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Rapport in het kort 

Een statistische beoordeling van de voorspelde NO2 concentraties door 
de Nederlandse standaard luchtkwaliteit modellen 
 
Schattingen van de gemiddelde jaarlijkse concentratie van stikstofdioxide (NO2) 
worden regelmatig berekend voor de Nederlandse gemeentes met behulp van de 
zogenoemde standaard Nederlandse luchtkwaliteit modellen. Periodiek wordt de 
nauwkeurigheid van deze schattingen beoordeeld door ze te vergelijken met 
stikstofdioxidenconcentraties die op een aantal locaties in Nederland worden 
gemeten.  
 
Volgens het RIVM voldoen de modelschattingen op basis van recente gegevens 
en meerdere statistische analyses (Wesseling et al., 2013) aan de vereisten die 
hiervoor vanuit de Europese Commissie worden gesteld. In aanvulling daarop 
heeft het RIVM statistische analyses gemaakt van de percentuele afwijking 
tussen de berekeningen en metingen van de stikstofdioxidenconcentraties.  
 
Boven de 35 microgrammen per kubieke meter blijkt de percentuele afwijking 
van een modelschatting gemiddeld rond -3.56 procent te zitten, ongeacht de 
bijbehorende stikstofdioxidemeting. Bij circa 95 procent van de 
modelschattingen is de percentuele afwijking tussen -25 en 18 procent, 
ongeacht de hoogte van de corresponderende stikstofdioxidemeting. Deze 
conclusies complementeren de analyse van Wesseling et al. ten aanzien van de 
kwaliteit van de modelberekeningen voor NO2. 
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Abstract 

A statistical assessment of the predictions of NO2 concentrations by the 
Dutch standard air quality models 
 
Estimates of the average annual concentration of nitrogen dioxide (NO2) are 
produced regularly for the municipalities in the Netherlands by the so-called 
Dutch standard air quality models. The accuracy of these estimates is 
periodically assessed by comparing them with NO2 measurements obtained at a 
number of locations. 
 
The RIVM has recently provided an assessment of the model estimates based on 
recent data and various statistical analyses (Wesseling et al., 2013), concluding 
that the estimates comply with European criteria for air quality modeling. The 
present report complements the statistical analyses of Wesseling et al. by 
quantifying the percental error of the model estimates relative to corresponding 
measured NO2 concentrations. 
 
Although the characterization of the percental error over the whole range of NO2 
concentrations is an uncertain task, the error can be described approximately 
and rather simply for concentrations above 35 micrograms per cubic meter. It is 
concluded that, over this range of NO2 concentrations, the percental error of a 
model estimate is around -3.56% on average, regardless of the value of the 
corresponding NO2 measurement. About 95% of the model estimates have 
(irrespective of the corresponding NO2 measurements) a percental error 
between -25% and 18%. These conclusions complement the assessment 
provided by Wesseling et al. about the quality of the model estimates of NO2. 
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Summary 

This report provides a statistical assessment of the quality of the predictions 
(estimates) of nitrogen dioxide (NO2) produced by the Dutch standard air quality 
models during 2010 and 2011. More precisely, it attempts to characterize the 
statistical behaviour of the relative or percental error of the predictions, defined 
as the prediction of NO2 minus the corresponding measured concentration 
divided by the latter times 100, conditionally on (or as a function of) the 
measured concentration. The focus on the error of a prediction relative to a 
measurement is justified by the fact that the measurements (despite eventual 
shortcomings) provide the best estimates available of actual NO2 concentrations. 
 
Our first conclusion is that the characterization of the relative error as a function 
of measured concentration is an uncertain task, due to statistical ‘irregularities’ 
in the relationship between measurements and predictions over the lower range 
of NO2 concentration. Such irregularities could very well have an explanation, 
but the problem is that the available data do not afford any general explanation 
for them. 
 
Fortunately, it appears that over the range of NO2 concentrations above 35 

3
mg  the relative error follows a rather regular pattern that can be described 

by a simple model. And from this model follow, in particular, the following two 
statements: 
 

 On average, the relative error of a model prediction is about 56.3 %, 
irrespective of the corresponding measured concentration; 

 About 95% of the relative errors lie between 25  and %18 . 
 
Somewhat more elaborate but still simple and concrete statements are derived 
from the model. In particular, the two statements above can be qualified in 
terms of their uncertainty. 
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1 Introduction 

The statistical comparison between model predictions (model estimates) and 
measurements of NO2 concentrations can be carried out in a number of ways, 
depending on the quantities one wishes to look at and on the statistical models 
and methods one decides to adopt. Ideally one would like to set up a 
probabilistic model describing the joint behaviour of each pair of observations 
(prediction, measurement), possibly taking into account contextual information 
(e.g. location, presence or absence of vegetation) summarizing the conditions 
under which the observations are made. From such a model one would be able 
to derive all sorts of statements, at various levels of detail, about an arbitrary 
prediction and the corresponding measurement. From the data analyses 
summarized in this report it appears that a detailed model for the joint 
behaviour of predictions and measurements of NO2 concentrations is difficult to 
construct and justify. Instead, it turns out to be more realistic, and fortunately 
also sufficient, to describe the error of a model prediction relative to the 
corresponding measurement as a function of the latter, provided only NO2 
measurements above 35 3mg  are considered. In essence, if R  (from 

‘reken’) denotes a model prediction and M  (from ‘meet’) the corresponding 
measurement, then, conditionally on the event that mM   (i.e. that the 
measurement equals a given number m ), the relative or percental error 
 

M

R-M
×100  

 
is normally distributed with mean 56.3 % and standard deviation 61.10 %, 

provided m  is ≥35 3mg . This affords general statements about the error of 
a model prediction conditionally on the value of a given measurement over the 
range of greatest practical interest: For instance, if 35M 3mg , then 
 

 The mean, or expected, relative error of the model prediction R  
corresponding to the measurement M  is about 56.3 %, regardless of 
the actual value of M ; 

 With about 95% probability, the relative error of the model prediction R  
corresponding to the measurement M  lies between  78.24

61.10256.3   and 61.10256.366.17  , which is to say that 
with that same probability 

 
MR-MM  18.025.0 , or MRM  18.175.0 . 

 
These statements, which must be regarded as approximately correct (being 
based on estimates derived from the data and relying on certain assumptions), 
will be justified and qualified in the next section. 
Focusing on the percental error of a prediction relative to a measurement is 
certainly meaningful if the measurements (despite possible errors) provide the 
best estimates available of actual NO2 concentrations. 
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2 A model for relative error as a function of measurement 

The data set provided to us by Joost Wesseling (RIVM) consists of 436 pairs of 
measurements and model predictions, together with the corresponding data on a 
number of variables: Categorie, Code, Bomen, etc. For illustration, the following 
computer output shows the first 10 rows of the data file: 
 
    Code Bomen Straattype Background MEET REKEN MEET_BIJ REKEN_BIJ Kwaliteit   Categorie 
1     2         1          1                19.2           32       29.9     12.8         10.7              0                  SRM2 
2     2         1          1                19.1           24       22.1      4.9            3.0              0                  Achtergrond 
3     2         1          1                20.4           37       30.5     16.6         10.1              0                  SRM2 
4     2         1          1                20.4           23       21.9      2.6            1.5              0                  Achtergrond 
5     2         1          1                21.7           50       46.0     28.3         24.3              0                  SRM2 
6     2         1          1                22.2           33       26.9     10.8           4.7              0                  SRM2 
7     2         1          1                20.9           38       40.3     17.1         19.4              0                  SRM2 
8     2         1          1                23.5           29       28.8      5.5            5.3              0                  SRM2 
9     2         1          1                26.5           55       59.8     28.5         33.3              0                  SRM2 
10   2         1          1                26.4           32       32.8      5.6            6.4              0                  SRM2 
 
The variable MEET contains measured concentrations; the variable REKEN 
contains the predicted concentrations. The variable Code pertains to the 
geographical location of the observations, and Categorie to the type of model 
used to make the prediction. More information about the data and the meaning 
of the variables may be found in the report of Wesseling et al. (2013). 
 
Figure 1 shows a non-parametric estimate of the regression function of relative 
error on measurement, the model prediction and the measurement being 
indicated by REKEN and MEET. The regression function is the mean (or expected 
value) of the relative error MR-M× )(100  of a model prediction R  

conditionally on mM   (i.e. given that the value of the measurement M  
equals the number m ); as m  varies along the horizontal axis of the figure, the 
estimated regression function assumes different values, represented by the 
height (measured with reference to the vertical axis) of the full red line. 
 
Above and below the estimate of the regression function are the upper and 
lower boundaries of the 95% confidence and prediction bands. The 
interpretation of a 95% confidence band is that if 100 data sets were generated 
from the same system that generated the present data set and each time a 
confidence band were constructed then the band would contain the true 
regression function about 95 times. The 95% prediction band pertains to a 
single observation of the relative error conditional on a given value of the 
measurement: if m  is a given number and mM  , then the probability that 

MR-M× )(100  falls inside the prediction band at the point m  is about 0.95. 
See section 3 for more details about the estimates and the confidence and 
prediction bands for the regression curve.  
 
Since the model predictions are intended to serve as substitutes for the 
measurements, it would be pleasing and convenient to find that the relative 
error is small in absolute value and varies regularly (e.g. is constant or follows a 
straight line with a small slope) with M . The estimated regression curve of 
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figure 1 indicates that this may be the case in the range of 35M 3mg  or 
so, but over the lower range of measurements the relative error behaves in a 
non-linear way and reaches a mean value of about 11% around 28 3mg . In 
spite of the non-linearity, the variability of the relative errors around their mean 
is rather constant, in the range of 8-12%, over the whole range of the 
measurements, as witnessed by the estimates of the standard deviation of 
relative error shown in figure 2.  
 

 
 

Figure 1: Non-parametric estimate (full red line), 95% 
confidence band (dashed red lines) and 95% prediction 
band (dotted black lines) for the regression function of the 
relative error on the measurement. 

 
It is natural to try to explain the non-linearity of the relative error in the range 

35M  3mg  by looking at the error as a function of other variables besides 

M . Thus, it could be that by stratifying the data according to the values of 
Categorie, Code, Bomen, etc., or of combinations thereof, one would arrive at 
separate simple (e.g. linear) descriptions of the relative error as a function of 
the measurement. If this were so, then those descriptions would provide us with 
a characterization of the performance of the model per stratum (through 
statements such as the bulleted ones at the end of our introduction), which, 
though not so easy to summarize and communicate in a couple of statements, 
might be relatively accurate and informative. It appears, however, that the 
result of this procedure applied to the present data set is too fragmented and 
not very reliable. We elaborate a little on this now. 
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Figure 2: Estimates of the standard deviation (SD) of the 
relative error for varying values of the measurement 
(MEET). 

 
First, it is clear that Categorie and Code are the only bona fide predictor variables, 
other than MEET (the measurement), containing a non-negligible amount of 
information on the relative error; this is the conclusion of certain prediction 
analyses which are explained briefly in section 3. This suggests that in order to 
get simpler (linear) descriptions of the relative error as a function of the 
measurement we should look separately at subsets of the data corresponding to 
the different levels of Categorie and/or Code. Stratifying the data in terms of Categorie 
alone does not help, as seen by the estimated regression function for data with 
Categorie=achtergrond shown in figure 3 and by the analogous plots (not shown) 
of the relative error versus the measurement corresponding to Categorie=SMR1 
and Categorie=SMR2—the ‘non-linearities’ around 25 and 28 3mg  subsist 
despite the stratification. 
Stratifying in terms of Code alone does not help either, as seen, for instance, by 
the estimate based on data with Code=3 shown in figure 4. 
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Figure 3: Non-parametric estimate and 95% confidence 
and prediction bands for the regression of relative error 
on measurement based on the data with 
Category=achtergrond. 

 
Stratifying by Categorie and Code jointly explains the non-linearity to some extent, 
as seen by the straight lines fitted (by least squares) separately to the data sets 
corresponding to various levels of Code and Categorie=achtergrond shown in figure 
5. Although each cluster of points appears to be somewhat homogeneous, it is 
clear that the fits (e.g. of Code=2 and Code=3) can be rather dubious, or at least 
uncertain (in the sense of their intercept and location parameter estimates 
having large variances). Similar observations can be made about the analogous 
fits done on the various subsets with Categorie=SMR1 and Categorie=SMR2. Thus, 
although the model predictions could be assessed separately within the various 
strata of Categorie and Code, the resulting statements (besides being too many) 
would not be very reliable, partly because of the small sample sizes and partly 
because of the relatively poor fits. 
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Figure 4: Non-parametric estimate of the regression 
function of relative error on measurement based on the 
data with Code=3. 
 

 
Figure 5: Relative errors with Categorie=achtergrond by 
Code with straight lines fitted by linear regression. 
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Figure 6: Results of fitting a linear regression model to 
relative error as a function of measurement in the range 
[35,60]. The top left panel shows the observations with 
the fitted line and a non-parametric estimate of the 
regression function (in blue); the other panels show how 
the residuals vary with the fitted values (values of the 
fitted line at the measurements) and with the 
measurements, and a probability plot of the residuals, 
designed to assess their approximate normality. The 
model and the parameter estimates appear at the top. 

 
A more fruitful, if less ambitious, approach is to focus on describing the 
relationship between relative error and measurement in the range of 35M  

3mg , over which about 180 observations are available. Figure 1 suggests 
that this relationship is approximately linear in that range, and the results of 
fitting a straight line to the relative errors and measurements, shown in figure 
6, give some support to that idea. The fitted line seems indeed to provide a 
simple and accurate description of relative error as a function of measurement, 
but we need to check for possible underlying patterns that could be explained by 
Categorie and Code. The prediction analyses already mentioned indicate that if the 
measurements are restricted to being above 35 3mg  then Categorie, Code 
and MEET all  have very little value for predicting relative error, which agrees with 
a model that is essentially equal to a constant plus a ‘random error’ (a term that 
is not susceptible of explanation), just like the model described in figure 6. In 
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fact, since the standard errors of the estimates of the intercept and slope 
parameters are 6.20 and 0.15, respectively, the relative errors appear to be 
compatible with such a model. (Note that with 2 , 13.0 , 35A  and 

60B  the ‘mean value’ of the straight line xxyy   )(  over the 

interval ],[ BA  is dxxyAB
B

A
 )()( 1 8.52/)(  BA , so the straight 

line represented in figure 6 is close to a horizontal line at height .8.5 ) 
 

 
Figure 7: Box plots of relative error by Categorie/Code 
stratum; 95% confidence intervals for the population 
means are indicated by pairs of blue triangles. Only strata 
with at least five observations are considered here. 

 
Another way of checking for patterns that may be explainable by Categorie and 
Code is to look at the distribution of relative error by Categorie/Code stratum. 
Figure 7 indicates that the relative errors have roughly the same distribution, 
with a negative median near zero, in all strata, with the exception of those in 
stratum SRM1/14 (Categorie=SMR1 and Code=14), which seem to be concentrated 
around 10%. Figure 8 provides an overview of the data labelled according to 
their levels of Categorie and Code; apart from the cluster of observations with 
Code=14 in the top left corner of the plot and the cluster of three observations 
with Code=11 in the bottom left corner, both of which are implausibly “far out”, 
we see no other obvious signs of systematic deviations from the straight line. 
While an ANOVA test gives some evidence that the relative errors with Code=14 
are out of tune with the errors from the other strata, when those data are 
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discarded the same test gives no evidence of a difference between the different 
populations of relative errors. 
 
It thus seems that most of the data follow a straight line model that is almost a 
horizontal line, and that the data with Code=14, and probably those with 
Code=11, deviate systematically from it. Of course, it is important to try to find 
reasons—other than statistical ones—for the apparent ‘lack of conformity’ of 
these data. Assuming that there are indeed reasons to regard them as ‘faulty’ in 
some sense, it may be appropriate to fit the linear regression model only to the 
rest of the data. Instead of doing that, however, we propose to use a simpler 
model to describe the relative errors corresponding to measured concentrations 

35 3mg , namely a constant plus a normal random error (which 
corresponds to a linear regression model with slope equal to zero). 
 

 
Figure 8: Scatter plot of relative errors versus 
measurements with fitted straight line and non-
parametrically estimated regression function, indicating 
the levels of Categorie (by different symbols) and Code (by 
code numbers and colours). 
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Figure 9: Histogram and normal Q-Q plot of the relative 
errors. Superimposed on the histogram are the fitted 
normal density and vertical dashed lines indicating the 
estimates of the mean and of the 0.025 and 0.975 
quantiles.  

 
To estimate this ‘constant model’ we simply take the sample mean of the 
relative errors as an estimate of the constant and the sample standard deviation 
as an estimate of the standard deviation of the errors; these are 56.3  and 

61.10  3mg  and, together with the normality assumption, yield the 
statements made in the introduction. Figure 9 indicates that the model is 
approximately correct (Shapiro’s test provides no evidence at all against 
normality); the vertical dashed lines superimposed on the histogram indicate the 
mean estimate, 56.3 , and the 95% prediction interval for an arbitrary relative 
error, which is used in the second bulleted statement of the introduction.  
 
For the sake of simplicity, the two bulleted statements in the introduction ignore 
the uncertainty about the constant. A 95% confidence interval for it is 

1.97]- [-5.14, ; according to this, the mean underestimation of the predictions 

relative to the measurements may be as small as 97.1 3mg  and as large 

as 14.5 3mg  in the range of 35M 3mg . 
 
Despite the difference in estimates, this model is rather close (in the range 35-
60 3mg ) to the linear regression model presented above. Furthermore, if 
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the suspicious data with Code=14 are discarded then the regression line is hardly 
distinguishable from a horizontal line. Thus, it is of little consequence for 
purposes of making approximate statements about the relative error whether 
those statements are based on the regression model or on the constant model. 
We prefer the latter because of the simplicity of the statements it affords and of 
the greater robustness of its estimate as compared to the estimates of the 
regression model, which are somewhat sensitive to the inclusion or exclusion of 
the observations with Code=14. For completeness, however, the regression 
model is represented once more in figure 10 with a 95% confidence band for 
the straight line and a 95% pointwise prediction band for the relative error 
associated with an arbitrary measurement (see section 3 below for more details 
on these), from which approximate statements about the relative error can be 
made. 
 
Finally, we note that it is of consequence that the data with Code=14 probably do 
not follow any of the two models, while the rest of the data probably do. 

 
Figure 10: Fitted regression line, 95% confidence band 
for the true line (red dashed lines) and 95% prediction 
band for the relative error (black dotted lines), based on 
the same data used in the fit of figure 6. 
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3 Some details 

The results reported here were obtained in R (R Core Team, 2012). In this 
section we describe briefly the computation of confidence and prediction bands 
and the prediction analyses mentioned in section 2. 
 
The regression function of relative error on measurement is defined by 
 









 mM

M

R-M
×Em 100)( ; 

 
this is the expectation of the random variable MR-M× )(100  conditionally on 

the event that the random variable M  assumes the numerical value m . The 
non-parametric estimates of   shown in figures 1, 3 and 4 were computed 
with the R function loess. 
 
The calculation of non-parametric confidence bands for a continuous regression 
function is far from trivial. The difficulty is due to the requirement that the whole 
curve )(mm   be contained within the plane region delimited by lower and 

upper boundary curves )(ˆ mm L  and )(ˆ mm U  (the problem of finding a 

confidence interval for the number )(m , corresponding to a single, fixed m , is 
straightforward). The use of the bootstrap is probably the only general and 
feasible solution (cf. pp. 139-157 of Härdle (1990)). I have implemented a 
version of the bootstrap method to compute confidence bands of the form 
 

))](ˆ()(ˆ)),(ˆ()(ˆ[ msdcmmsdcm   , 
 
where ̂  is the estimate of  , ))(ˆ( msd   an estimate of the standard deviation 

of ̂  at m , and c  a positive constant determined by a bootstrap algorithm (c  
will typically be larger than the factor 2 that applies to a confidence interval for 

)(m  at a fixed m ). Although this method is only approximate, some 
simulation experiments based on sample sizes of 400 indicate that the 
approximation it provides is rather good. 
 
The prediction bands are computed by assuming that conditionally on mM   

the random variable MR-M× )(100  has a normal distribution with mean 

)(m  and standard deviation   (independent of m ), estimating   by a 

certain ̂  (obtained by averaging the estimates shown in figure 2), and then 
adding/subtracting ̂2  to/from the upper/lower boundaries of the confidence 
bands. The assumption of normality seems to be more or less realistic (e.g. 
figure 9), and so is the constancy of the standard deviation (e.g. figure 2). If 
anything, the prediction bands are somewhat conservative because they assume 
the “worst case scenarios” of the true   being equal to the upper and lower 
boundaries of the confidence band (and, indeed, in figure 1 only a couple of 
observations fall beyond the boundaries of the predictive band). 
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The confidence band for the regression line over the interval ]60,35[  shown in 
figure 10 was computed by a standard method explained on pp. 143-4 of Seber 
and Lee (2003). 
 
Finally, let us say something about the prediction analyses mentioned in section 
3. In our context, by a prediction analysis we mean (i) the construction of a 
predictor (a prediction algorithm) that predicts the relative error using the 
knowledge of the measurement and other predictor variables, such as Code and 
Categorie, (ii) the assessment of that predictor (namely in terms of how accurate 
the predictions are), and (iii) the ranking of the predictor variables in terms of 
their usefulness in predicting the relative error. Our analyses were based on 
random forest predictors, which are implemented in the R package randomForest. In 
essence, a random forest is a nearly unbiased and very flexible non-parametric 
regression model that describes a response (in this case the relative error) in 
terms of a set of predictor variables, and which therefore can be used to 
compute predictions for the former on the basis of the latter. 
 
Figure 11 illustrates the results of two prediction analyses, one based on all the 
data and all the potential predictor variables, the other based only on data with 
MEET≥35 3mg  and only on ‘bona fide’ predictor variables. We call bona fide 
predictor variables to all the predictor variables except REKEN_BIJ, MEET_BIJ and 
Background. These three variables represent numerical quantities which are 
involved directly in the computation of NO2 predictions and hence are trivially 
related to the relative error, for which reason it would not make sense to use 
them for the creation of the strata mentioned in section 3. The left panels of 
the figure illustrate the agreement between the actual relative error and the 
predicted relative error and show estimates of the mean square error (MSE), 
mean absolute error (MAE), bias, and proportion of explained variance. In order 

to define these, let Ŷ  denote the prediction of the relative error, Y  the actual 
relative error, and Var(Y ) the variance of Y ; then the MSE is the expected 

value of the random variable 2)ˆ( YY  , the MAE is the expected value of 

|ˆ| YY  , the bias is the expected value of YY ˆ , and the proportion of 

explained variance is a standardized version of the MSE defined by 1-MSE/VarY  
(the closer this is to 1 the more accurate the predictions are). The right panels 
show graphs of ‘variable importance’, which provide a relative ranking of the 
predictor variables in terms of their usefulness in predicting the relative error. 
 
As expected, the predictions based on all the predictor variables are quite 
accurate (0.82 explained variance), and REKEN_BIJ and MEET_ BIJ are by far the 
strongest predictors; if we remove these, then the quality of the predictions 
decreases very substantially. In particular, if only data with MEET≥35 3mg  
and bona fide predictor variables are considered then the proportion of explained 
variance gets close to zero; and if only data with Code≠14 are used then the 
proportion of explained variance is practically zero (0.07) and the relative 
ranking of the variables becomes completely irrelevant. This last observation 
supports the conclusion that in the range of measurements ≥35 3mg  the 

relative error is essentially randomly distributed around a constant ( 56.3 ). 
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Figure 11: Results of some prediction analyses. Top: 
prediction of relative error using all the data and all the 
predictor variables. Bottom: prediction using only data 
with measurements 35 3mg  and only the ‘bona fide’ 
predictor variables. The plots on the left compare the 
predicted with the actual relative errors; n  gives the 
sample size; the other quantities are defined in the text. 
The plots on the right provide a ranking of the variables 
regarding their contribution in predicting relative error; 
the greater the importance of a predictor variable, the 
greater the percental increase in mean square error 
(%IncMSE) that results from ‘confounding’ that variable in 
the original data set.  
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