. Furthermore, required
data are often incomplete and contain
measurement errors (Janssen et al., 1990).
In risk assessment, we are typically
confronted with this situation as data are
usually scarce, and mechanisms often
poorly understood. Therefore, a model like USES can only give an approximation of the
true exposure. Clearly, it Is important to have an impression of the quality of this
approximation.

USES version 1.0, which was completed this year, contains an uncertainty analysis for the
exposure concentration of the aquatic ecosystem, and for the micro-organisms in the
sewage treatment plant (Slob & De Nijs, 1989). The model's parameters related to
emission to wastewater, sewage treatment, and dilution, were taken as probability
distributions, instead of fixed values. These are not all uncertainties involved in the surface
water concentration, but it is safe to assume that they constitute by far the largest ones.
The purpose of this report is to expand the uncertainty analysis to the exposure of humans,
predators, and the terrestrial ecosystem.

A common practice is to perform a sensitivity analysis before an uncertainty analysis is
done. When the most sensitive parameters have been selected, these can be subjected to
uncertainty analysis. USES however, should be able to handle, in principle, all chemicals.
USES has many compound-specific input parameters, covering wide ranges (e.g., log Kow
usually lies between -2 and 8). Additionally, there are many fixed model parameters that
are related to the environment or the exposure scenario. The sensitivity of the model's
output for a parameter will depend on the value of these input parameters. Therefore, the
sensitivities will vary for different compounds. A limited uncertainty analysis, performed
specifically for each substance, will be more useful as it is not hampered by this problem.
It can show the influence of the main uncertainties in the model on the final results.
Furthermore, it may be possible to locate some of the main sources of uncertainty. These
will also vary for different substances, but identifying them is a powerful too to refine a
specific risk assessment.

The main purpose of an uncertainty analysis is to show the user of the system what
amount of uncertainty accompanies the model's results. This is particularly important if
information is poor and in inherently uncertain situations. From a scientific point of view,
it is not advisable to draw conclusions from models without taking the uncertainties and
assumptions of the model into account. Uncertainty analysis is helpful in this process as it
can indicate the probability that a wrong decision is made (e.g., the probability that
PEC/NEC exceeds 1 even though the median ratio is lower than 1). An additional benefit
of an on-line analysis is, that it may reward input of more and/or better data by reducing
the uncertainty in the final results. Measured bioconcentration factors, for instance, will



not decrease the risk estimate if they are not lower than the value estimated by USES.
Nevertheless, measured data may decrease the probability that a wrong decision is made.
The way in which the decision maker may deal with these probabilities still requires
further elaboration.

Uncertainty in the model's results can be caused by uncertainty in parameters due to lack
of knowledge (e.g., in the case of emission estimates) and natural variability in parameters
(a parameter can vary in the natural environment and be well known, e.g., temperature) or
a combination of both. Uncertainties attached to scenario choices are extremely difficult,
or even impossible, to assess. Therefore, the analysis we propose is restricted to the
model's parameters not set in the scenario at a particular value. This requires a list of
parameters judged to belong to these scenarios. This choice for a parameter between
scenario specific and not scenario specific is, more or less, arbitrary. For instance, 'density
of soil' can be defined as a model parameter with an amount of variability, or as a fixed
property of the standard environment in the scenario.

Which ’uncertajntieé. ShO'iJld be ._taken into accouiit:i'n the analysis? H

Natural vanablhty in a parameter only when:
- the parameter is not deﬁned in. the exposure scenarlo to have a partlcular value,
and

consume meat and m11k from dlfferent cows not from one 1nd1V1dua1 therefore
“this var1ab111ty can be ignored)

The distinction between uncertainty and variability needs some elaboration. Parameter
uncertainty due to lack of knowledge can often be decreased by research (e.g.,
measurements can improve the emission estimates). Variability, however cannot be
decreased as it is an inherent property of the process under consideration.

Consider a parameter that is part of the exposure scenario, e.g., the exposure location of
fish at 1000 m downstream of the STP. Naturally, fish will not stay at one location, and
the fixed exposure location of 1000 metres is an arbitrary assumption. This variability is
extremely difficult to quantify. What we need for this quantification would be the
swimming habits of fish and the concentration in surface water as a function of the
location. The concentration in surface water depends on the dilution factor (which itself is
highly variable between different locations). It may be clear from this example that
quantifying the variability or uncertainty in these scenario parameters is not practically
feasible. For pragmatic reasons, we propose to ignore this source of uncertainty. This
implies that the uncertainty as calculated in the risk estimates, is a measure of the
uncertainty given the scenario-defined standard environment. Nevertheless, the validity and
relevance of the scenario choices should be analyzed as well. This will be done as part of
the validation project for which a feasibility study is in preparation (Jager, 1995).
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We may ignore variability when subsequent parts of the system tend to average them out.
This is the case, for instance, with the concentration in fish. Properties of fish (e.g.,
percentage fat) will vary between and within species. Humans however, will usually
consume different fish and therefore, differences between fish will tend to average out.
This means that the variability in the annual average concentration in fish, as exposure
level for humans, will be smaller than the variability in concentrations between individual
fish. On the other hand, variability of the dilution rate of the STP effluent should be
considered since the effluent always enters the same surface water, which is usually
unknown beforehand.

Definition of sce'n'a'no in this 'c'b'ntext'

The set of fixed parameters and assumptlons that deﬁne ‘the envrronment and
conditions for which the risk assessment s performed »

The result of an analysis as proposed here might answer the following question: "If a
random adult is placed in the standard environment (as defined in the exposure scenario),
what is the probability that a certain reference criterion (e.g, NEL, ADI, TDI) is
exceeded?". One should always keep in mind that the model's structure and the
simplifications made influence this probability, which therefore, does not strictly relate to
the real world situation. However, this analysis still provides an opportunity to deal with
uncertainties in a quantitative way.






2. IMPLEMENTATION OF THE ANALYSIS

The uncertainty analysis will be implemented as an 'on-line' calculation module. This
enables the user to perform an uncertainty analysis for each particular substance. The aim
of the analysis is to indicate the amount of uncertainty for the particular substance in the
final result (the PEC/NEC ratio). This immediately puts restrictions on the calculation time
needed for each assessment. If the time needed for an uncertainty analysis is unacceptable,
the analysis might be included as a separate option in the program.

2.1. Quantifying uncertainties in parameters

For each, not scenario specific, parameter, it should be investigated whether it is prone to
uncertainty or variability. Secondly, we must choose the type of distribution. A simple
analytical method of uncertainty analysis, explained in the next section, requires lognormal
distributions of parameters. Fortunately, many processes in nature are well described by
lognormal distributions (see Slob, 1987). Lognormal distributions have another convenient
property, in that the uncertainty can be quantified with a 'dispersion factor' (here called
'uncertainty factor' or k). It indicates how much a stochastic variable X may deviate from
the median value (M) (Slob, 1994):

probability [ A_kl <X<k- M] - 0.95

This approach 1is especially useful when data are scarce and the magnitude of the
uncertainty can only roughly be quantified using expert judgement. For these reasons,
lognormal parameter distributions are suitable for our purpose.

Information on the distribution of the uncertainties and variability can be obtained by:
» Expert judgement
¢ Using measured data

Measured data can be used to estimate the uncertainty factor k. When assuming lognormal
distribution of uncertainties, the factor k can be derived from the experimental data from
the standard deviation of the distribution on log scale (c) (Slob, 1994):

k = exp (1.96 - ¢ Inb)

where b denotes the base of the logarithm used. As an example, consider the QSAR
(Quantitative Structure Activity Relationship) that estimates the bioconcentration factor of
fish (BCF,,) from the log Kow (the octanol-water partitioning coefficient):

log BCF = o - log Kow + B

The two parameters oo and B can be estimated with linear regression on a data set
containing measured BCF values in fish. The deviations from this line quantify the



uncertainty in the estimate of BCF. Of course, in this process, we have quantified the
uncertainty of the bioconcentration factor of a fish, randomly drawn from the training set
of data. This includes the inter- and intra-species variation obviously present in the
experimental data set. This differs from the objective of the uncertainty analysis for human
exposure through fish, as discussed in 1.2, Humans do not take one fish from the
distribution but, as we are examining chronic exposure, many different fish are consumed.
It 1s however, very difficult to distinguish between the sources of uncertainty from the data
given. Furthermore, we do not know the consumption habits of humans with respect to
species of fish eaten (which may be far from a random selection of fish from the training
set). Therefore, we propose to ignore this difficulty at this moment and, as a pragmatic
approach, take the entire uncertainty in the estimation of BCF as the relevant uncertainty.
Of course, this is a conservative approach, overestimating the true uncertainty. This
problem also illustrates that a measured BCF will not necessarily give a better estimation
of the 'real' BCF of fish. The inter- and intraspecies variation included in the QSAR-
estimation are also present in the measured values. This means that there is a danger of
underestimation, by ignoring the uncertainty when a measured BCF of one fish species is
used as an estimate.

The error in the estimate of BCF is assumed to be normally distributed around the median
and constant (we are already on a logarithmic scale because of the model formulation
used; on the original scale, the error would be assumed lognormal). The validity of this
assumption can be checked by making plots of the residuals and see that they do not
exhibit a systematic pattern, and that the normal distribution applies. The standard
deviation of the residuals is o in the formula above, which yields a value of k. If the plot
of the residuals against the predicted BCF reveals a pattern, the regression model used was
not appropriate, or the data set might have been inhomogeneous. In this case, one may
choose a different regression model, or another data set. The choice of the regression
model is arbitrary: as the model is only used to interpolate an estimate, it does not
necessarily require a mechanistic background. The only advice is the economy principle:
when you have to choose between models that describe the data equally well, choose the
simplest one. However, it is not the intention of this report to thoroughly examine the
models applied in USES 1.0. This approach can be used for all of the QSAR estimation
routines in the data/filling module where data are available.

McKone (1993) quantifies uncertainty in several QSAR estimation routines, also applied in
USES. McKone uses mean values and the coefficient of variation (CV) or the geometric
standard deviation (GSD) to characterize the distribution. The GSD and the CV of a
certain parameter X, are related to the standard deviation on log-scale (o,y) by the
following relations (Slob, 1994):

G,y = In GSD

Oix = In (CV? + 1)
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The standard deviation on log-scale can then be related to the uncertainty factor k by the
following relation (Slob, 1994):

2.2. Technical implementation

Calculation of uncertainty in the final result as a consequence of uncertainty and

variability in underlying models can be performed in several ways (for a more extensive

methodological discussion see Janssen ef al., 1990). In the uncertainty analysis for USES,
two methods are important:

* Analytically, as described by Slob (1994) and as applied by Slob & De Nijs (1989) in
an uncertainty analysis for the exposure of the aquatic ecosystem in the predecessor of
USES, DRANC. This method is restricted to lognormal distributions in multiplicative
models (since the product or quotient of two lognormal distributions is, again, a
lognormal distribution). Furthermore, correlation cannot be taken into account.

* Numerically, the use of Monte Carlo analysis does not put any limitations on the type
of distributions assumed (as long as they can be characterized), nor on the model
equations. This method requires extensive calculations and therefore, will consume more
time than the analytical method.

These methods will be described in more detail in the following sections.

2.2.1. The analytical method

The simple analytical method will be followed as far as possible. Fortunately, lognormal
distributions occur frequently in the real world, and USES is for a large part a
multiplicative model. From theoretical and empirical considerations, it may be concluded
that the lognormal distribution is very appropriate as a default distribution for most
non-negative physical entities (see Slob, 1994). This approach has a serious advantage in
that 1t allows for a rapid and accurate uncertainty analysis.

The analytical solution can be used for a model of the form:
X, X
X,

Y =

The uncertainty in ¥ can be quantified from the uncertainty factors (k,, k,, k;) of X,, X,,
and X; as follows (Slob, 1994):

k, = exp [ Yk, + Ik, + In’,)
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2.2.2. Monte Carlo techniques

There are however, several steps in the exposure model of USES where additions take
place (as for instance, the addition of the contributions of several food products to the total
daily intake of humans). In these cases, the simple method of the previous section cannot
be performed. In these calculations, the simple analytical method can be combined with a
Monte Carlo analysis. First, all possible analytical calculations of uncertainties are done,
followed by Monte Carlo analysis for the summations and subsequent calculations.

The use of Monte Carlo analysis has recently become popular in health and environmental
risk assessment (see for example Thompson et al., 1992; Copeland ef al., 1993; McKone
& Ryan, 1989; McKone & Bogen, 1991). It is a transparent method which sets no
restrictions to model formulation or parameter distributions. However, the results will
always be approximate (the accuracy depending on the number of runs) and the analysis
will take some time (depending on the hard- and software).

When the parameter distributions are characterized with a probability distribution,
parameter values are drawn from the distributions (Monte Carlo sampling). Subsequently,
for each series of values drawn, the matching model's result is calculated by running the
model (Monte Carlo simulations). From the obtained model's results, the median, variance,
percentiles, probability distribution etc. are derived. For each simulation, the entire model
has to be run. Therefore, the number of required model runs should be restricted. The use
of efficient sampling techniques (e.g., Latin Hypercube sampling) can be helpful to reduce
the number of model runs. Through use of statistical techniques, the contribution of the
separate parameters to the total uncertainty can be estimated (Janssen et al., 1990).

2.3. Provisional solution for some summations

The simple method of the previous section does not work for summation of parameters.
Consider a calculation of the following form, which occurs several times in the USES
calculations:

b=1+a

where a is lognormal distributed, and the value of I is without uncertainty. The resulting
parameter b follows a distribution which is not lognormal (in fact it is lognormal, but
shifted to the right). The deviation from the (unshifted) lognormal distribution will depend
on the value of a compared to 1. If @ is much larger than 1, the resulting distribution in b
will be indistinguishable from a lognormal distribution. The uncertainty in 5 will be close
to the uncertainty in a. If a is small compared to 1, the distribution will diverge from the
lognormal distribution. However, in the latter case, the uncertainty in & will be very small
since the uncertainty in a will only contribute slightly to the total uncertainty.

12



Parameter a follows a lognormal distribution characterized by its median value (M,) and
an uncertainty factor k, Parameter a therefore lies for 95% between M /k, and M, %, This
implies that b lies for 95% between:

M
Sl <b <Mk o+

a

If we estimate the distribution of & with a lognormal distribution, we will make an error.
The magnitude of this error depends on the value of k, and M, As a provisional solution
we propose to use the following approach. The median of b is given by M, + 1. The
distance between median and the 95% boundaries cannot be quantified with a single k
value because the distribution of 4 is not symmetrical on a logarithmic scale.

The following example acts as an illustration:

b=a+1
M, =1 k,=10
M, =2 95% boundaries: 1.1<b<11

Two values of k, can be quantified from the left and from the right boundary:
left kK, =2/1.1 =18 and rightk, =11/2=55

The ratio of the two k values is a measure of the error made when assuming a lognormal
distribution. The closer this ratio is to 1, the smaller the error. It can be calculated that this
ratio is largest when M, equals 1. We propose to take the largest of the two k, values for
the resulting variable b. It is advisable to give the user of the system a warning when the
two values of k are differing too much. In that case, the final uncertainty in the hazard
quotient will be overestimated. It is not clear beforehand whether this leads to a larger
exceedance of a PEC/NEC ratio of 1 since only the lower tail of the distribution is
extended. In our example, this would mean that the resulting distribution of b will be
described as:

M, =2 k,=55 95% boundaries: 036 <b <11
ratio of the k values = 5.5/1.8 = 3.1

This 1s illustrated in Figure 2 where both the true distribution and the estimated (non-
shifted) lognormal distribution are drawn.

13



In a more general form, the relations can be written as:

M,=M,+c
lefi k= Ma* € ot k, = Ma Kt €
eft b"r ng b‘——M;—T
+C
k

The right k, is the largest, and will be used in the subsequent calculations. The ratios
between the two values of &, is given by:

ratio =

At this stage, a cut-off point may be
selected where the user is warned that the
simplification may have consequences for
the result. We propose, as an initial value,
to take a ratio of 2 as acceptable. The
criterium will then be:

7/, true distribution

lognormal
distnibution

probability

if ratio >= 2 then
[waming to the user]

T

0.00 375 7.50 1.25 15.00

This approach allows us to extend the use a+1

of the analytical method of the previous Figure 2 Approximation of a shified lognormal
section without sacrificing too much of the distribution with an unshifted
realism of the analysis. lognormal distribution

2.4. Presentation of uncertainty in the final results

Another point to consider is the presentation of the results of the analysis: the uncertainty
in the hazard quotient. Several possibilities are:

» the probability distribution of the values (graphically)

« the probability that PEC exceeds NEC

* the x-th percentile of the distribution of PEC/NEC values (e.g., 95%)

» the 95% interval (upper and lower boundary)

This point needs examination, with the demands of the primary users of the results of the
risk assessment (the decision makers) in mind, and needs more elaboration. The main
criterium will be the interpretability of the results. It should be noted that the distribution
of several hazard quotients will not be lognormal and therefore cannot be described with
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an uncertainty factor. Most important, it should be avoided to give the appearance that
uncertainty in the hazard quotients is totally quantified. The uncertainties are only
quantified to a limited extent, and should not be interpreted as an absolute 'confidence
level'. The outcome should be interpreted more in a relative way. Sometimes the risk level
can be estimated with more confidence than in other cases. E.g., if the main exposure
route of humans is by inhalation of contaminated air, the risk can be estimated with
greater confidence than when the main exposure route is formed by an entire food chain of
STP to sludge to soil to grass to cattle to meat. Therefore, the most appropriate use of the
outcome of the uncertainty analysis, is to indicate the probability of making the wrong
decision: the probability of PEC/NEC>1 when the ratio is below one, and the probability
that PEC/NEC<1 when the ratio is larger than one. This results may show when one
substance can be assessed with greater confidence than another.
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3. QUANTIFICATION OF UNCERTAINTIES

In this chapter, the details of the proposed uncertainty analysis are worked out per sub-
module. For each sub-module, the input parameters are listed, with their uncertainty
factors, and the calculation routine is elucidated. The calculations given are mainly used to
illustrate the structure of the formulas, sometimes conversion of units etc. 1s necessary.
This is part of the USES program but will not be reiterated here. For a more extensive
discussion and background of the model calculations, the reader is referred to the USES
1.0 documentation (RIVM et al., 1994).

For each sub-module, the problems of the module in the uncertainty analysis are also
discussed. As much as was possible, the analytical approach was followed, as discussed in
section 2.2. Whenever a calculation does not agree with a multiplicative model and
lognormal uncertainties, this will be discussed. Figure 3 shows the main modules of USES
and their relations.

%ssnccscccsssssssns

Figure 3 The main modules of USES 1.0. and the flow of data between them.

As discussed in section 1.2, the scenario concept of USES restricts the uncertainty
analysis. The relevance of the exposure scenario should be assessed, but this should be
done in a validation of the system. An extensive list of all scenario choices and
assumptions 1s given in the report on the feasibility of validating USES (Jager, 1995). In
the present report, scenario choices are only discussed when they are relevant for the value
of a model parameter.
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With respect to the uncertainty analysis, for each (sub-) module the following items will

be discussed:

» Scenario choices, if relevant for the value of a parameter.

* A short description of the (sub-) module.

« A table, showing the input parameters of the calculation and their uncertainties*. For
several parameters, the uncertainty is denoted as L or M. This means that this parameter
is output of another calculation and the uncertainty is calculated from uncertainties in
other parameters with the analytical approach (yielding a Lognormal distribution) or
Monte Carlo approach (yielding a distribution other than lognormal) respectively.

» The model calculations (sometimes simplified to facilitate reading).

» A discussion of this calculation with respect to the uncertainties in the results, and the
possibilities to apply the simple analytical method of section 2.2.1.

+ If relevant, a table with intermediate or output parameters for which uncertainties are
defined (e.g., for QSARs where uncertainties in the estimate are not calculated from
uncertainties in the input parameters, but quantified from the residuals of the

regression).

* It should be noted that lognormal parameter distnibutions are characterized with an uncertainty factor, as
explained in section 2.1. In the tables these are mentioned in the column named 'UF".

3.1. Data entry and filling module

The calculation of USES starts with the data entry and the filling procedure for missing
values. Missing data are filled with estimation routines, adding uncertainty to the
parameter. Of course, this offers an excellent opportunity for rewarding additional input
data by lowering the overall uncertainty in the risk estimate. When the user enters data in
the system, no uncertainty is assumed for this parameter. In a future version of USES, the
possibility may be added to allow input of the uncertainty of the parameter together with
the parameter value.

Many uncertainty factors are difficult to estimate, for instance when estimation routine
represents a worst case situation (e.g., biodegradation rates). The consequences of these
difficulties will be discussed per estimation routine. Many missing parameters can be
estimated with QSARs. Usually, these QSARs are a (linear or log-linear) regression on a
set of measured values. The divergence from the regression can be quantified as the
uncertainty in the estimate. This is not entirely correct because this uncertainty is only
representing the substances in the training set of data used. If we assume that the training
set is randomly drawn from all substances, this difficulty can be ignored. However, for
other (classes of) chemicals, not present in the training set, the uncertainty may be much
larger.

With QSARs, it 1s usually difficult to take uncertainty in input parameters (e.g., the
octanol-water partitioning coefficient, Kow) into account. Since analytical combination of
uncertainties is preferred, often only the uncertainty in the estimate of the QSAR will be
taken into account. This ignores the possible uncertainties in the input parameters of the
QSAR, and therefore underestimates the true uncertainty. If we decide to apply Monte
Carlo analysis for the entire USES, it would be possible to take these uncertainties into
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account. However, at this moment, we propose to use the analytical approach whenever
possible.

3.1.1. Estimation of water solubility

The QSAR applied in USES to estimate the water solubility from the octanol-water
partitioning coefficient was derived by Isnard & Lambert (1989). The authors derived the
relations by performing log-linear regression on a data set containing values of 300
substances. For solids, a correction on the melting point is performed. Another regression
was made without the use of the melting point. It should be noted that the approach given
below differs to some extent from the one applied in USES. In USES, the interpretation of
the results of Isnard & Lambert (1989) was incorrect. This also implies that the formulas
of USES have to be corrected.

input parameters
Model parameter Symbol Unit UF  Status
Octanol-water partition coefficient Kow [-] 1 Data entry
Molecular weight MOLW [kg.mol] 1 Data entry
Melting point TEMPmelt K] 1 Data entry
model calculations

if TEMPmelt i1s given:

log SOL = 2.90 - 1.18 log Kow - 0.0048 (TEMPmelt-298) G = 0.560

if substance is liquid (TEMPmelt < 298) then TEMPmelt should be entered
in the formula as 298

if no TEMPmelt is given:
log SOL = 3.05 - 1.29 log Kow c = 00631
uncertainty in model results

The uncertainty in the first estimates of solubility can be quantified from the data set
collected by Isnard & Lambert (1989). The authors report the standard deviation of the
residuals (denoted above as G), which can be translated to uncertainty factors according to
section 2.1.

Model parameter Symbol Unit UF Status
Water solubihity SOL [kg.m™] 13 if TEMPmelt 1s given
17 if no TEMPmelt given

from Isnard & Lambert (1989)
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3.1.2. Estimation of the octanol-water partitioning coefficient

The relation between Kow and SOL is derived by Isnard & Lambert (1989) for the same
300 chemicals for which they derived the reciproke relations from the previous section.

As with the previous QSAR, it should be noted that the approach given below differs to
some extent from the one applied in USES. This implies that the formulas of USES have
to be corrected for these formulas also.

input parameters

Model parameter Symbol Unit UF Status
Solubility SOL [kg.m™] 1 Data entry
Melting point TEMPmelt K] 1 Data entry
model calculations

if TEMPmelt 1s given:

log Kow = 4.81 - 0.77 [log (SOL-1000) + 0.0032 (TEMPmelt-298)]
o = 0.453

if substance is liquid (TEMPmelt < 298) then TEMPmelt should be entered
in the formula as 298

if no TEMPmelt 1s given:

log Kow = 4.62 - 0.72 log (SOL-1000) & = 0.474
uncertainty in model results

The uncertainty in the estimates of Kow can be quantified from the data set collected by
Isnard & Lambert (1989). The uncertainty factors are quantified from the standard
deviation of the residuals (o) as given by the authors.

Model parameter Symbol Unit UF  Status

Octanol-water part. coeff. Kow [-] 7.7 if TEMPmelt 1s given
85 if no TEMPmelt is given
from Isnard & Lambert (1989)

3.1.3. Characterization of the environment

Scenario Comments

By default, typical soil characteristics of a Dutch Median case assumption.
agricultural soil are taken.
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In this sub-module, bulk densities of the environmental compartments are derived.
Furthermore, volumes of the compartments of the regional and continental models are
derived. For the uncertainty of the local model, only the derivation of bulk density of soil
is important.

input parameters

Model parameter Symbol Unit UF  Status

Fraction air mn soil Fair,, [m”.m~] 1 Defined in scenano
Fraction water in soil Fwater, [m*m?) 1 Defined in scenario
Density of air RHOair [kg.m?] 1 Defined in scenario
Density of water RHOwater [kg.m?] 1 Defined in scenario
Density of solids RHOsolid [kg.m?] 1 Defined in scenario

At this moment, we propose to define soil characteristics in the exposure scenario. This
might be changed in the future.

model calculations
Fsolids,,, = 1 - Fair,, - Fwater,;
RHO, ; = Fair, ; - RHOair + Fwater, , - RHOwater + Fsolid,,; - RHOsolids

uncertainty in model results

Due to the scenario definition, there will be no uncertainty in the results of this sub-
module. The calculations of the sub-module are solely based on default parameters. This
means that, if the uncertainty in soil characteristics is taken into account, the calculation of
the uncertainty in bulk density of soil from the input parameters can be completed 'off-
line'.

3.1.4. Intermedia partitioning

3.1.4.1. Air-water partitioning

The partitioning between air and water is described with the Henry coefficient and the
dimensionless Henry coefficient (K., u..)-

Scenario Comments

Typical characteristics of the (by default) Dutch Median case assumption.
environment are taken

21



input parameters

Model parameter Symbol Unit UF  Status

Vapour pressure VP [Pa] 1 Data entry
Molecular weight MOLW [kg.mol*] 1 Data entry
Solubility SOL [kg.m?) 1/L Data entry/filling
Gas constant (8.314) R [Pa.m.mol’.X'] 1 Constant
Temperature air-water interface TEMP [X] 1 Scenario defined

It should be noted that the vapour pressure is temperature dependent. Therefore, if we
propose to add uncertainty to the temperature, we may also need to relate vapour pressure
to the temperature.

Model calculations

VP - MOLW

HENRY =
SOL

HENRY
Kair-watcr S s
R - TEMP
uncertainty in model results

Uncertainties in HENRY and K, ..., can be calculated analytically because the calculation
is strictly multiplicative.

3.1.4.2. Fraction associated with aerosol

The aerosol-air partitioning is estimated according to Junge (1977).

input parameters

Model parameter Symbol Unit UF  Status

Constant of Junge equation CONjunge [Pa.m] 3 Temporary, estimated roughly
from Noordijk & De Leeuw
(1991)

Surface area aerosol particles SURFaer [m?.m?) 2 Temporary, estimated roughly
from Noordijk & De Leeuw
(1991)

Vapour pressure VP [Pa] 1 Data entry

Uncertainty of the product of CONjunge and SURFaer can be calculated analytically since
both uncertainties are assumed lognormal, and not correlated. This leads to an uncertainty
factor of 3.7 for the product, using the formula in section 2.2.

model calculations

_ CONjunge - SURFaer
" VP + CONjunge - SURFaer

Fass,,
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This formula gives some problems. Due to its form, analytical combination of uncertainties
is not possible. If VP is large compared to the product of CONjunge and SURFaer, the
resulting uncertainty in Fass,, will equal the uncertainty in the product. The other way
around, if VP is small compared to the product, uncertainty will disappear since the values
in the nominator and denominator will be nearly equal. In section 2.3, a provisional
solution to this problem is discussed. This makes it possible to approach the distribution of
Fass,, with a lognormal distribution. To facilitate this calculation, the formula can be

r

rewritten as:

1
\%%
CONjunge - SURFaer

Fass, =
+ 1

3.1.4.3. Partitioning between soil and water

Scenario Comments

By default, typical soil characteristics of a Dutch Median case assumption.
agricultural soil are taken.

Of the many regression formulas that have been reported for different classes of organic
compounds, the equation proposed by Karickhoff (1981) is chosen. The factor a is an
empirical regression coefficient that is different for different types of substances. This
estimation method is valid for all non-ionic organic chemicals. This partition model is not
to be applied for all other chemicals:

« acidic or basic chemicals that to some extent occur in an ionic form;

» anionic and cationic surfactants;

+ metals.

input parameters

Model parameter Symbol Unit UF Status

Fraction organic carbon 1n soil Foc,; [kg.kg™] 1 Scenario defined
Octanol-water part. coeff. Kow {-] 1/L Data entry/filling
Regression coeff. a [m*kg™] 5.1 From McKone (1993)
Density of the solid phase RHOsolid [kg.m?] 1 Scenario defined
Volume fraction water of soil Fwater,; [m*m?] 1 Scenario defined
Volume fraction solids of soil Fsolid,; [m*m™) 1 Scenario defined

Uncertainty in a is derived from the data set collected by Karickhoff (1981). McKone
(1993) estimated a coefficient of variation of 1 for this estimation routine. Using the
relations given in section 2.1, an uncertainty factor of 5.1 is calculated.
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Model calculation

a - Foc, - Kow

K . -3
Puoi 1000
K, i-waer = Fwater,, + Fsolid ; - Kp,; - RHOsolid
. Fwater_,
Fdiss,;, = ———>
Ksoil-watcr

Uncertainty in model result

Uncertainty in Kp,,, can be calculated analytically. Uncertainty in K, .., can also be
calculated analytically. Fwater,,, is scenario-defined and therefore uncertainty is ignored,
therefore, the simplification of 2.3 can be applied for the summation. Finally, the
uncertainty in Fdiss,; can also be derived analytically. The uncertainty in Kow can be
taken into account in this estimation.

3.1.4.4. Partitioning between suspended matter-water

Scenario Comments
Typical characteristics of suspended matter are Median case assumption.
taken.

Estimation of suspended matter-water equilibrium constants is performed in the same way
as demonstrated for soil-water equilibrium. For suspended matter in the sewage treatment
plant's primary solver and solids-liquid separator/aeration tank, separate values for Kp,,,
are calculated because of the different organic carbon content of the suspended matter.

input parameters

Model parameter Symbol Unit UF Status

Regression coefficient a [m’.kg™} 5.1 From McKone (1993)
Fraction organic carbon in susp. Foc,,, [kg.kg"] 1 Scenario defined
Frac. oc in susp. STP prim. solver Foc, . [kgkg'] 1 Scenario defined
Frac. oc in susp. of AT and SLS  Foc,arsis [kgkg,] 1 Scenario defined
Octanol-water part. coeff. Kow [-] 1L Data entry/filling
Density of the solid phase RHOsolid [kg.m™] 1 Scenario defined
Volume fraction water of susp. Fwater,,,, [m®m™] 1 Scenario defined
Volume fraction solids of susp. Fsolid,,, [m*m?] 1 Scenario defined
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Model calculation

Suspended matter in surface water

a - Foc, + Kow
Kpsusp =
1000

Suspended matter in STP primary solver and aeration tank/solids-liquid separator

a + Foc, ., * Kow
KpsuspPS = 102)0
a - Foc,, + Kow
KpsuspATSLS = 1[883‘8

uncertainty in model results

The calculations above are strictly multiplicative. Therefore, analytical combination of
uncertainties is possible. Uncertainty in Kow can be taken into account analytically.

3.1.5. Biodegradation

3.1.5.1. Biodegradation in soil

Scenario Comments

By default, typical soil characteristics of a Dutch Median case assumption.
agricultural soil are taken.

If no biodegradation half-life in soil is given, the biodegradation in soil is obtained by
means of the scaling procedure proposed by Struijs & Van den Berg (1992, 1995).

input parameters

Model parameter Symbol Unit UF  Status

Conc. of bacteria in the test water BACT,,, [cfu.m™] 1 Scenario defined
Result of a standard screening test PASSreadytest [yes/no] n.a. Data entry

Frac. of chemical dissolved in soil Fdiss, [-] L Output filling
Conc. of bacteria reported in soil BACT,; [cfukg] 1 Scenario defined
Bulk density of soil RHO,; [kg.m?] 1 Scenario defined
Volume fraction water in soil Fwater,; [-] 1 Scenario defined
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Model calculation
In2

kdeg,., = 57543600 st if PASSreadytest = yes  (half-life of 5 days)
kdeg, . = In2 s if PASSreadytest = no  (half-life of 1000 days)
1000 - 24 - 3600
BACT_, - RHO_.

BACTporew,; = o i rescale to bacteria in porewater

Fwater_,

BACTporew_ ,

kdeg . = kdeg_, * + Fdiss,_,

BACT,,

uncertainty in model results

The conservatively chosen default degradation rates severely hamper the uncertainty
analysis. If uncertainty in the degradation rate is to be quantified, median case defaults
have to be chosen instead of 5 and 1000 days, together with an uncertainty factor.
Uncertainty due to the scaling procedure can be quantified analytically. At this moment
however, this problem is not urgent since the uncertainty in the degradation rate in soil
cannot be taken into account in the soil-groundwater module. In this module, kdeg,,; is
used to derive a fraction accumulation and concentration in groundwater from a table (see
section 3.6).

3.1.5.2. Biodegradation in the sewage trearment plant

When no value is given in the input data set, a value has to be estimated from the ready
biodegradability test. According to Struijs & Van den Berg (1992, 1995) the degradation
rate constant in the water phase of activated sludge can be taken as 3 hr' for all
chemicals that are positive in a readily biodegradability test.

input parameters
Model parameter Symbol Unit UF  Status
Result of a standard screening test PASSreadytest  [yes/no] n.a. Data entry

Model calculation

1
3600

kdeg,, = 0 s if PASSreadytest

kdeg, =3 - s' if PASSreadytest = yes

no

uncertainty in model results

The default biodegradation rates are conservatively chosen. This severely hampers the
uncertainty analysis. If uncertainty in the degradation in the STP is to be quantified,
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median case defaults have to be chosen, together with an uncertainty factor.

For this moment, uncertainty in this biodegradation rate may be ignored, as the STP
module itself is simplified. In the STP module, uncertainty in input parameters (apart
from the emission rate) is not taken into account.

3.1.6. Bioconcentration factors
3.1.6.1. Bioconcentration in fish

Bioconcentration factors for fish are, in the present version of USES, calculated as
follows:

e ° KOW
RHO

Ffat
BCF b =

bio

This equation however, describes a passive partitioning process, it does not take into
account any metabolism or active excretion. This kind of, rather worst case, estimation is
difficult to translate to a parameter distribution. Therefore, we change this approach to a
less mechanistic, but more descriptive linear regression.

input parameters
Model parameter Symbol Unit UF  Status
Octanol-water part. coeff. Kow [-] 1/L Data entry/filling

model calculations

It should be noted that the unit of BCFfish is taken as 1/kg as this is the unit applied in the
data set by Veith & Kosian (1983). A conversion to m*/kg is necessary in USES.

logBCF,, = ag, - logKow + B,

fish

where o and 8 are derived from a regression on a set of measured data including values
of metabolised and non-metabolised substances.

uncertainty in model results

The uncertainty can be quantified from the residuals of the regression, using the formula
from section 2.1. We performed a linear regression to estimate a and 8, and quantified
the deviations from the regression line. The data set collected by Veith & Kosian (1983)
was taken as a representative set, consisting of different classes of chemicals and several
fish species. Figure Al in Appendix 1 shows the data with the linear regression. Table 2
gives the results of the regression. The uncertainty factor k was derived using the
equation in section 2.1.

It is clear from Figure Al in Appendix 1 that the data are well described with linear
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Table 2 Linear regression log K, o, vs. l0g Kow

regression. The Plot of Tesiduals s Shown T —=

in Figure A3, the frequency distribution of

the residuals in Figure A2. Parameter o 0.7879
The uncertainty in the input parameter Parameter § -0.3348
Kow cannot be taken into account r2 0.8567
analytically.
Number of data 122
SD of resid. 0.49025
Var. of resid. 0.24034
k 9.1

Model parameter Symbol Unit UF  Status

Bioconc. factor for fish ~ BClyg,, [Lkg”] 9.1 derived from regression on data set of Veith &
Kosian (1983)

3.1.6.2. Bioconcentration in earthworms

The bioconcentration process in earthworms can, according to equilibrium partitioning
theory, be seen as a two-step process: partitioning between soil particles and interstitial
water, followed by partitioning between worm and interstitial water.

The relation between soil-water and worm, as applied in USES, is taken from Connell &
Markwell (1990). The relation is a linear regression (on a logarithmic scale), on 100 data
points for 30 substances (mainly pesticides). The residues of this fit give us a measure of
the uncertainty in the BCF for worms. This includes variability between individual
worms. This variation is averaged out, however, since we consider the exposure of
worm-eating predators. As in the estimation of BCFy, in the previous section, the present
data set does not allow this variability to be distinguished from the other sources of
uncertainty.

input parameters

Model parameter Symbol Unit UF  Status
Octanol-water part. coeff. Kow -1 1/L Data entry/filling
Soil-water part. coeff. Koit-water [m3.m?] L Data entry/filling
Density of soil RHO, ; [kg.m?) 1 Scenario defined

It should be noted that uncertainties in Kow and K, .. Will be correlated. At this
moment, this will not pose any problems, since Kow is used in the regression and its
uncertainty therefore ignored.
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model calculations

It should be noted that the unit of K, sorewaer 1S taken as /kg as this is probably the unit
used by Connell & Markwell (1990). The authors did not mention the unit of their
bioconcentration factors. The factor of 1000 in the equation below is applied to convert
the unit of BCF,,,, to m3/kg for subsequent calculations.

worm

log Kwom_porewamr = awonn ¢ log Kow + Bwolm
BCF = KWOﬂn-porcwm; * RI'IOSOil
wonm 1000 - Ksoil—w,,ler

uncertainty in model results

Table 3 Linear regression 10g K, porwuer V5- l0g Kow  The data set for mem_]memtcr was taken
—————  om Connell & Markwell (1990), mainly

consisting of pesticide data. The
Parameter o 1.001 parameters « and ([ were estimated and
the residuals analyzed. The table below
Parameter § 05528 gives the results yof the regression and
r? 0.8260 analysis of the residuals.
Number of data | 100 From Figure A4, Figure A5, and
SD of resid. 0.63244 Figure A6 in Appendix 1 the
appropriateness of a linear model may be
Var. of resid. 0.40000 questioned. Nevertheless, for the purpose
k 17 of this report, the linear model is
maintained. This will however, increase

the uncertainty as the fit is not very

e SAtiSfactory. The results from Table 3
show that the resulting uncertainty factor
is large, compared to the estimation of the BCF for fish. Maybe the estimation can be

improved by developing a more mechanistic model or by expanding the data set.

Uncertainty in the input parameter Kow is not taken into account into K, ... However,
uncertainty in K. is accounted for in the final result of BCF,,, (this can be
calculated analytically).

Model parameter Symbol Unit UF  Status

Part. coeff. worm-porewater Koorm-porew [l.kg”] 17 Derived from regression on
data set of Connell & Markwell
(1990)

3.1.6.3. Bioconcentration plant from soil

Bioconcentration to roots and stems of plant from soil is estimated with the relations of
Briggs et al. (1982, 1983).
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input parameters

Model parameter Symbol Unit UF  Status

Octanol-water part. coeff. Kow [-] 1/L Data entry/filling
Bulk density of soil RHOsoil [kg.m?] 1 Scenario defined
Soil-water part. coeff. K, iiowater [-] L Data entry/filling

model calculations

(logKow - 1.78)?

TSCE = 0.748 - ¢ 2%

0.82 + 100.95 * logKow -2.05

CF
S 1000

RHO, ,
BCFstem,, = SCF - TSCF + —————

soil ~water

082 + 100.77 * logKow ~1.52 3 -
K = m?.kg!
100t —porew 1000 [ g ]

RHO, ,
BCFroot =K o

plant root-porew
soil -water

uncertainty in model results

Uncertainties in the estimations of SCF, TSCF and K,,, .., can be estimated using the
data set collected by Polder er al. (1994). It should be noted that the SCF used here is
defined as the ratio between concentration in stem and the concentration in transpired
water. The experimental SCFs as collected by Polder and coworkers is relative to the
concentration in soil solution. Therefore, the uncertainty estimated from this data set
should be applied to SCF ® TSCF. The data of Polder and coworkers have not been
analyzed in detail yet, therefore, temporary uncertainties are given (estimated by eye from
the data).

Uncertainty in Kow can not be taken into account. However, uncertainty in K, ;... can
be accounted for analytically.

Model parameter Symbol Unit UF  Status

Transp. stream conc. factor TSCF -] 1 Ignored (incorporated into
SCF)

Stem conc. factor SCF [m*.kg") 6 Temporary, estimated roughly
from Polder et al. (1994)

Root-porew. part. coeff. K root-porew [m*.kg'] 6 Temporary, estimated roughly

from Polder et al. (1994)
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3.1.6.4. Bioconcentration plant from air

Bioconcentration in plants from air is divided into two separate processes; deposition onto
the leaves and gas absorption. Deposition is described according to McKone & Ryan
(1989), equilibrium between gas and plant according to Riederer (1990).

input parameters

Model parameter Symbol Unit UF  Status
Aerosol-plant part. coeff. Ko rosoi-plams [m’.kg”] 8.4 From McKone (1993)
Fraction air in plant Fairyy [m®.m?] n.a. Incl. in UF Ko piam
Fraction water in plant Fwater . [m*.m?3] n.a. Incl. in UF K, pian
Fraction lipids in plant Flipid [m®.m?) n.a. Incl. in UF K,y jom
Bulk density of plant RHO, [kg.m?] 1 Temporary
Octanol-water part. coeff. Kow [-] 1/L Data entry/filling
Air-water part. coeff. | \CP— (-1 L Output filling

Frac. ass. aerosol Fass,,, -] L Output filling

McKone (1993) estimates coefficients of variations for several QSARs, including the
estimations of aerosol-plant partitioning coefficient. Using the relation between CV and &,
given in section 2.1, the CV of 1.5 (as estimated by McKone) can be translated to an
uncertainty factor.

model calculations

K = 3300 (constant)

aerosol -plant

1 1
RHO

plant

= | Fair, +(Fwater, +Flipid . - Kow) -

gas-plant
air-water

BCFair , = Fass,, + K + (1-Fass,,) + K

plant aerosol -plant aer gas-plant

uncertainty in model results

Table 4 Analysis of diﬁrerence between Kga.v-planl ﬁom The uncertainty in BCFairpkml can be

lirerature and USES estimate calculated from the uncertainty in the
input parameters. It should be noted that

the model is not longer multiplicative,
Number of data | 10 thus requiring Monte Carlo analysis.
SD of resid. 0.708783 However, it is possible that this approach

will be adapted in the near future as
Var. of resid. 0.502374 summation of deposition and gas-uptake
X 25 might not be very relevant.

Uncertainty in the gas-plant partitioning

——————— COcffiCient can be estimated from the
experimental results of Bacci er al

(1990). Even though the authors tested only 10 substances, this gives sufficient
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information for a temporary estimate of the uncertainty. The comparison between
measured and calculated values is graphically shown in Appendix 1, Figure A7.

The possible uncertainty in RHO,,,, is not taken into account, but can easily be added.

Model parameter Symbol Unit UF  Status

Gas-plant part. coeff. Ko piant {m®.kg"} 25 Derived from analysis of data
Bacci er al. (1990)

3.1.6.5. Bioconcentration meat and milk from uptake by cow

The bioconcentration factors between the cows daily intake and the concentrations in meat
and milk were derived by Travis & Arms (1988). Log-linear regressions were performed
on values for 36 substances for biotransfer to meat (log Kow between 1.3 and 6.9), and
28 substances for biotransfer to milk (log Kow between 2.8 and 6.9).

input parameters
Model parameter Symbol Unit UF  Status
Octanol-water part. coeff. Kow [} 1/L Data entry/filling

model calculations

log BCF

-7.6 + log Kow

log BCF_,, = -8.1 + log Kow

uncertainty in model results

Table 5 Linear regression log BCF,,, vs. log Kow Uncertainty in the estimates for the
bioconcentration factor can be derived

from analysis of the residuals of the
Parameter o 0.8344 regression. Uncertainty in Kow will not be
Parameter 8 -6.8870 taken into account.
r’ 0.808 It may be clear from Table 5 that the
relation between Kow and BCF,,, is not
Number of data | 36 very satisfactory, resulting in a very high
SD of resid. 0.9201 uncertainty factor. Interestingly, our
regression gives different coefficients then
Var. of resid. 0.8466 the regression of Travis & Arms. The
k 64 value of r* is equal, and the plot of the
regression in Appendix 1 (Figure A8) is

close to the figure given by the authors.
|

Table 6 shows the results of the regression of BCF,,, versus Kow. Again, the coefficients
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Table 6 Linear regression log BCF, , vs. log Kow

I ——w_differ from the original authors, without

effecting > very much. Figure Al0Q in
Parameter o 0.7309 Appendix 1 shows the plot of the
Parameter 3 -6.7856 Tegression.
r 0.737 The origin of the deviation of the
regression coefficients from the original
Number of data | 28 publication requires more detailed
SD of resid. 0.7917 examination.
Var. of resid. 0.6267
k 36
]
Model parameter Symbol Unit UF  Status
Bioconc. factor for meat BCE, .« ld.kg"] 64 Calculated from Travis & Arms (1988)
Bioconc. factor for milk BCF, [d.kg'] 36 Calculated from Travis & Arms (1988)
3.2. Emissions
Scenario Comments

The emission is averaged over the year in case of
human and soil organism exposure assessment.

Averaging over the year may not be very valid (it
may be best case), as many substances are only
produced during short episodes.

From the table above it may be concluded that, although uncertainty factors for the
emissions to water and air have been assessed, the scenarios are not median case. In the
scenario a standard, main source of the substance is assessed.

Emissions are given as tables, together with the uncertainty factors (lognormal
distributions are assumed). It should be noted that measured emission data are preferred
above use of these tables. It should therefore also be possible to enter uncertainty in the

measured data.

input parameters

Model parameter Symbol Unit UF  Status
Production volume TONNAGE .s7] 1 Data entry
Fraction of tonnage to air Fair, .o L From tables
Fraction of tonnage to wastew. Fwater .o L From tables
Fraction from main source Foainsource L From tables



model calculations

Local, annual averaged, emissions from the main point source are calculated as:

« Fair - TONNAGE [kg.s™]

mainsource release

Edirect,, = F

Edirect =F

water mainsource

- Fwater ,  + TONNAGE [kg.s™]

The number of emission days is used to calculate the emission flux during an emission
episode. This is in USES 1.0 the output of the emission module. For human exposure,
this is not relevant, as only chronic exposure is considered. It is better to adapt USES, to
make the annual average emission from a point source and the number of days output of
the emission module. With this number of days, annual average surface water
concentrations can be translated to episode concentrations.

uncertainty in model results

Since the parameters from the emission table are assumed to be distributed lognormally,
uncertainty in this module’s results can be calculated analytically.

3.3. STP model

Scenario Comments
The STP is modelled as, by default, an average Median case. Perhaps USES should allow more
Dutch plant with SimpleTreat. Characteristics of the specific tuning of the STP.

’average’ plant are assumed.

For the purpose of uncertainty analysis, the STP-model is simplified to 4 fractions of the
emission to wastewater (air, water, sludge and degraded). This way, the STP module
gives less difficulties in the proposed analysis. The modelling is more or less median or
average. Uncertainty factors can probably be derived from expert judgement or validation
studies. Of course, the fractions of the substance degraded, to air, to water, and to
sludge, are correlated (due to conservation of mass). The sum of these fraction cannot
exceed 1. This makes the simplification difficult to combine with lognormal distribution
of uncertainties as lognormal distributions do not have an upper boundary, whereas the
fractions have. For now, this complication will be ignored.
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input parameters

Model parameter Symbol Unit UF  Status

Octanol-water part. coefficient Kow -] /L Data entry/filling
Henry’s law constant HENRY [Pa.m®.mol"] L Data entry/filling
Solids-water part. coeff. in PS KPyupps [m?.kg!] L Data entry/filling
Solids-water part. coeff. AT/SLS  Kp,,parsis [m3.kg'] L Data entry/filling
Emission to wastewater Edirect,,., [kg.s] L Output emission

First order degr. rate constant STP kdeg,, [s] n.a. ignored in calculations
[Characteristics of the average STP] 1 Scenario defined

model calculations

With these fractions, indirect emissions via the STP can be calculated to air, surface
water and sludge:

Estp,, = Edirect,,, * Fu [kg.s™]
EStplot,surf = Edirethamr ¢ Fto(,surf [kg's-I]
EStpsludge = Edirethater ¢ Fsludgc [kg'S-I]

uncertainty in model results

With this simplification of the STP model, analytical combination of uncertainties is
possible. However, this will underestimate the true uncertainty since only uncertainty in
emission is taken into account with the input parameters. The other input parameters are
ignored. On the other hand, uncertainties may also be overestimated since a lognormal
distribution is assumed for the fractions, and correlations are ignored.

Model parameter Symbol Unit UF  Status

Fr. of emission redirected to air ) S {-] 1.5 Estimated from Struijs et al.
(1991)

Fr. of emission to surf. water F o surt [-] 2 De Greef & De Nijs (1990)

Fr. of emission to sludge Fiuge [-] 2 Estimated from Struijs er al.
(1991)

Fr. of emission degraded Faegrasea [-] 1 Not used in calc.

3.4. Surface water

Scenario Comments

Dilution factor at 1000 m from the STP is used. Chosen as representative location for exposure of
the aquatic ecosystem.

Average characteristics of the receiving surface Median case assumption.
water are assumed (esp. concentration of suspended
matter).
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The dissolved concentration in surface water is calculated by dividing the emission to
surface water by the effluent discharge and the dilution factor, and multiplying with the
fraction of the chemical present in the water phase (i.e. not sorbed to particles).

input parameters

Model parameter Symbol Unit UF  Status

Emission from STP to effluent Estpyg sut [kg.s"] L Output STP

Number of emission days T e mission [d] L Output emission

Solids-water part. coeff. in susp.  Kp,,, [m®.kg"] L Data entry/filling

Concentration susp. in surf. water SUSPCONC,.; [kg.m?] 1 Scenario defined

Dilution factor in surface water DILUTION [-] 148*  Research De Greef & De Nijs
(1990)

Effluent discharge of STP EFFLUENT,, [m’.s"] 1 Included in UF dilution

*This value includes the uncertainty in cffluent discharge

model calculation

Ctot ES Pt
O =
“"  EFFLUENT, - DILUTION
Cdiss,, .. = CtOLs

whE - 1+Kp,,, *© SUSPCONC,
Cdiss, gy = CAiSSyugu = =

emission

uncertainty in model results

Uncertainty in Ctot,,; can be calculated analytically. The derivation of CdisS, /e
requires summation. in 2.3, a provisional solution to this problem is discussed. This
makes it possible to approach the distribution of Cdiss,,,,, With a lognormal distribution.

36



3.5. Air concentration and deposition fluxes

Concentrations in air and deposition fluxes of gasses and aerosols are calculated using

results from the OPS-model.
characteristics.

These results were obtained with standard source

Scenario

Only annual average concentrations are generated
by averaging emissions over the year.

Standard source characteristics and environmental
and meteorological data were used to derive the
standard concentrations and standard fluxes.

Comments

Thought to be relevant with respect to chronic
human exposure. Questionable for substances only

emitted for several days.

Probably median case assumption.

General values for uncertainties can probably be extracted from the RIVM reports
concerning the OPS model and its implementation into USES. A large part of the uncer-
tainties will be caused by uncertainty in environmental parameters (particle size aerosol,
meteo data, etc.) and source characteristics (source height, heat content of plume, etc). It
is important to define which parameters must be seen as part of the (fixed) scenario, and

which parameters contain the uncertainty we search to quantify.

input parameters

Model parameter Symbol Unit UF  Status

Emission to air direct Edirect,;, lkg.s"] L Output emission

Emission to air via STP Estp,,, [kg.s'] L Output STP

Standard conc. from OPS model  Cstd,;, [kg.m?] 2 Temporary, estimated from
Noordijk & De Leeuw (1991)

Standard dep. flux aerosols OPS  Dstd,,, [kg.m?.5] 10 Temporary, estimated from
Noordijk & De Leeuw (1991)

Standard dep. flux gas from OPS  Dstd,,, [kg.m2.s"] 10 Temporary, estimated from
Noordijk & De Leeuw (1991)

Frac. of chem. sorbed to aerosol  Fass,, [-] L Data entry/filling

model calculations

The concentration in air will be calculated as:

C,, = max [Estp,, , Edirect,] + Cstd,,

air
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The total deposition flux will be calculated as:

Dtot = [Estp,, + Edirect,] « [Fass, + Dstd, -+ (1-Fass,) + Dstd ]

uncertainty in model results

The uncertainties in the air concentration can be assessed analytically. The deposition flux
however, requires summation of several uncertain components. For this calculation,

Monte Carlo analysis cannot be avoided.

3.6. Soil and groundwater

Scenario

Sludge is applied once each year (the maximum
amount of 2000 kg.ha.yr™).

The concentration in sludge, that is used on
agricultural land, is calculated with annual average
emissions.

Typical dutch soil characteristics are applied in
PESTLA (density, fraction organic matter, etc.).
The soil type is more or less best case with respect
to accumulation, but worst case with respect to
leaching to groundwater.

A top-soil layer of 20 cm is assumed relevant for
uptake by plants, cattle. This layer is regarded
homogeneous.

The concentration in the soil is calculated as
average over 180 days. This value is used for
exposure of soil organisms and indirect human
exposure,

Comments

Worst case assumption. Sludge from industrial
plants is not applied as fertilizer.

Median case assumption, the concentration will be
higher if sludge from an emission episode is used,
and zero if sludge outside an emission episode is
used.

This soil type is common for agricultural soils in
the Netherlands.

Probably median case.

More or less median case. This value may be too
long to protect soil organisms, but is appropriate
with respect to chronic human exposure. This time
period needs more investigation (also with respect
to EU guidelines for sludge application).

For the calculation of concentrations in soil and groundwater due to sludge application
and aerial deposition, results from the model PESTLA are used. The numerical PESTLA
model was simplified to two tables (giving the fraction of the substance remaining in the
top soil layer after one year, Facc, and the maximum concentration in groundwater,
Cgrw,,). Only the two most important input parameters are used in these tables: the
half-life time for biodegradation in soil and the sorption to organic matter (Kom, derived
from Kow). The fraction accumulated in the soil layer is recalculated to a first order
’disappearance’ rate constant, assuming first order kinetics. With this constant, the
concentration in soil due to yearly application of sewage sludge and continuous aerial
deposition can be assessed. The concentration that is used for further calculations, is the



concentration averaged over 180 days, in the ’steady-state year’ (the year in which no
further accumulation takes place).

Uncertainty in the PESTLA model used for USES is difficult to assess. PESTLA has
many parameters and assumptions that are hidden in USES (e.g., type of crops grown,
meteo data, soil characteristics). These parameters are therefore incorporated in the
exposure scenario.

input parameters

Model parameter Symbol Unit UF  Status
Emission from STP to sludge EStp, e [kg.s"] L Output STP
Rate of sludge production SLUDGE,, kg.s™ 1 Scenario defined
Total deposition flux Dtot [kg.m?.s"] M Output air
Amount of sludge applied APPL, ;. [kg.hal.yr!] 1 Scenario defined
Mixing depth of soil DEPTH,, [m] 1 Scenario defined
Density of soil RHO,; [kg.m?] 1 Scenario defined
Exposure period considered EXP [d} 1 Scenario defined

The rate of sludge production is calculated in the STP module. The uncertainty is ignored
for the time being (the parameter is taken as part of the exposure scenario), as the
uncertainty cannot be quantified in the STP module without the use of Monte Carlo
analysis.

model calculations
PESTLA is incorporated in USES in the form of tables. These tables give for an
application of 1 kg/ha the concentration in groundwater (Cgrw,,;) and the fraction of the

substance accumulated in one year (Facc). Input for the tables are the organic matter-
water partitioning coefficient (Kom) and the half-life for biodegradation (DT50,,,).

The concentration in dry sludge can be calculated as:
Ciugge = EstDgugge / SLUDGE,,
The maximum concentration in groundwater is calculated as:
Cgrw = CgrWyye * (Cyugge * APPL, 4 + Dtot)  [Kggem-m™]

All parameters should be converted to suitable units (conversions are not shown here).

] 1 1 -
k = e — 1
415, 365 In [ Facc] [d7]
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The soil concentration due to aerial deposition only, is calculated as:

. Dtot
Csoil, =
“  DEPTH,, - kdis_, + RHO,,

The average concentration of the exposure period due to sludge use is calculated as:

Csludge - APP leudge . 1 -e

sludge DEPTH,, - kdis,; -+ RHO,; EXP - (1-Facc)

-kdis_, * EXP
Csoil

Ctot,,, = Csoily, + Csoilyg,

It should be noted that this procedure pictured above is likely to change depending on the
outcome of the intended changes of the PESTLA implementation in USES.

uncertainty in model results

Calculating concentration in groundwater requires summation of two uncertain processes;
sludge application and deposition. Therefore, an analytical solution is not possible. The
calculation of Crot,, also requires summations, but also an exponential factor. This
module requires Monte Carlo analysis for a part of the calculations. Furthermore, it is not
possible to attach a lognormal uncertainty to Facc. Lognormal distributions do not have
an upper boundary and value of Facc > 1 would lead to negative rate constants. As a
pragmatic solution, uncertainty is attached to kdis,,. Pending the development of the
European risk assessment system, at this moment, only temporary uncertainty factors are
set.

Model parameter Symbol Unit UF  Status

Disappearance rate constant kdis,; [-1 5 Temporary, 1initial guess by
expert

Maximum conc. in groundwater — Cgrw,,. [kg.m?) 10 Temporary, initial guess by
expert
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3.7. Concentration in intake media humans and predators
In this module, concentrations in the intake media for humans and predating birds and

mammals are calculated. These calculations exclude air, which is calculated in section
3.5. The exposure scenario chosen is a location in the vicinity of a source and an STP.

3.7.1. Purification of drinking water

Scenario Comments

Conservative purification factors. No purification Worst case.
by groundwater treatment.

Drinking water is prepared from surface water or groundwater. Surface water purification
is modelled by means of a purification factor. These factors are chosen quite
conservatively due to the limited prediction ability from physico-chemical properties. Due
to these worst case assumptions uncertainty in purification of drinking water is difficult to
take into account.

Only surface water will be purified, purification factors are dependent on Kow, Henry
coefficient and DT50 in water.

input parameters

Model parameter Symbol Unit UF  Status

Conc. dissolved in surface water  CdiSS,f onn lkg.m”] L Output surface water
Purification factors PURF (-1 1 Scenario defined (worst case)
Concentration in groundwater Conv [kg.m?] M Output soil/groundw.

model calculations
Corw = max (CdisS,ugum + PURF , C,)
uncertainty in model results

If the purification factors are seen as a worst case scenario, the resulting uncertainty in
drinking water is the uncertainty in surface water or groundwater concentration. If surface
water is used, the uncertainty in drinking water can be quantified analytically. However,
if groundwater is used, Monte Carlo analysis must be applied.

3.7.2. Concentration in fish

The fish are assumed to be in equilibrium with the annual average surface water
concentration.
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input parameters

Model parameter Symbol Unit UF  Status
Conc. dissolved in surface water  Cdiss,yf euo (kg.m”] L Output surf. water
Bioconcentration in fish BCF;,, [m3.kg'] L Data entry/filling

model calculation
Cﬁsh = CdiSSsurf . BCFﬁSh

uncertainty in model results

Uncertainty in the concentration of fish can be assessed analytically.

3.7.3. Concentration in earthworms

The earthworms are assumed to be in equilibrium with the concentration in agricultural

soil.

input parameters

Model parameter Symbol Unit UF  Status
Concentration in agricultural soil ~ Ctot,,, [kg.kg”] M Output soil/groundw.
Bioconcentration in worm BCF, [kg.kg'] L Data entry/filling
model calculation

Coom = Ctot,, « BCF,y,

uncertainty in model results

The uncertainty in the concentration in worms cannot be calculated analytically because
the concentration in soil is not lognormally distributed. Therefore, Monte Carlo analysis

needs to be applied for this calculation.

3.7.4. Concentration in crops

Roots are assumed to be in equilibrium with the soil concentration. The above-ground
parts of plants are in equilibrium with soil and air (it should be noted that their

contributions are summed).
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input parameters

Model parameter Symbol Unit UF  Status
Concentration in agricultural soil ~ Ctot,,, [kg.kg'l M Output soil/groundw.
Concentration in air C.: [kg.m?] L Output air module
BCF from soil to plant stem BCFstem,,,, [kg.kg'] L Data entry/filling
BCF from air to plant stem BCFairy,, [m3.kg?] M Data entry/filling
BCF from soil to root BCFrooty,, [kg.kg’] L Data entry/filling

model calculation
Cyem = Ctot,,, + BCFstem,,,,, + C,; « BCFair,,,
Cion = Ctot,, + BCFroot,,,

uncertainty in model results

Uncertainties in root and stem concentrations cannot be assessed analytically because
Crot,,, and BCFair,,,, are not distributed lognormally. Furthermore, for concentrations in

stem, a summation is necessary.

3.7.5. Concentration in meat and milk

Scenario Comments

Typical characteristics of a (by default) Dutch Median case assumption
Agricultural soil are taken

Average characteristics of plants are taken Median case assumption

For cattle, the situation is somewhat more complex. Cows will be exposed by eating grass
and adhering soil, and breathing polluted air. All these contributions are summed. The
concentration in meat and milk is assumed to be in equilibrium with the cow’s daily
intake of the substance.

input parameters

Model parameter Symbol Unit UF  Status
Concentration in agricultural soil ~ Ciot,,, [kg.kg"] M Output soil/groundw.
Concentration in air Ci: [kg.m?] L Output air module
Concentration in stems of plants Cucn [kg.kg'] M Output food module
Conversion dry to fresh wt. plant CF,, [kg.kg'] 1 Scenario defined
Density of soil RHO,; [kg.m?] 1 Scenario defined
Deansity of solids in soil RHOsolids [kg.m?] 1 Scenario defined
Fraction solids in soil Fsolid,; [-] 1 Scenario defined
Daily intake of grass | (S [kg.d'] n.a. Variab. ignored
Daily intake of soil IC,.; [kg.d!] n.a. Variab. ignored
Daily intake of air I1C,, [m3.d"] n.a. Variab. ignored
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The inter-individual variability in the cow’s daily intake can be ignored. Humans consume
products from many cows. Therefore, this variability tends to average out.

model calculation

, RHO,;
CONVsoil = _—
RHOsolid - Fsolid

Cmcat = BCF meat * (Cslcm ¢ Icplant * CFplmt + CtOtagr * ICsoil * CF soil + Caur * Icair)
Cmilk = BCquk * ((:smm M Icphm . Cthm + CtOtag, M Icsou * CFsoi] + C._lr ¢ Icai,.)
uncertainty in model results

Due to several summations, analytical calculation of uncertainties is not possible.
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3.8. Total daily intake

Scenario Comments
Only adults are assessed, therefore, all Best case. Exposure assessment for children may be
physiological parameters and consumption patterns added in the future.

are relevant for adults.

The human assessed will only be exposed to ’yearly Median case, the influence of peak concentrations
average’ concentrations in media and products. on chronic exposure cannot be predicted in general.

In this sub-module, the contributions of the chemicals in the intake media for humans are
summed to derive a total daily intake. The uncertainties in intake rates may very well be
correlated (e.g., a person consuming more fish, is likely to consume less meat). The
scenario looks more worst case than it is, as usually, only one or two routes make up
95% of the total human exposure.

input parameters

Model parameter Symbol Unit UF  Status

Conc. 1n drinking water Cirw [kg.m ] LM Output food module
Conc. in fish Con kg.kg L Output food module
Conc. in leaf crops Cuenm [kg.kg'] M Output food module
Conc. in root crops Cron [kg.kg'] M Output food module
Conc. in meat Crca [kg.kg'] M Output food module
Conc. in milk Coin [kg.kg'] M Output food module
Conc. in air Car [kg.m?] L Output air module
Daily intake of drinking water IH,,, [m3.d"] 2 Temporary value
Daily intake of fish IHg,, [kg.d] 2 Temporary value
Daily intake of leaf crops TH,caf crops [kg.d"] 2 Temporary value
Daily intake of root crops TH, oo crops [kg.d'] 2 Temporary value
Daily intake of meat IH,.. [kg.d] 2 Temporary value
Daily intake of dairy products MHyiry [kg.d'] 2 Temporary value
Daily ventilation rate IH,, [m®.d"] 2 Temporary value
Bioavailability for inhalation BIO,;, [-] 1 Temporary value
Average human bodyweight BW [kg] 1.5 Temporary value

Uncertainties in intakes for the Dutch population can be derived from the extensive
research of the ministry of Public Health (WVC, 1992). This was not yet performed,
therefore, temporary, rough estimates are given.
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model calculations

Dosages in kg.kg'.d! can be calculated for each medium as follows:

C. - IH - BIO
DOSE. = -
' BW

route

with i € {drinking water,fish,root crops,leaf crops,meat, milk,air}

Uncertainty in bioavailability through the oral route will be ignored. Bioavailability
through the oral route is considered to be comparable to the bioavailability encountered in
the toxicity test with the experimental animals.

The total dose can than be calculated as:

DOSE, = Y DOSE,

foralli

uncertainty in model results

It is clear from the calculations above that this module uses summations extensively.
Therefore, Monte Carlo analysis cannot be avoided. It can be expected that intake rates
are correlated with each other and with the body weight of humans.

3.9, Effects assessment

In this module, No-Effect-Concentrations (NECs) are derived from single species toxicity
tests. Unfortunately, the extrapolation procedures applying fixed safety factors are worst
case, aiming to protect the entire ecosystem. As a consequence, uncertainty analysis for
this module will be postponed until more information on distribution of sensitivities of
organisms in an ecosystem can be incorporated. The NEC is a very important part of the
hazard ratio, just as important as the PEC. Therefore, research for the uncertainties
involved in this extrapolation procedure is required.

When a sufficient number of NOECs (at least 4 for different taxonomic groups) is given
in the data set, a statistical extrapolation procedure is applied to arrive at an NEC
(Aldenberg & Slob, 1993). This approach offers the possibility for calculating the
uncertainty in the NEC. However, because the data set available for risk assessment is
usually too small to apply this method, this option will not be worked out in this report.

When no terrestrial toxicity data are given, equilibrium partitioning theory is applied to
translate aquatic toxicity data to indicative terrestrial toxicity values. In this method, the
soil-water partitioning coefficient (X,,;.,....) 1S used. Uncertainty in this parameter may be
taken into account.
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input parameters

Model parameter Symbol Unit UF  Status

Aquatic LC50 for each species LC50aqua,, ., lkg.m™] n.a. Data entry
Aquatic NOEC for each species NOECaqua,, ., [kg.m?) n.a. Data entry
Soil-water part. coeff. | S— [m*.m"?] L Data entry/filling
Bulk density of soil RHO,; [kg.m?] 1 Scenario defined

model calculation

K. .
LC50terr . = _ciwatr , 1 C50aqua. .
species RHOSOH q species
K. .
NOECterr, ., = —=i* . NOECaqua__,,
spect RHO, pect

uncertainty in model results

Uncertainty in the resulting terrestrial NEC will simply be equal to the uncertainty in the
soil-water partitioning coefficient.
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3.10. Risk characterisation

In this module, the final calculation of the PEC/NEC quotients for the different endpoints

takes place.
input parameters
Model parameter Symbol Unit UF  Status
Conc. in STP aeration tank Ctot,r [kg.m™] L Output STP
Conc. surf. water during episode  Cdiss, . [kg.m?] L Output surf. water
Concentration in agricultural soil ~ Ctot,,, [kg.kg'] M Output soil/groundw.
Concentration in fish Cia [kg.kg'] L Output food module
Concentration in earthworms Coom kg.kg'] M Output food module
Total dose for humans DOSE:tot [kg.kg'.d'] M Output tot. daily intake
NEC for micro-organisms STP NEC,;r0 [kg.m™] 1 Output effects ass.
NEC aquatic organisms NECaqua,,, [kg.m?] 1 Output effects ass.
NEC terrestrial organisms NECterr,,, [kg.kg"] 1 Output effects ass.
NEC terr. org. equilibrium part. = NECterrg, [kg-kg'] L Output effects ass.
NEC for predators in food NECfood .4 [kg.kg-1] 1 Output effects ass.

1

NOAEL for mammals (rat)

model calculations

Ctot,
HAZARD,, = —— 2L
NECmicro
Cdi .
HAZARD, = P wrtepi
4 NECaqua,
Ctot
HAZARD = —__
NECterr,
Ctot
HAZARD e

nEP ~ NECterr,,

C
HAZARDaqua_, = et

Cworm
HAZARDterr pred

NECfood

NOAEL

‘mammal ,oral

DOSEtot

MOS =

NECfood__,

NOAEL, oo [kgkg-1.d-1]
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uncertainty in model results

The hazard quotients for aquatic organisms and the micro-organisms in the STP can be
calculated analytically. For the other endpoints, Monte Carlo methods are required.
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4. SUMMARY OF UNCERTAINTIES

In the table below, all the uncertain parameters are displayed with the (provisional)
uncertainty factors (UF) and comments as discussed in the previous chapter. This
simplifies the incorporation in the USES system, and reveals where further investigation

should be done.

Model parameter Symbol Unit UF Comments
Molecular weight MOLW [kg.mol™] 1 Data entry
Production volume TONNAGE kg.s'] 1 Data entry
Melting point TEMPmelt [K} 1 Data entry
Vapour pressure VP [Pa] 1 Data entry
Octanol-water partition coeft. Kow [-] 1 Data entry
Octanol-water partition coeff. Kow [-1 7.7 if TEMPmelt is given
8.5 if no TEMPmelt is given
from Isnard & Lambert (1989)
Water solubility SOL [kg.m?] 1 Data entry
Water solubility SOL [kg.m?] 13 if TEMPmelt is given
17 if no TEMPmelt given
from Isnard & Lambert (1989)
Result of standard screening test PASSreadytest [yes/no] na Data entry
Const. of Junge equation CONjunge [Pa.m] 3 Temporary, estimated roughly
from Noordijk & De Leeuw
1991)
Surface area aerosol particles SURFaer [m’m?] 2 Temporary, estimated roughly

from Noordijk & De Leeuw
(1991)

Uncertainty of the product of CONjunge and SURFaer can be calculated analytically since both uncertainties are
assumed lognormal, and not comrelated. This leads to an uncertainty factor of 3.7 for the product, using the

formula in section 2.2.

Regression coefT. a [m*kg™] 5.1 From McKone (1993)

Bioconc. factor for fish BCFg,, {Lkg™] 9.1 derived from regression on data
set of Veith & Kosian (1983)

Part. coeff. worm-porewater K yorm-porew [1kg!] 17 Derived from regression on data
set of Connell & Markwell
(1990)

Transp. stream conc. factor TSCF [-] 1 Ignored (incorporated into SCF)

Stem conc. factor SCF [m®kg] 6 Temporary, estimated roughly
from Polder et al. (1994)

Root-porew. part. coeff. K oot-porew [m3 kg 6 Temporary, estimated roughly
from Polder et al. (1994)

Aerosol-plant part. coeff. K serosci-plant [m*kg™] 8.4 From McKone (1993)

Fraction air in plant Fairy,, [m*m?] n.a. Incl. in UF K, o jiunt

Fraction water in plant Fwatery,, [m*m™ n.a. Incl. in UF K,y jjune

Fraction lipids in plant Flipidpian [m3m?) n.a. Incl. in UF K, piam

Bulk density of plant RHO,,, [kg.m?] 1 Temporary

Gas-plant part. coeff. K g plant [m*kg"] 25 Derived from analysis of data
Bacci et al. (1990)

Bioconc. factor for meat BCF,, o [dkg™"] 64 Calculated from Travis & Arms
(1988)

Bioconc. factor for milk BCF . [dkg"] 36 Calculated from Travis & Arms
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Model parameter Symbol Unit UF  Comments

Fraction of tonnage to air Fair,,,,, i-1 L from tables

Fraction of tonnage to wastew. Fwater,,... [-] L from tables

Fraction from main source F prainsource [-] L from tables

First order degr. rate constant STP  kdeg,, [s"] na. ignored 1n calculations

Fr. of emission redirected to air F. [-] 1.5 Estimated from Struijs ef al.
(1991)

Fr. of emission to surf. water | [-] 2 De Greef & De Nijs (1990)

Fr. of emission to sludge Faudge [-] 2 Estimated from Struijs er al.
1991)

Fr. of emission degraded F [-1 1 Not used in calc.

Dilution factor in surface water DILUTION [-1 148%¥  Research De Greef & De Nijs
(1990)

Effluent discharge of STP EFFLUENT,, [m’s’] 1 Included in UF dilution

*This value includes the uncertainty in effluent discharge

Standard conc. from OPS model  Cstd,;, [kg.m™] 2 Temporary, estimated from
Noordijk & De Leeuw (1991)

Standard dep. flux aerosols OPS . Dstd,,, [kg.m2s"] 10 Temporary, estimated from
Noordijk & De Leeuw (1991)

Standard dep. flux gas from OPS  Dstd,,, [kg.m2s"] 10 Temporary, estimated from
Noordijk & De Leeuw (1991)

Disappearance rate constant kdis,; -] 5 Temporary, mutal guess by
expert

Maximum conc. in groundwater Cgrw e [kg.m?] 10 Temporary, initial guess by
expert

Daily intake of grass (SR [kg.d”] na Vanab. ignored

Daily intake of soil IC,; [kg.d"] n.a Variab. ignored

Daily intake of air IC,, [m3.d"] na Variab. ignored

Daily intake of dnnking water IH,. [m’.d”] 2 Temporary estimate

Daily intake of fish Hg,, [kg.d"] 2 Temporary estimate

Daily intake of leaf crops TH eas crop [kg.d™] 2 Temporary estimate

Daily intake of root crops TH 061 crops [kg.d'] 2 Temporary estimate

Daily intake of meat H, . [kg.d'] 2 Temporary estimate

Daily intake of dairy products TH giry [kg.d"] 2 Temporary estimate

Daily ventilation rate H,, [m%.d"] 2 Temporary estimate

Bioavailability for inhalation BIO,, [-] 1 Temporary estimate

Average human bodyweight BW [ke] 1.5 Temporary estimate

n.a. : not applicable

L : value is variable, but follows a lognormal distribution
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In the following table, all of the parameters are show which are defined by the exposure
scenario, and are therefore without uncertainty. In further research it can be examined
whether uncertainty in these parameters can be accounted for.

Model parameter Symbol Unit UF  Comments
Fraction air in soil Fair, [m”.m~] 1 Defined 1n scenario
Fraction water in soil Fwater, ; [m*m?] 1 Defined in scenario
Volumefraction solids of soil Fsolid,; [m*m™] 1 Scenario defined
Density of air RHOair [kg.m?] 1 Defined in scenario
Density of water RHOwater [kg.m?] 1 Defined in scneario
Density of solids RHOsolid [kg.m™] 1 Defined in scenario
Gas constant (8.314) R [Pa.m’mol'K'] 1 Constant
Temperature air-water interface TEMP [K} 1 Scenario defined
Fraction organic carbon in soil Foc, [kg.kg™) 1 Scenario defined
Fraction organic carbon in susp. Foc,,, [kg.kg'] 1 Scenario defined
Frac. oc in susp. STP prim. solver Foc, [kg.kg!] 1 Scenario defined
Frac. oc in susp. of AT and SLS  FocC,arsis [kgkeg.} 1 Scenario defined
Volumefraction water of susp. Fwater,,, [m3m™) 1 Scenario defined
Volumefraction solids of susp. Fsolid,,,, [m®m?] i Scenario defined
Conc. of bacteria in the test water BACT,,, [efum?) 1 Scenario defined
Conc. of bacteria reported in soil BACT,; [cfukg™] 1 Scenario defined
[characteristics of the average STP] 1 Scenario defined
Concentration susp. in surf. water SUSPCONC, . [kg.m?] 1 Scenario defined
Rate of sludge production SLUDGE,, [kg.s] 1 Scenario defined
Amount of sludge applied APPL ;40 [kg-halyr'] 1 Scenario defined
Mixing depth of soil DEPTH,; [m] 1 Scenario defined
Exposure period considered EXP [d] 1 Scenario defined
Purification factors PURF [-1 1 Scenario defined (worst case)
Conversion dry to fresh wt. plant ~ CF [kgkg'] 1 Scenario defined
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5. DISCUSSION

In risk assessment we are dealing with inherently uncertain situations. From a scientific
point of view, it is advisable that this uncertainty is taken into account in the decision-
making process. Furthermore, an uncertainty analysis can identify the main sources of
uncertainty in the risk estimate, which is extremely helpful in the refinement of the risk
assessment. This clearly shows the need to extend the present uncertainty analysis of
USES for the aquatic organisms and micro-organisms to other end-points. In the previous
chapters, enough work has been described to implement an uncertainty analysis, covering
the entire local exposure model, into USES. This analysis proposed here, is limited due to
pragmatic choices made. It only covers the exposure part of the hazard quotient, many
uncertainties are not taken into account (e.g., parameters defined by scenario choices),
correlations between parameters are ignored, lognormal distributions are assumed, several
uncertainties are only provisionally quantified. However, this analysis is a starting point,
already showing several aspects of uncertainties in the risk assessment process with USES
in a simple and straightforward manner. Depending on the developments of USES, the
analysis of uncertainties can be more extensively examined in the future.

For human risk assessment, the outcome of an uncertainty analysis as proposed here would
be the uncertainty attached to placing a random, adult individual in a strictly defined
(realistic worst case) exposure situation. The described approach is practically feasible on
a short term. In 1995 and 1996, a European risk assessment system will be developed,
based on USES 1.0. A detailed uncertainty analysis of USES 1.0 is not advisable as model
calculations may change. The approach described in this report can be implemented
relatively easily in this European system. In view of these rapid developments it is
advisable, from a scientific point of view, that any new model to be incorporated into the
system is accompanied by a quantification of the uncertainties in that calculation.

The boundary conditions for the analysis are:

 Short time for calculations so it can be applied in routine assessments.
« Results must be easily interpretable for non-experts.

« The analysis must be done on-line for each substance assessed.

Some work has already been done by Slob & De Nijs (1989), completing an uncertainty
analysis for the local aquatic ecosystem and micro-organisms in the sewage treatment
plant. Uncertainties in emission, treatment, and dilution where taken into account. This
analysis was incorporated into USES 1.0. The calculations for this part of the model are
strictly multiplicative, no summations occur. Lognormal uncertainties where assumed to
facilitate the analytical uncertainty approach.

As discussed in section 2.2, a multiplicative model with lognormal uncertainties has
advantages for an uncertainty analysis: the calculation can be done analytically (Slob,
1994). This means that an exact answer can be derived with a simple calculation. Monte
Carlo analysis puts no restrictions on model formulation and uncertainty distribution, but is
relatively time-consuming, and the result will always be an approximation of the true
parameter distribution. Luckily, many parameters in the real world can be accurately
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described with lognormal distributions (Slob, 1987). In view of the boundary conditions
posed to the analysis, we propose to use the analytical method as much as possible.
Furthermore, we will restrict the analysis to the parameters not defined in the exposure
scenario of USES. Uncertainties due to the scenario choices made will be extremely
difficult (or even impossible) to take into account. Due to this choice, it is important to
explicitly define the list of scenario conditions (which parameters are part of the definition,
and which not). In the course of the development of the EU risk assessment system, as
planned for 1995/1996, it is advisable to critically discuss the realism of this exposure
scenario. The scenario does not necessarily have to be median or average case. A realistic
worst case scenario is very useful, as long as it is clear for the user how realistic or
unrealistic it is. This procedure is seen as a conceptual validation of USES, and is
elaborated in a separate report (Jager, 1995), together with a discussion of the scenario
choices and other assumptions.

Unfortunately, USES is not entirely a multiplicative model, summations are present in
several calculations. This makes a simple analytical combination of all uncertainties
impossible. However, the analytical method can be used for many of the calculations. For
the summations we must use numerical methods (Monte Carlo sampling), but some
summations can be solved (see section 2.3). A combination of these methods must be
implemented in USES. As discussed in the previous chapters, the search for lognormal
distributions leads to several points of attention in the analysis:

+ Uncertainties in input parameters can sometimes not be taken into account (e.g.,
uncertainty in Kow in deriving BCFs, uncertainty in input parameters STP).

» Sometimes, lognormal distributions are not a very appropriate choice (e.g., for fractions,
which have an upper boundary of 1, whereas lognormal distributions do not have an
upper boundary at all).

» For several summations with one fixed parameter, and one parameter with a lognormal
distribution, an approach is used to estimate the resulting distribution with a lognormal
one.

We recommend that these ‘'attention points' are kept in mind when interpreting the

resulting uncertainty in the hazard quotient. Nevertheless, the proposed analysis offers the

possibility to roughly assess uncertainties in the entire local exposure model in a quick and
transparent manner. If the analysis of this report is implemented in a following version of

USES, and when experience is gained, a more extensive analysis can be developed. It

should especially be stressed that when Kow is estimated, instead of measured, the

uncertainty in the hazard quotients is underestimated. In many of the estimation routines,

Kow is prominently present, but uncertainty cannot be taken into account without a full

scale Monte Carlo analysis. A solution to this potential problem is to implement two

separate uncertainty approaches in USES:

» A combination of analytical calculations with Monte Carlo analysis for a quick routine
assessment of the uncertainties in the PEC/NEC ratio.

« A full scale Monte Carlo analysis for a more in-depth assessment of the uncertainties in
the cases where there is an indication of unacceptable risks (this could include
identification of the main sources of uncertainty).

It should however, be noted that Kow and water solubility are required parameters in the

data sets for new and existing chemicals and also in the base set for pesticides. Therefore,

the estimation routines for Kow and water solubility will seldom be necessary. However,
measured Kow values will likely have a substantial measurement error. The influence of
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measurement errors needs further investigation.

Collection of uncertainty factors does not form a major problem. Many of these values can
be estimated from literature, validation attempts, or by expert judgement. Especially the
link with validation offers interesting opportunities. When a large amount of experimental
data is gathered to validate parts of the system, these data can also be used to fine-tune
QSARs, and to derive uncertainty distributions for a given parameter. Validation will also
benefit from uncertainty analysis since uncertainty analysis can serve to set priorities for
validation activities. The parts of the system which contribute the most to the overall
uncertainty, are the first to be subjected to validation.

Uncertainty analysis offers the possibility to take the uncertainty in the results of data gap
filling (e.g., estimation of BCFs) into account. This could provide a stimulus for the
notifier to submit measured data, thus diminishing the uncertainty in the final results (even
if the hazard quotient increases). In this report, we have ignored uncertainty in input
parameters for the time being. The possibility should be examined for the user to enter or
change uncertainties for a parameter. This approach needs some further discussion because
uncertainties in measured data can also be very large. The way in which the decision-
maker can handle uncertainty also needs elaboration. Too avoid too much fixation on the
quantitative value of the uncertainty analysis, we propose to show only the probability that
PEC exceeds NEC. This information shows the decision-maker the (at least relative)
probability that a wrong decision is made.

In this report, we have only addressed uncertainty in the exposure levels (the nominator).
The denominator of the risk quotient, the NEC, remains untouched. It may be a good idea
to try to say something more about this uncertainty, and maybe quantify it. This
quantification should be addressed separately by experts in the field of (eco)toxicology. As
these uncertainties will have a large influence on the total uncertainty in the risk quotient
(being the ratio of PEC and NEC), quantification of these uncertainties is required. This 1s
difficult because the extrapolation of NECs, using extrapolation factors, is relatively worst
case. The uncertainty in the margin of safety (MOS), as done for humans, can be
addressed more accurately since no extrapolation to a safe level is performed. The use of
statistical extrapolation methods, as the method of Aldenberg & Slob (1993), offers the
possibility to more accurately assess uncertainties, since the distribution of sensitivities of
organisms in the ecosystem is estimated. However, the applicability of this method 1is
limited because it requires at least 4 NOEC wvalues. It is concluded that uncertainty
analysis of the effects assessment needs further elaboration. Much work is already done at
the RIVM, but this information still needs to be assessed for its applicability in USES.

Uncertainty analysis of the consumer exposure module is not discussed in this report. This
module is currently examined in the framework of the RIVM project Human Exposure
subproject Consumer Exposure (see Van Veen et al., 1994). The tools to estimate
consumer exposure are available in the form of the CONSEXPO program (Van Veen,
manual of CONSEXPO in prep.). This package also includes the possibility to perform an
uncertainty analysis (using Monte Carlo analysis). Therefore, analysis of uncertainties can
be performed outside USES.

As a last warning, uncertainty analysis is important, but the relevance should not be
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exaggerated. The attention points as mentioned above, should be taken into account when
interpreting the uncertainty in the final results. Furthermore, uncertainty analysis gives
little insight in the uncertainty caused by improper model formulation or model use. Only
uncertainty in parameters is accounted for, and not uncertainty in the structure and linking
of the models. When QSARs are applied outside of their ranges and boundary conditions,
uncertainty may be much larger. This also clarifies the link between uncertainty analysis
and validation. Conceptual validation should indicate the validity of model use and
relevance of the model assumptions (for a more in-depth discussion of validation of USES,
see Jager, 1995). Validation activities can also be used to assess 'overall' uncertainties for
a model or a parameter. The other way around, uncertainty analysis can identify the
parameters responsible for a large contribution to the uncertainty in the final results, and
therefore, steer validation.

Testing of the uncertainty analysis could not be finished in the framework of this report.
For this testing, USES was programmed in Microsoft Excel®. With this spreadsheet
version of USES, uncertainty analysis can be performed rapidly and transparently with
Crystal Ball® (using Monte Carlo analysis). Several substances with different properties
need to be selected, as it can be expected that uncertainties in the risk estimate depend
strongly on the properties of the substance. The physico-chemical properties and the
emission pattern of the substance govern the distribution routes of the substance. The
uncertainties in the risk estimate will be different for each route (e.g., it can be expected
that the uncertainties in human exposure will be small when inhalation of air is the main
exposure route, but much larger when intake of meat or milk is most important). Testing
of this uncertainty analysis gives more insight in the functioning of the analysis and the
main sources of uncertainty. If proper testing can take place in 1995, the results will be
reported as an annex to the current report. Extensive testing is advisable before this
analysis is implemented in the European risk assessment system.
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APPENDIX 1: Derivation of uncertainty factors from data sets, figures

Al.1. Bioconcentration in fish
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Figure A1  Linear regression of log BCF for fish from
the data set of Veith & Kosian (1983)
against log Kow.
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A1.2. Bioconcentration in earthworms

log Kworm-porewater
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Figure A4 Linear regression of log K, ,on. from the data set of

Connell & Markwell (1990) against log Kow.
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Figure A5  Plot of the residuals of

Figure A6  Frequency distribution of
the residuals of the linear
regression.

the linear regression
against Kow.
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A1.3. Uptake of plants from air
In the following figure, BCF is expressed as [m,,>.m,.’]
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Figure A7 The BCF between gas-phase and plant leafs

estimated by USES, compared to experimental
results of Bacci et al. (1990).
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A1l4. Biotransformation from uptake cow to meat
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Figure A8  Linear regression of log BCF,,, for
cattle from the data set of Travis &
Amrms (1988) against log Kow.
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Figure A9  Plot of the residuals of the linear regression against Kow.



AlS. Biotransformation from uptake cow to milk
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Figure A10 Linear regression of log BCEF,,,
for cattle from the data set of
Travis & Amms (1988) against log
Kow.
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Figure A11 Plot of the residuals of the linear

regression against Kow.
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