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Rapport in het kort

Een statistische beoordeling van de voorspelde NO, concentraties door
de Nederlandse standaard luchtkwaliteit modellen

Schattingen van de gemiddelde jaarlijkse concentratie van stikstofdioxide (NO,)
worden regelmatig berekend voor de Nederlandse gemeentes met behulp van de
zogenoemde standaard Nederlandse luchtkwaliteit modellen. Periodiek wordt de
nauwkeurigheid van deze schattingen beoordeeld door ze te vergelijken met
stikstofdioxidenconcentraties die op een aantal locaties in Nederland worden
gemeten.

Volgens het RIVM voldoen de modelschattingen op basis van recente gegevens
en meerdere statistische analyses (Wesseling et al., 2013) aan de vereisten die
hiervoor vanuit de Europese Commissie worden gesteld. In aanvulling daarop
heeft het RIVM statistische analyses gemaakt van de percentuele afwijking
tussen de berekeningen en metingen van de stikstofdioxidenconcentraties.

Boven de 35 microgrammen per kubieke meter blijkt de percentuele afwijking
van een modelschatting gemiddeld rond -3.56 procent te zitten, ongeacht de
bijpehorende  stikstofdioxidemeting. Bij circa 95 procent van de
modelschattingen is de percentuele afwijking tussen -25 en 18 procent,
ongeacht de hoogte van de corresponderende stikstofdioxidemeting. Deze
conclusies complementeren de analyse van Wesseling et al. ten aanzien van de
kwaliteit van de modelberekeningen voor NO..

Page 3 of 21



RIVM Letter report 680705028

Abstract

A statistical assessment of the predictions of NO, concentrations by the
Dutch standard air quality models

Estimates of the average annual concentration of nitrogen dioxide (NO,) are
produced regularly for the municipalities in the Netherlands by the so-called
Dutch standard air quality models. The accuracy of these estimates is
periodically assessed by comparing them with NO, measurements obtained at a
number of locations.

The RIVM has recently provided an assessment of the model estimates based on
recent data and various statistical analyses (Wesseling et al., 2013), concluding
that the estimates comply with European criteria for air quality modeling. The
present report complements the statistical analyses of Wesseling et al. by
quantifying the percental error of the model estimates relative to corresponding
measured NO, concentrations.

Although the characterization of the percental error over the whole range of NO,
concentrations is an uncertain task, the error can be described approximately
and rather simply for concentrations above 35 micrograms per cubic meter. It is
concluded that, over this range of NO, concentrations, the percental error of a
model estimate is around -3.56% on average, regardless of the value of the
corresponding NO, measurement. About 95% of the model estimates have
(irrespective of the corresponding NO, measurements) a percental error
between -25% and 18%. These conclusions complement the assessment
provided by Wesseling et al. about the quality of the model estimates of NO..
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Summary

This report provides a statistical assessment of the quality of the predictions
(estimates) of nitrogen dioxide (NO,) produced by the Dutch standard air quality
models during 2010 and 2011. More precisely, it attempts to characterize the
statistical behaviour of the relative or percental error of the predictions, defined
as the prediction of NO, minus the corresponding measured concentration
divided by the latter times 100, conditionally on (or as a function of) the
measured concentration. The focus on the error of a prediction relative to a
measurement is justified by the fact that the measurements (despite eventual
shortcomings) provide the best estimates available of actual NO, concentrations.

Our first conclusion is that the characterization of the relative error as a function
of measured concentration is an uncertain task, due to statistical ‘irregularities’
in the relationship between measurements and predictions over the lower range
of NO, concentration. Such irregularities could very well have an explanation,
but the problem is that the available data do not afford any general explanation
for them.

Fortunately, it appears that over the range of NO, concentrations above 35
yg/m3 the relative error follows a rather regular pattern that can be described

by a simple model. And from this model follow, in particular, the following two
statements:

e On average, the relative error of a model prediction is about -3.56 %,
irrespective of the corresponding measured concentration;
e About 95% of the relative errors lie between -25 and 18% .

Somewhat more elaborate but still simple and concrete statements are derived

from the model. In particular, the two statements above can be qualified in
terms of their uncertainty.
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Introduction

The statistical comparison between model predictions (model estimates) and
measurements of NO, concentrations can be carried out in a number of ways,
depending on the quantities one wishes to look at and on the statistical models
and methods one decides to adopt. Ideally one would like to set up a
probabilistic model describing the joint behaviour of each pair of observations
(prediction, measurement), possibly taking into account contextual information
(e.g. location, presence or absence of vegetation) summarizing the conditions
under which the observations are made. From such a model one would be able
to derive all sorts of statements, at various levels of detail, about an arbitrary
prediction and the corresponding measurement. From the data analyses
summarized in this report it appears that a detailed model for the joint
behaviour of predictions and measurements of NO, concentrations is difficult to
construct and justify. Instead, it turns out to be more realistic, and fortunately
also sufficient, to describe the error of a model prediction relative to the
corresponding measurement as a function of the latter, provided only NO,

measurements above 35,ug/m3 are considered. In essence, if R (from

‘reken’) denotes a model prediction and M (from ‘meet’) the corresponding
measurement, then, conditionally on the event that M =m (i.e. that the
measurement equals a given number M), the relative or percental error

100xﬂ
M

is normally distributed with mean —3.56% and standard deviation 10.61%,
provided M is =35 yg/m3 . This affords general statements about the error of

a _model prediction conditionally on the value of a given measurement over the

range of greatest practical interest: For instance, if M >35 ,ug/m3 , then

e The mean, or expected, relative error of the model prediction R
corresponding to the measurement M is about —3.56 %, regardless of
the actual value of M ;

e  With about 95% probability, the relative error of the model prediction R
corresponding to the measurement M lies between —24.78=
—3.56-2x%x10.61 and 17.66=-3.56+2x10.61, which is to say that
with that same probability

-0.25xM <R-M <0.18xM, or 0.75xM <R<1.18xM.

These statements, which must be regarded as approximately correct (being
based on estimates derived from the data and relying on certain assumptions),
will be justified and qualified in the next section.

Focusing on the percental error of a prediction relative to a measurement is
certainly meaningful if the measurements (despite possible errors) provide the
best estimates available of actual NO, concentrations.
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A model for relative error as a function of measurement

The data set provided to us by Joost Wesseling (RIVM) consists of 436 pairs of
measurements and model predictions, together with the corresponding data on a
number of variables: Categorie, Code, Bomen, etc. For illustration, the following
computer output shows the first 10 rows of the data file:

Code Bomen Straattype Background MEET REKEN MEET_BIJ REKEN_BIJ Kwaliteit Categorie

1 2 1 1 19.2 32 299 128 10.7 0 SRM2
2 2 1 1 19.1 24 221 49 3.0 0 Achtergrond
3 2 1 1 204 37 305 166 10.1 0 SRM2
4 2 1 1 204 23 219 26 15 0 Achtergrond
5 2 1 1 217 50 46.0 283 243 0 SRM2
6 2 1 1 222 33 269 108 4.7 0 SRM2
7 2 1 1 20.9 38 403 171 19.4 0 SRM2
8 2 1 1 23.5 29 288 55 5.3 0 SRM2
9 2 1 1 26.5 55 598 285 33.3 0 SRM2
10 2 1 1 264 32 328 56 6.4 0 SRM2

The variable MEET contains measured concentrations; the variable REKEN
contains the predicted concentrations. The variable Code pertains to the
geographical location of the observations, and Categorie to the type of model
used to make the prediction. More information about the data and the meaning
of the variables may be found in the report of Wesseling et al. (2013).

Figure 1 shows a non-parametric estimate of the regression function of relative
error on measurement, the model prediction and the measurement being
indicated by REKEN and MEET. The regression function is the mean (or expected

value) of the relative error 100%(R-M)/M of a model prediction R

conditionally on M =m (i.e. given that the value of the measurement M
equals the number M); as M varies along the horizontal axis of the figure, the
estimated regression function assumes different values, represented by the
height (measured with reference to the vertical axis) of the full red line.

Above and below the estimate of the regression function are the upper and
lower boundaries of the 95% confidence and prediction bands. The
interpretation of a 95% confidence band is that if 100 data sets were generated
from the same system that generated the present data set and each time a
confidence band were constructed then the band would contain the true
regression function about 95 times. The 95% prediction band pertains to a
single observation of the relative error conditional on a given value of the
measurement: if M is a given number and M =m, then the probability that

100%(R-M)/M falls inside the prediction band at the point M is about 0.95.

See section 3 for more details about the estimates and the confidence and
prediction bands for the regression curve.

Since the model predictions are intended to serve as substitutes for the
measurements, it would be pleasing and convenient to find that the relative
error is small in absolute value and varies regularly (e.g. is constant or follows a
straight line with a small slope) with M . The estimated regression curve of
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figure 1 indicates that this may be the case in the range of M >35 yg/ms or
so, but over the lower range of measurements the relative error behaves in a
non-linear way and reaches a mean value of about 11% around 28 yg/ms . In

spite of the non-linearity, the variability of the relative errors around their mean
is rather constant, in the range of 8-12%, over the whole range of the
measurements, as withessed by the estimates of the standard deviation of
relative error shown in figure 2.

RELATIVE ERROR as a function of MEET

100 »(REKEN - MEET)MEET (%)
40

-20
|

20 30 40 50 60
MEET (ug/m°)

Figure 1: Non-parametric estimate (full red line), 95%
confidence band (dashed red lines) and 95% prediction
band (dotted black lines) for the regression function of the
relative error on the measurement.

It is natural to try to explain the non-linearity of the relative error in the range
M <35 yg/m3 by looking at the error as a function of other variables besides

M . Thus, it could be that by stratifying the data according to the values of
Categorie, Code, Bomen, etc., or of combinations thereof, one would arrive at
separate simple (e.g. linear) descriptions of the relative error as a function of
the measurement. If this were so, then those descriptions would provide us with
a characterization of the performance of the model per stratum (through
statements such as the bulleted ones at the end of our introduction), which,
though not so easy to summarize and communicate in a couple of statements,
might be relatively accurate and informative. It appears, however, that the
result of this procedure applied to the present data set is too fragmented and
not very reliable. We elaborate a little on this now.

Page 9 of 21



RIVM Letter report 680705028

SD of RELATIVE ERROR as a function of MEET
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Figure 2: Estimates of the standard deviation (SD) of the
relative error for varying values of the measurement
(MEET).

First, it is clear that Categorie and Code are the only bona fide predictor variables,
other than MEET (the measurement), containing a non-negligible amount of
information on the relative error; this is the conclusion of certain prediction
analyses which are explained briefly in section 3. This suggests that in order to
get simpler (linear) descriptions of the relative error as a function of the
measurement we should look separately at subsets of the data corresponding to
the different levels of Categorie and/or Code. Stratifying the data in terms of Categorie
alone does not help, as seen by the estimated regression function for data with
Categorie=achtergrond shown in figure 3 and by the analogous plots (not shown)
of the relative error versus the measurement corresponding to Categorie=SMR1

and Categorie=SMR2—the ‘non-linearities” around 25 and 28 ug/m3 subsist

despite the stratification.
Stratifying in terms of Code alone does not help either, as seen, for instance, by
the estimate based on data with Code=3 shown in figure 4.
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RELATIVE ERROR as a function of MEET; category: achtergrond
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Figure 3: Non-parametric estimate and 95% confidence
and prediction bands for the regression of relative error
on measurement based on the data with
Category=achtergrond.

Stratifying by Categorie and Code jointly explains the non-linearity to some extent,
as seen by the straight lines fitted (by least squares) separately to the data sets
corresponding to various levels of Code and Categorie=achtergrond shown in figure
5. Although each cluster of points appears to be somewhat homogeneous, it is
clear that the fits (e.g. of Code=2 and Code=3) can be rather dubious, or at least
uncertain (in the sense of their intercept and location parameter estimates
having large variances). Similar observations can be made about the analogous
fits done on the various subsets with Categorie=SMR1 and Categorie=SMR2. Thus,
although the model predictions could be assessed separately within the various
strata of Categorie and Code, the resulting statements (besides being too many)
would not be very reliable, partly because of the small sample sizes and partly
because of the relatively poor fits.
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RELATIVE ERROR as a function of MEET in locations with code 3
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Figure 4: Non-parametric estimate of the regression
function of relative error on measurement based on the
data with Code=3.

RELATIVE ERROR as a function of MEET and Code; category: achtergrond
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Figure 5: Relative errors with Categorie=achtergrond by
Code with straight lines fitted by linear regression.
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Y(x) = a+Bx+s, e~N(0, 57, (& B)=(2.00,-0.13), 8=10.62
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Figure 6: Results of fitting a linear regression model to
relative error as a function of measurement in the range
[35,60]. The top left panel shows the observations with
the fitted line and a non-parametric estimate of the
regression function (in blue); the other panels show how
the residuals vary with the fitted values (values of the
fitted line at the measurements) and with the
measurements, and a probability plot of the residuals,
designed to assess their approximate normality. The
model and the parameter estimates appear at the top.

A more fruitful, if less ambitious, approach is to focus on describing the
relationship between relative error and measurement in the range of M >35

,ug/ma , over which about 180 observations are available. Figure 1 suggests

that this relationship is approximately linear in that range, and the results of
fitting a straight line to the relative errors and measurements, shown in figure
6, give some support to that idea. The fitted line seems indeed to provide a
simple and accurate description of relative error as a function of measurement,
but we need to check for possible underlying patterns that could be explained by
Categorie and Code. The prediction analyses already mentioned indicate that if the

measurements are restricted to being above 35 yg/m3 then Categorie, Code

and MEET all have very little value for predicting relative error, which agrees with
a model that is essentially equal to a constant plus a ‘random error’ (a term that
is not susceptible of explanation), just like the model described in figure 6. In
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fact, since the standard errors of the estimates of the intercept and slope
parameters are 6.20 and 0.15, respectively, the relative errors appear to be
compatible with such a model. (Note that with & =2, #=-0.13, A=35 and

B =60 the ‘mean value’ of the straight line y=Yy(X)=a+ X over the
interval [A,B] is (B— A)’ljfy(x) dx =a+ S(A+B)/2=-5.8, so the straight

line represented in figure 6 is close to a horizontal line at height —5.8.)

RELATIVE ERROR by Category/Code stratum
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Figure 7: Box plots of relative error by Categorie/Code
stratum; 95% confidence intervals for the population
means are indicated by pairs of blue triangles. Only strata
with at least five observations are considered here.

Another way of checking for patterns that may be explainable by Categorie and
Code is to look at the distribution of relative error by Categorie/Code stratum.
Figure 7 indicates that the relative errors have roughly the same distribution,
with a negative median near zero, in all strata, with the exception of those in
stratum SRM1/14 (Categorie=SMR1 and Code=14), which seem to be concentrated
around 10%. Figure 8 provides an overview of the data labelled according to
their levels of Categorie and Code; apart from the cluster of observations with
Code=14 in the top left corner of the plot and the cluster of three observations
with Code=11 in the bottom left corner, both of which are implausibly “far out”,
we see no other obvious signs of systematic deviations from the straight line.
While an ANOVA test gives some evidence that the relative errors with Code=14
are out of tune with the errors from the other strata, when those data are
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discarded the same test gives no evidence of a difference between the different
populations of relative errors.

It thus seems that most of the data follow a straight line model that is almost a
horizontal line, and that the data with Code=14, and probably those with
Code=11, deviate systematically from it. Of course, it is important to try to find
reasons—other than statistical ones—for the apparent ‘lack of conformity’ of
these data. Assuming that there are indeed reasons to regard them as ‘faulty’ in
some sense, it may be appropriate to fit the linear regression model only to the
rest of the data. Instead of doing that, however, we propose to use a simpler
model to describe the relative errors corresponding to measured concentrations

>35 ,ug/m3 , namely a constant plus a normal random error (which
corresponds to a linear regression model with slope equal to zero).

RELATIVE ERROR vs MEET by Code and Category

— O 0 Achtergrond
AO € o SRM1
ad @ A SRM1&2

< SRM2

20

100 < (REKEN - MEETYMEET (%)

35 40 45 50 55 60
MEET (ug/m®)

Figure 8: Scatter plot of relative errors versus

measurements with fitted straight Iline and non-

parametrically estimated regression function, indicating

the levels of Categorie (by different symbols) and Code (by

code numbers and colours).
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Histogram and Q-Q plot of RELATIVE ERROR
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Figure 9: Histogram and normal Q-Q plot of the relative
errors. Superimposed on the histogram are the fitted
normal density and vertical dashed lines indicating the
estimates of the mean and of the 0.025 and 0.975
quantiles.

To estimate this ‘constant model’ we simply take the sample mean of the
relative errors as an estimate of the constant and the sample standard deviation
as an estimate of the standard deviation of the errors; these are —3.56 and
10.61 yg/m3 and, together with the normality assumption, yield the

statements made in the introduction. Figure 9 indicates that the model is
approximately correct (Shapiro’s test provides no evidence at all against
normality); the vertical dashed lines superimposed on the histogram indicate the
mean estimate, —3.56, and the 95% prediction interval for an arbitrary relative
error, which is used in the second bulleted statement of the introduction.

For the sake of simplicity, the two bulleted statements in the introduction ignore
the uncertainty about the constant. A 95% confidence interval for it is
[-5.14, -1.97] ; according to this, the mean underestimation of the predictions

relative to the measurements may be as small as —1.97 ug/m3 and as large

as —5.14 ug/m?® in the range of M >35 ug/m*.

Despite the difference in estimates, this model is rather close (in the range 35-
60 yg/ms) to the linear regression model presented above. Furthermore, if
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the suspicious data with Code=14 are discarded then the regression line is hardly
distinguishable from a horizontal line. Thus, it is of little consequence for
purposes of making approximate statements about the relative error whether
those statements are based on the regression model or on the constant model.
We prefer the latter because of the simplicity of the statements it affords and of
the greater robustness of its estimate as compared to the estimates of the
regression model, which are somewhat sensitive to the inclusion or exclusion of
the observations with Code=14. For completeness, however, the regression
model is represented once more in figure 10 with a 95% confidence band for
the straight line and a 95% pointwise prediction band for the relative error
associated with an arbitrary measurement (see section 3 below for more details
on these), from which approximate statements about the relative error can be

made.

Finally, we note that it is of consequence that the data with Code=14 probably do
not follow any of the two models, while the rest of the data probably do.
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Figure 10: Fitted regression line, 95% confidence band
for the true line (red dashed lines) and 95% prediction
band for the relative error (black dotted lines), based on
the same data used in the fit of figure 6.
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Some details

The results reported here were obtained in R (R Core Team, 2012). In this
section we describe briefly the computation of confidence and prediction bands
and the prediction analyses mentioned in section 2.

The regression function of relative error on measurement is defined by
R-M

this is the expectation of the random variable 100%(R-M)/M conditionally on

the event that the random variable M assumes the numerical value M. The
non-parametric estimates of @ shown in figures 1, 3 and 4 were computed

with the R function loess.

The calculation of non-parametric confidence bands for a continuous regression
function is far from trivial. The difficulty is due to the requirement that the whole
curve M — (M) be contained within the plane region delimited by lower and

upper boundary curves m — @, (M) and M — ¢, (M) (the problem of finding a

confidence interval for the number @(M), corresponding to a single, fixed M, is

straightforward). The use of the bootstrap is probably the only general and
feasible solution (cf. pp. 139-157 of Hardle (1990)). I have implemented a
version of the bootstrap method to compute confidence bands of the form

[p(m) —c- sd(@(m)), ¢(m) +c-sd(o(m))],

where @ is the estimate of ¢, Sd(¢@(M)) an estimate of the standard deviation

of (5 at M, and C a positive constant determined by a bootstrap algorithm (C

will typically be larger than the factor 2 that applies to a confidence interval for
go(m) at a fixed M). Although this method is only approximate, some

simulation experiments based on sample sizes of 400 indicate that the
approximation it provides is rather good.

The prediction bands are computed by assuming that conditionally on M =m
the random variable 100%(R-M)/M has a normal distribution with mean
@(M) and standard deviation o (independent of M), estimating o by a
certain & (obtained by averaging the estimates shown in figure 2), and then
adding/subtracting 20 to/from the upper/lower boundaries of the confidence

bands. The assumption of normality seems to be more or less realistic (e.g.
figure 9), and so is the constancy of the standard deviation (e.g. figure 2). If
anything, the prediction bands are somewhat conservative because they assume
the “worst case scenarios” of the true ¢ being equal to the upper and lower

boundaries of the confidence band (and, indeed, in figure 1 only a couple of
observations fall beyond the boundaries of the predictive band).
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The confidence band for the regression line over the interval [35,60] shown in

figure 10 was computed by a standard method explained on pp. 143-4 of Seber
and Lee (2003).

Finally, let us say something about the prediction analyses mentioned in section
3. In our context, by a prediction analysis we mean (i) the construction of a
predictor (a prediction algorithm) that predicts the relative error using the
knowledge of the measurement and other predictor variables, such as Code and
Categorie, (ii) the assessment of that predictor (namely in terms of how accurate
the predictions are), and (iii) the ranking of the predictor variables in terms of
their usefulness in predicting the relative error. Our analyses were based on
random forest predictors, which are implemented in the R package randomForest. In
essence, a random forest is a nearly unbiased and very flexible non-parametric
regression model that describes a response (in this case the relative error) in
terms of a set of predictor variables, and which therefore can be used to
compute predictions for the former on the basis of the latter.

Figure 11 illustrates the results of two prediction analyses, one based on all the
data and all the potential predictor variables, the other based only on data with

MEET=35 ,ug/m3 and only on ‘bona fide’ predictor variables. We call bona fide

predictor variables to all the predictor variables except REKEN_BIJ, MEET_BIJ and
Background. These three variables represent numerical quantities which are
involved directly in the computation of NO, predictions and hence are trivially
related to the relative error, for which reason it would not make sense to use
them for the creation of the strata mentioned in section 3. The left panels of
the figure illustrate the agreement between the actual relative error and the
predicted relative error and show estimates of the mean square error (MSE),
mean absolute error (MAE), bias, and proportion of explained variance. In order

to define these, let Y denote the prediction of the relative error, Y the actual
relative error, and Var(Y ) the variance of Y ; then the MSE is the expected

value of the random variable (Y —Y)?, the MAE is the expected value of

|Y =Y |, the bias is the expected value of Y —Y , and the proportion of
explained variance is a standardized version of the MSE defined by 1-MSE/VarY
(the closer this is to 1 the more accurate the predictions are). The right panels
show graphs of ‘variable importance’, which provide a relative ranking of the
predictor variables in terms of their usefulness in predicting the relative error.

As expected, the predictions based on all the predictor variables are quite
accurate (0.82 explained variance), and REKEN BlIJ and MEET_BIJ are by far the
strongest predictors; if we remove these, then the quality of the predictions

decreases very substantially. In particular, if only data with MEET=35 ,ug/ma

and bona fide predictor variables are considered then the proportion of explained
variance gets close to zero; and if only data with Code#14 are used then the
proportion of explained variance is practically zero (0.07) and the relative
ranking of the variables becomes completely irrelevant. This last observation

supports the conclusion that in the range of measurements z35yg/m3 the
relative error is essentially randomly distributed around a constant (=~ —3.56).
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Figure 11: Results of some prediction analyses. Top:
prediction of relative error using all the data and all the
predictor variables. Bottom: prediction using only data

with measurements >35 zg/m® and only the ‘bona fide’

predictor variables. The plots on the left compare the
predicted with the actual relative errors; n gives the
sample size; the other quantities are defined in the text.
The plots on the right provide a ranking of the variables
regarding their contribution in predicting relative error;
the greater the importance of a predictor variable, the
greater the percental increase in mean square error
(%IncMSE) that results from ‘confounding’ that variable in
the original data set.
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