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Abstract

This paper deals with the calculation of Hazardous Concentrations of toxic substances from
small sets of laboratory toxicity data, e.g. NOECs. A procedure due to Van Straalen and
Denneman, as adapted from Kooijman (case n=1), in which one seeks a concentration that
protects 95% of the biological species, is modified to account for the uncertainty in the
estimates.

New constants are obtained by simulation, that allow the calculation of the one-sided 95%
left confidence limit of the Hazardous Concentration, from the mean and standard deviation
of a sample of toxicity data. This 95% confidence limit is always lower than the 95% certainty
value calculated with the Kooijman(n=1)/ Van Straalen method.

We also derive constants to calculate a one-sided 50% confidence value, that overpredicts
as often as it underpredicts. This value may be used as a best guess of the Hazardous
Concentration. It will always be higher than the 95% certainty value of the Kooijman(n=1)/
Van Straalen method. However, by using the 50% value, one runs the risk of protecting
substantially less than 95% of the biological species.

1. Introduction

This paper falls into the category of estimating safety factors for the extrapolation of lab-
oratory toxicity data to allowable toxic substance concentrations in the field, using statistical
methodology. Species differ as to the sensitivity to a toxic substance. The statistical approach
focusses on some presupposed distribution of these species sensitivities for a particular
substance. In fact, this article will treat some essential modifications to earlier procedures,
hence for a motivational introduction we refer to the original articles: Kooijman (1987) and
Van Straalen and Denneman (1989).

In Kooijman (1987), a hazardous concentration for sensitive species (HCS) is defined, and
an algorithm is given for its computation from a sample of LCj, values of different test
species on the basis of the logistic distribution. Several, more or less independent, com-
ponents in his theory are: the choice of input data (LC5s), the type of statistical distribution
employed (logistic), the definition of hazardous concentration, and the statistical
methodology, i.e. algorithm to calculate hazardous concentrations from small samples of
toxicity data.

Our approach essentially follows a modification of Kooijman’s theory by Van Straalen and
Denneman (1989). Whereas Kooijman considered the probability of harming the most
sensitive of a number of species, e.g. 1000, we will follow Van Straalen and Denneman in
considering the probability of just harming species. This is the current approach in the
Netherlands (Gezondheidsraad, 1988, DGEP, 1988-1989). We will also follow Van Straalen
and Denneman in their choice and motivation with regard to the input data: NOEC toxicity
data, instead of LCs,data in Kooijman. Furthermore, we will stick to the choice of the logistic
distribution. ‘



However, we will develop an alternative approach to the statistical methodology in calcu-
lating the agreed hazardous concentration levels, and this is the main concern of this paper.
Hence, our presentation is statistically oriented. Of course, different calculation
methodologies lead to different outcomes as regards to what seems a justifiable safety factor,
or acceptable concentration, and this is where the environmental implications cannot be
easily overestimated. However, these implications are discussed elsewhere.

According to Van Straalen and Denneman (1989), a concentration of a certain compound
is considered hazardous for p% of the species, if the probability of selecting a species with
a NOEC smaller than this concentration is equal to p%. In other words, above this con-
centration, called HC,, (100-p)% of the species is relatively safe, while p% of the species
may not function properly or even worse. The general approach is to strive for 95% species
protection, i.e. p =5.

Fig.1 shows the logistic probability density function against logarithmic NOEC concen-
tration. The logistic distribution is very much like the well-known normal distribution. The
logistic has more extended tails, and therefore can be regarded as a more conservative
assumption in comparison to the normal distribution. It furthermore has some nice math-
ematical features, that make certain calculations relatively easy. (We have put most of the
technical aspects in an Appendix.) The base of the logarithm by which the raw NOEC data
are transformed does not matter, as long as the back-transformation of the results to con-
centrations is done with respect to the same base. Hence, we use the generic term ’log’, that
may either stand for natural logarithms, or for logs to the base 10, or otherwise.

Also indicated in Fig.1 is "log HCs’, the logarithm of HCs, below which 5% of the species

is in danger (shown shaded). In fact, we are looking for the fifth percentile of the distribution
of species NOEC toxicity data. The difficulty is how to account for uncertainty in trying to
estimate this percentile from a limited data set.

In this paper, we will present improved extrapolation constants that allow straightforward
calculation of estimates of HCs from mean and standard deviation of a sample of NOEC
data. The procedure is essentially identical to the one of Van Straalen and Denneman (1989),
but we will focus on meeting the required confidence level exactly, in order to protect against
overprediction. The previous extrapolation constants are shown to lead to unacceptably high
percentages of overprediction of the true HCs, and therefore do not meet their confidence
level. Furthermore, constants are obtained to calculate estimates of HCs, that can be con-
sidered as a best guess, and that overpredictas often as not. As anexample, we will recalculate
the cadmium data from Van Straalen and Denneman.

2. Estimating Hazardous Concentrations

In order to estimate the agreed hazardous concentration (95% species protection) from a
usually small number of toxicity data, we have to develop a statistical procedure to correct



for uncertainty due to small sample size. Hence, we want to quantify the uncertainty of our

estimates, and we certainly do not want to overestimate too often. Therefore, a confidence

approach seems natural.

Suppose we knew mean, L, and standard deviation, o, of the presupposed logistic distribution

of log NOEC data of test species, as the one depicted in Fig.1. Then the log Hazardous

Concentration for 5% of the species is easily calculated as (cf. Appendix):
logHC;,=p—-162-0

One can estimate mean and standard deviation from the usual sample mean, x,,, and sample

standard deviation, s,, of m test species, and estimate the log Hazardous Concentration
straightforwardly, i.e. by substituting the sample statistics for the population statistics:

Z = ;m - kZ * Sm.
With k, = 1.62, we act as if mean and standard deviation did not come from a sample, but

were the true ones, but this would suffer from frequent overprediction. Fig. 2 shows sampling
distributions of Zfor sample sizes m=2, 5, 10, and 20. These sampling densities are simulated
through Monte Carlo sampling (cf. Appendix for details). The respective percentages
overprediction are estimated to be 67%, 61%, 57%, and 55%. Note that all of them over-
estimate by more than 50%. If Z in a particular sample would come out higher than log HC,
then obviously more than 5% of the species may be affected. In fact, we want a recipe that
overestimates log HCs in a minority of samples only, so that with large confidence we can
say that no more than 5% of the species is affected.

2.1 Kooijman / Van Straalen extrapolation constants
The reason for reconsidering this estimation question is that Kooijman (1987) does not
intend to construct an estimate with this confidence property --in fact, his equation (16) and
subsequent derivations cannot be motivated from a confidence point of view--, while Van
Straalen and Denneman (1989) do interpret the results that way.
The final expression (Kooijman 1987, eq.(24), Van Straalen and Denneman 1989, €q.(6)),
which we will call K here, looks very similar to Z:

K=x,—ky-s,

only with a different k-value, here called k. For an estimate based on a sample, this constant

depends on the sample size. The original expression for ky is given in the references cited
and repeated in the Appendix.
Table 1 lists various values of k; for two certainty levels: 95% and 50%, calculated from

Kooijman (1987). The term ’certainty’ is ours to distinguish these constants from those to
be given in the next paragraph. The reason to consider 50% certainty or confidence will be
discussed later. The columns in Table 1 correspond to 8,=0.05 and 0.5 in Kooijman (1987,
Table 1), respectively.



Note that the asymptotic value corresponds to the value 1.62 under complete knowledge
about the mean and standard deviation of the distribution at hand. But, if interpreted as
constants to calculate the log HCs with a certain level of confidence, Table 1 is suspect for
two reasons. First, for 95% certainty, the constants do not seem to ’blow up’ enough for
decreasing sample sizes, e.g. m=4, 3, 2. We know this effect for confidence limits of the
mean in normal distribution theory: Student’s ¢-values, and expect it to be even worse for
confidence limits of a tail value, what log HC's essentially is. But, secondly, the 50% column,
if interpreted as confidence factors, seems to be on the wrong side of 1.62 anyway. It tells
us, that it is better to have 10 NOEC values, than 30, which in its turn is better than an infinite
number of test data available. This is suspect, because the Z-estimates with k = 1.62 already
overpredict for more than 50%, so, how can smaller k-values overpredict less? This does
not seem realistic.

In order to test the confidence property of the Kooijman/ Van Straalen extrapolation con-
stants, we simulated the K-95% and K-50% sampling distributions, based on the extrapo-
lation constants in Table 1, in the same way as we simulated the Z densities. Fig.3 displays
the K-95% sampling densities for the same set of sample sizes as before: 2, 5, 10, and 20.
We observe considerable overprediction of log HCs. Fig.4 shows the simulated K-50%
sampling densities. These indeed seem to overpredict even more than the corresponding
Z-densities.

Table 2 summarizes the overprediction percentages for these 4 sample sizes. If K is to be
interpreted as a one-sided 95% left confidence limit, the percentage of simulated samples
with a K-value above log HCs = -2.94 should be somewhere in the vicinity of 5%. The
percentages estimated (39%, 22%, 20%, and 14%, respectively) seem to be unacceptably
high. The same holds for a one-sided 50% confidence value. Overprediction should
approximate 50%. These simulated values (83%, 67%, 65%, and 60%) seem to be too high
as well.

In the next paragraph, we will calculate extrapolation constants, that lead to estimates of
log HC that do have the required confidence interpretation.

2.2 New extrapolation constants on two levels of confidence
In order to construct an expression L that calculates the 95% species protection level with
true one-sided 95% and 50% confidence levels, we need not develop an essentially new
methodology. In fact, if we stick to the same type of formula:

L=x,~-k s,

and focus on the new k; extrapolation constants for different m, it is easy to prove that, for

each m, there is just one value of k; with the required confidence property for any logistic
distribution (cf. Appendix). Thus, for each sample size, we determined k; through Monte
Carlo simulation by generating random sample averages and standard deviations for the
standard logistic distribution only, and by adjusting &, in such a way that a pre-specified
confidence level was obtained. These are tabulated in Table 3.



Fig.5 shows the sampling densities of the one-sided 95% left confidence limits (L-95%) for
m=2,5,10, and 20, as determined by the new extrapolation constants. Each one overestimates
log HCs with 5%, as they should. Fig.6 displays the sampling densities of the one-sided 50%
confidence limits (L-50%). They overpredict as well as underpredict with 50%.

Clearly, the extrapolation constants of Table 3 would pass the test of Table 2, since they are
constructed that way. The percentages overprediction would be 5% and 50%, respectively.
Moreover, the new constants do show the expected Student-z-like blow-up for small m.
Furthermore, contrary to the 50% certainty constants in Table 1, the 50% confidence
extrapolation constants for finite samples are higher than the asymptotic value, i.e. 1.62 (kz),
for ’infinite’ samples. This means that a one-sided 50% confidence estimate of log HC; must
still be lower than the straightforward answer (Z), acting as if we knew the logistic para-
meters.

At the time of publication, we have come into contact with Wagner and Lgkke (1990), who
derived extrapolation constants for the 95% species protection level, when a normal dis-
tribution is assumed, by using existing theory that applies to the normal distribution only.
The resulting extrapolation constants are very similar to those presented here for the logistic
distribution.

3. Example

As an example, we recalculated the HCs from 7 NOEC values for toxicity of cadmium to

reproductive parameters of various soil animals, corrected for standard soil (Van Straalen
and Denneman, 1989, Table 2). The sorted data are: 0.97, 3.33, 3.63, 13.5, 13.8, 18.7, and
154 [ug/g].

After transformation with base 10 logarithms, we have mean x,=0.9712, and standard

deviation s, = 0.7028, respectively. The Kooijman/ Van Straalen estimate of the HCj for

95% certainty is
10(0.9712—2.52~ 0.7028) = O 1 6

[ng/g]

Note that we directly employed the Kooijman extrapolation constant 2.52 from our Table
1, entry number 7. Secondly, it is easy to show that the base of the logarithm doesn’t matter.
When using the mean an standard deviation on the basis of natural logarithms, i.e. 2.236

and 1.618, respectively, we arrive at the same result:
e(2.236—2.52' 1.618) = 0 16

[ng/gl.

(Van Straalen and Denneman, 1989, Table 3). And this is true in general of course.

By using the new Table 3 extrapolation constants, 3.59 and 1.78, for a sample size of 7, we
arrive at the 95% left confidence limit of

10(0.9712—3.59-0.7028) — 003 [ug/g]’
while the 50% confidence estimate of HC; is

10©9712-178-07028) _ ) 53 [ug/g].



We note that the 95% lower confidence limit (0.03) and the 50% confidence, or 'median’,
estimate (0.53) embrace the Kooijman/ Van Straalen estimate (0.16). This will always be
the case, as can easily be seen by comparing the 95% column from Table 1 with the 95%
and 50% columns of Table 3. The former k-constant is always between the latter two, for
corresponding sample sizes.

It is interesting to observe that if we really want to limit the probability to overestimate HC;

to only 5%, we have to apply a safety factor
T = 10(3.59-0.7028) = 333’

instead of 59, as estimated by Van Straalen and Denneman (1989, Table 3), for this example.
Hence, we may conclude that, if we want to have 95% confidence to not overestimate the
95% species protection level, we have to calculate values that are generally lower than those
calculated up to now.

4. Discussion

We have given extrapolation constants on two levels of confidence: 95% and 50%. The
larger confidence level of the two can easily be motivated thus: we wish to protect at least
95% of the species, hence we want to limit overprediction of the true log HCs to 5%. But
why calculate a 50% confidence estimate?

First of all, there is a practical reason. We have found it confusing to present one left
confidence limit value as the single answer to an extrapolation exercise. Users start asking
for a confidence interval for it, and forget that it is already a confidence limit. So there is a
need for a middle value, that could as easily be too high as it could be too low. Then, in
analogy with a classical two-sided confidence interval for the mean of a normal distribution,
e.g. a value * a half-range, we could use the 50% confidence value as the middle value, and
the 95% confidence value as a one-sided left confidence limit. Which one of these values
to use in a particular situation, with all kinds of practical considerations involved, eventually
is a matter of policy or decision making. However, in this decision process, the following,
more theoretical, considerations should be taken into account.

The presently followed approach to estimate hazardous concentrations for ecosystems from
a small set of single species data illustrates the basic principle of risk analysis in the face of
uncertainty. In this situation we have to deal with two levels of risk. The primary risk is
what we are interested in and what we want to estimate (or keep low). In the present paper
the primary risk is the percentage of species that is actually harmed.

The secondary risk is the risk that our estimate of the primary risk is wrong. In this paper
the secondary risk is set by the confidence level. If the results of the analysis are to be used
as a basis for action, e.g. to determine a maximum tolerable concentration for ecosystems,
the secondary risk should be taken into account. Both Kooijman and Van Straalen felt that
the secondary risk should be low (5%). Yet there have been recent discussions on the



necessity of this low value; it has been even suggested to accept a confidence level of 50%
as the single answer to work with. However, it does not seem to make much sense to demand
a low value for the primary risk, and at the same time allow a high secondary risk.

To illustrate the danger of using a 50% confidence level as a basis for maximum tolerable
concentrations for ecosystems, Fig.7 shows the risks of harming larger percentages of
species, for several values of m (number of species tested). For example, in case of four test
organisms, the risk that more than 10% of the species is not protected is almost one third,
whereas the risk that even 20% or more of the species is not protected is still 15%.

We therefore suggest to routinely calculate both the 50% and the 95% confidence value.
The first value can be regarded as the best estimate of the hazardous concentration, whereas
the latter may be taken as the "safe" value (given the assumptions underlying the calculations,
of course). Comparison of these values can be used for deciding to examine more species:
large differences between both values indicate considerable uncertainty.

The great virtue of regarding the 95% confidence value as the safe value, is that it tends to
outweigh ecological and economical interests. If this safe value, as based on the available
data, appears to be low enough to have important economical drawbacks, one would not
hesitate to investigate more species, since the associated reduction of uncertainty might
quite well result in higher values for the safe concentration. On the other hand, using the
50% confidence value as an indication of the safe value results in a strong bias towards
economical interests. One would test a minimum number of species, hoping that the coin
falls on the right side; if not, one could always extend the number of test organisms after-
wards. Obviously, this situation would be quite harmful from an ecological viewpoint.
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6. Appendix: Compilation of some mathematical

aspects
In this Appendix, we will compile some of the more mathematical technicalities.

The probability density function (f) of species toxicity data is supposed to be logistic:
1 exp(—(x — o)/
fa) = xR ) B y
B (1+exp(—(x - a/B))
Here, x stands for logarithmic NOEC data (the base of the logarithm does not matter); o is

the location parameter and P is the scale parameter. The mean (also median), to be. called
W, and the standard deviation, to be called &, can be expressed in o and B:

n=o,

T
c=h B 1.8138 .
So, the standard deviation of the logistic distribution is roughly 2 times as large as the value
of B. The standard logistic distribution, used in the simulations, has =0, and B =1, and
therefore a standard deviation ¢ = 1.8138.

The cumulative distribution (F) of species NOEC toxicity data describes the probability for
those log NOEC values to be smaller than x:
1

F ) = e —op)
One of the advantages of the logistic distribution over the normal distribution is the fact that
this distribution can be represented in the explicit form stated. For example, for purposes
of simulation, we need to generate many random logistic data. Due to the explicitness of
the cumulative distribution, these can be easily generated with:

1-U
o _ o n.
xF=a-pB ln( T )

where U is a uniform random number. Note that

x*P=o+B-x%
A second example where the explicitness of the cumulative distribution comes in handy, is
the calculation of the log Hazardous Concentration for p% of the species under complete

knowledge of the distribution. Then, one can equate F(x) to p/100 and solve explicitly for
x:

x=logHC,=0—f- C,:,

C; =ln( 100-p )
4

For example, for p=5, that is 95% species protection, we have

where




C; =-2.9444,

But we can also express log HC; in L and © as follows:
logHC,=0—PB- C;

\3

g —— , — l
=i—-0 T Cs

=p-1.6234-0.

This expression allows the calculation of the log Hazardous Concentration, if mean and
standard deviation of the distribution are known.

In the original approach of Kooijman, the calculations are essentially similar. The probability
that the log NOEC of the most sensitive of n species, is smaller than x is (Kooijman, 1987):

F,(x)=1-(1-FW)),
with F(x) the single species cumulative distribution given before. (Our notation here differs

from Kooijman’s.) Equating this to ¢/100 (called 9, in Kooijman) and solving for x gives
the log Hazardous Concentration for Sensitive species:

x =logHCS; =a—-B-Cy,

where:

_ lin
=1 L2919 ")
1-(1-¢4/100)"

When we compare C, with Cy, it easily follows that for n=1, C, = C, if and only if p =g.

This shows the mathematical relationship between the Van Straalen and Denneman’s (1989)
hazardous concentration for p% of the species and Kooijman’s (1987) hazardous concen-
tration for p% of the most sensitive of ’communities’ of one species:

HC,=HCS].

In all estimates, the sample mean and sample standard deviation is used to estimate mean
and standard deviation of the supposed distribution:

A simple estimate for log HC; neglecting uncertainty due to a limited sample size is



Z=x,-16234-5,.

Table 3, the second 50% column, in fact shows that this estimate overpredicts in more than
50% of the cases.

Instead of k = 1.6234, other constants may be derived to account for uncertainty. These
necessarily depend on m. The extrapolation constant due to Kooijman (1987), as applied by
Van Straalen and Denneman (1989) with community size of 1 and 95% species protection
is

3
kK = dm * Csl,

=-
s
with d,, as tabulated in Table 1 of Kooijman (1987). These ki constants are tabulated in

Table 1 of this paper for two levels of certainty, that correspond to Kooijman’s 8, = 0.05,
and 9, =0.5. With these constants, the Kooijman algorithm for calculating a left certainty
limit (terminology is ours) of log HC, becomes:

K=x,—kgs,.

A new extrapolation constant &, is tabulated in Table 3 for calculating a one-sided left

confidence limit of log HC;, called L:

L=Xx,—k. s,.
L satisfies the required confidence level.
However, the determination of these constants turned out to be a surprisingly hard numerical
exercise. Each constant in Table 3 is an average of 20 such simulations with roundabout
250,000 sample points each, e.g. 30,000 samples for m = 8 (cf. 500 in Kooijman 1987). That
means that each constant is based on roughly 5 million drawings from the standard logistic
distribution. We still cannot guarantee every second decimal in k;, though, but the true
confidence level will be closely approximated.
The simulated densities depicted in Figs.2, 3, up to Fig.6 are estimated as follows. We
generated 60.000 samples of size m =2 and 5, plus 30.000 of size 10, plus 10.000 of size
20. All data were drawn from the standard logistic distribution. For each sample, the mean
x,, and standard deviation s,, was calculated, along with Z-, K-, and L-values. These were
sorted, and converted to histogram densities with bin width 0.2. The histogram midpoint
values were smoothed with three-point running means with weights 1:2:1, and plotted.

Next follows the proof, referred to in the main text, that, if k, were the proper extrapolation

constant for a particular sample size in the case of the standard logistic distribution, then
L =x —k; - 5, for that same sample size, would have the correct confidence property for any
logistic distribution.

Suppose x' is a standard logistic sample average (sample size m), s is a standard logistic
sample standard deviation, and suppose that

0,1 —0,1 0,1
L =x""—k, -s

-10-



overestimates the true log HC.' = —C, with known probability. Now, given the sample size,
consider the statistic:
L*P=x*P -k, - s™P

y

with x*P and s*? the sample mean and sample standard deviation respectively for some
arbitrary logistic distribution. Then, the probability that it overestimates log HC; is

Pr{L*?>1og HC?"} = Pr{x** -k, - s*" > log HCZ*}
=Pr{o+B-x*" -B -k, -s*' > o+PB-logHC"}
=Pr{x"" =k, -s"' > log HC>'}

=Pr{L"' >logHC'},

which was assumed to be known. Hence, L for any arbitrary logistic overestimates the
corresponding log HC,with that same probability. Therefore, for eachm, we have to calculate
k, only once, e.g. for the standard logistic distribution.
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7. Tables

Table 1. Extrapolation constants &y =-33-d,,, - Cs for 95% species protection (community

size: n = 1), calculated from Kooijman (1987) for various values of m, the number of test
species for which log(NOEC)s are available. The resulting log Hazardous Concentration is
K =x,, —kg - s,,, where x,, and s,, are mean and standard deviation respectively for a sample
of size m. The two columns refer to 95% and 50% certainty, respectively.

m 95% 50%

I 2 3.33 1.00
3 3.04 1.26

4 2.88 1.40

5 2.74 1.48

6 2.62 1.50

7 2.52 1.50

8 2.43 1.51

9 2.37 1.51

10 232 1.52

11 2.29 1.52

12 2.26 1.53

13 2.25 1.53

14 224 1.54

15 2.23 1.54

20 2.18 1.58

30 2.06 1.58

0o 1.62 1.62
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Table 2. Monte Carlo simulation of the one-sided 95% and 50% (left) confidence limit
property of K (see text), i.. In HCS in Kooijman (1987). Extrapolation constants are
from Table 1. The percentages overprediction should approximate 5% for 95%
certainty and 50% for 50% certainty. These correspond to areas below the curves in
Figs.3 and 4, to the right of log HC;.

sample extrapol. |percentage extrapol. |percentage
size m constant [overprediction |constant |overprediction
(95%) (95%) (50%) (50%)
2 3.33 39% 1.00 83% |-
] 274 22% 1.48 67%
10 232 20% 1.52 65%
20 2.18 14% 1.58 60%
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Table 3. Extrapolation constants for the calculation of one-sided left confidence limits for
the logarithmic Hazardous Concentration for 5% of the species on the basis of the logistic
distribution. Tabulated values are k; such that a one-sided left confidence limit L for log HC;
is givenby L =Xx,,—k, - 5,,. Here x,, and s,, are mean and standard deviation respectively of
a sample of log(NOEC) test data of size m. Constants are tabulated for two levels of
confidence: 95% and 50%.

T 95% 50%

2 27.70 2.49

3 8.14 2.05

4 5.49 1.92

5 447 1.85

6 3.93 1.81

7 3.59 1.78

8 3.37 1.76

9 3.19 1.75
10 3.06 1.73
11 2.96 1.72
12 2.87 1.72
13 2.80 1.71
14 2.74 1.70
15 2.68 1.70
20 2.49 1.68
30 2.28 1.66
50 2.10 1.65
100 1.95 1.64
200 1.85 1.63
500 1.76 1.63
o0 1.62 1.62
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8. Figures

0.3 .
i Logistic density function

density

6 4

-2 0 2 4
log HCS log(NOEC)

Fig.1. The standard logistic distribution of log(NOEC) values. log HCs =—2.94 is the log

Hazardous Concentration to be estimated. The fraction of the species harmed is shown
shaded.
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Fig.7. Risk (ordinate) that the percentage of unprotected species is exceeded (abscissa) in
case of the 50% confidence estimate of the Hazardous Concentration.
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