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Preface

In the context of the model-oriented research activities for the Dutch Priority Programme on
Acidification (DPPA3; theme II), a project was initialized on the ‘Development and applica-
tion of methods for calibration of DAS models, both on a regional scale and on the site level’
(P.H.M. Janssen and P.S.C. Heuberger, CWM; RIVM).

One of the objectives of the project was to develop general tools for calibration of models in
situations where the available prior information on the unknown parameters is limited, and
where measurements of the modelled quantities are incomplete, scarce or inaccurate, which
is often the case in environmental applications. Moreover these tools should be applicable in
more favorable situations, where e.g. more measurements are available.

Against this background, a simple method for set-valued calibration was proposed as a general
tool. This method, the rotated-random-scanning method, uses an efficient Monte Carlo based
scan of the parameter space, rotating it in an iterative fashion on basis of the characteristics
(covariance structure) of the set of parameters obtained thusfar. In this way it gradually and
efficiently zooms in on the part of the parameter space which gives good agreement between
model outcomes and measurements (good fit).

Since computational complexity increases very rapidly with the dimensionality of the pa-
rameter space to be scanned, the method will benefit greatly from a prior reduction of the
number of parameters to be calibrated. For this purpose related tools have been proposed
which establish the sensitivity of the parameters. Parameters which appear to be insensitive
can typically be excluded from calibration.

In this report the proposed methods for calibration and sensitivity analysis are presented, and
results of their use on a soil-acidification model (SMART) are reported. The developed tools
have been designed in a model independent way. They have been implemented in a portable
code for general use (standard FORTRANT7 embedded in an ANSI-C environment to enable
dynamic memory allocation), and are presented in four companion background documents.
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Summary

A method is proposed for calibrating models in ill-defined and information-poor situations
where data are sparse and uncertain. This method, the so-called rotated-random-scan method,
performs an iterative Monte Carlo search of the parameter-space. By using the characteristics
of the parameter set obtained thusfar, it applies rotations in combination with random scans
in order to gradually zoom in on the subset of acceptable model parameter values which
render model results that match satisfactorily with the measurement data. The efficiency
of the model largely depends on the applied uniform random scan, which may ask for the
future incorporation of a more sophisticated set-theoretic approach in case of non-connected
or irregularly shaped parameter sets.

The proposed technique has been implemented in FORTRANT7, and related tools have been
developed for sensitivity analysis to significantly reduce the number of parameters to be
calibrated. A real-life calibration study of a soil-acidification model (sSMART) illustrates the
use and the possible limitations of the rotated-random-scan method. The performance of
the method in obtaining parameter uncertainty reduction and compliance of model outputs
with measurement data may also provide useful indicative information on the merits of model
formulations.

Samenvatting

Een methode wordt voorgesteld voor het calibreren van modellen in slecht-gedefinieerde en
informatie-arme situaties waarbij de meetgegevens gebrekkig en onzeker zijn. Deze zoge-
naamde ‘rotated-random-scan’ methode voert een iteratieve, Monte Carlo gebaseerde, zoekac-
tie uit in de parameterruimte. Gebruik makend van de karakteristieke eigenschappen van de
tot dan toe bepaalde parameterwaarden, worden in de parameterruimte rotaties uitgevoerd
in combinatie met random zoek-acties. Op deze wijze wordt geleidelijk een deelverzameling
van acceptabele model parameterwaarden opgespoord, waarvoor de bijbehorende modeluit-
komsten in voldoende mate overeenkomen met de meetgegevens. De efficiéncy van de methode
hangt voor een groot deel af van de toegepaste uniforme random scan, hetgeen de toepassing
van een meer geavanceerde verzameling-theoretische aanpak vereist voor niet-samenhangende
of grillig gevormde parameter verzamelingen.

De voorgestelde techniek is in FORTRANTT7 geimplementeerd. Bovendien is programmatuur
ontwikkeld voor het uitvoeren van gevoeligheidsanalyses waarmee het aantal te calibreren
parameters aanzienlijk gereduceerd kan worden. Het gebruik van de ‘rotated-random-scan’
methode wordt uiteindelijk geillustreerd aan de hand van een calibratie van een bodem-
verzuringsmodel (SMART). De resultaten van deze calibratie studie verduidelijken de moge-
lijke beperkingen van de gehanteerde methode, en verschaffen ook nuttige informatie over de
waarde van de gehanteerde model formuleringen.



1 Introduction

In modelling ecosystems one is often confronted with the problems of sparse, uncertain or
unreliable data and the lack of knowledge on the relevant processes. These problems have
direct consequences for building and calibrating models. In particular, it will generally be
impossible to model the considered system exactly. The best we can hope for is to model the
important features of the system approzimately, trying moreover to make statements on the
validity of the obtained model and on the associated uncertainty in the model results (e.g.
predictions). Pursuing this should involve a judicious trade-off between model-complexity
and data-availability, taking in mind the intended objective of the modelling exercise (see
Janssen and Heuberger [1995]).

Due to the above mentioned sparsity and unreliability of the data and due to the inevitable
presence of non-random model (structure) errors, a purely statistical approach which is typi-
cally based on assumptions on the random nature of uncertainty!, is not always adequate and
may give misleading results when calibrating the model. Attempts to discriminate explicitly
between (non-random) model errors and (random) measurement errors are a possible alter-
native approach to tackle these problems. However this will typically require a considerable
amount of data or prior information since a detailed description of the model error (bounds)
is needed.

Another approach, which is less confined by the amount of available data, has been studied
intensively in literature over the last decade. This approach treats the uncertainty/error in
a set theoretic way (see e.g. the review paper of Milanese, Vicino [1991b]; see also Milanese,
Vicino [1991a]; Belforte et al. [1990a,b], Walter [1990]), describing it by means of an additive
noise which is known only to have given bounds ( Unknown-But-Bounded (UBB) uncertainty
models). In practice this description is often more realistic and less demanding than a statisti-
cal or a combined deterministic/statistical description. Having selected an appropriate model
structure, the calibration of the parameters in this context often amounts to determining the
set? of parameter vectors (the so-called acceptable parameter set) leading to model behaviour
which is consistent with the data within their associated noise-bounds. The obtained set
of acceptable parameter vectors can subsequently be used to assess the ‘uncertainty’ of the
model results or predictions in a set-theoretic sense.

Apart from being an adequate approach for calibration in complez or ill-defined, highly un-
certain situations, this set-theoretic approach can also serve as a useful initial step to delimit
the prior parameter uncertainty range in conventional calibration studies where one typically
tries to find a parameter vector which renders an optimal fit between model and data.

This set-valued calibration requires the determination of the acceptable parameter set, which
can be rather complez; see Walter and Pronzato [1994]. Instead of looking for an exact
description one therefore often looks for an approzimate description, using simply shaped
sets (e.g. boxes, or ellipsoids) containing or contained in the set of interest. Alternative
approaches use e.g. Monte Carlo sampling ideas (cf. Keesman and van Straten [1988],

1¥.g. choosing stochastic uncertainty models for the errors, as in maximum likelihood or Bayesian
techniques.

2The common calibration techniques often try to find a single ‘optimal’ parameter vector, minimizing a
certain fit-criterion. In situations where there is considerable variability /uncertainty in the data, the system
or the models, this ‘optimal fit’ approach is not fully adequate. It will be more appropriate to look for models
which have an acceptable fit (not necessarily minimal) to the data. This can e.g. be achieved by looking
for the set of parameter vectors or the set of models for which the associated model-to-data misfit remains
under an acceptable level (mazimally tolerated misfit). This approach automatically results in calibration in
a set-theoretic context.



Keesman [1989a,1990]), or global optimisation methods based on (controlled) random search
(cf. Walter and Piet-Lahanier [1988], Klepper and Rouse [1991]) to obtain an (approximate)
description of this set. A promising alternative approach which applies an efficient way of
uniformly covering subsets in the parameter space has recently been proposed by Klepper
and Hendrix [1994a,b] in the context of level set determination for accuracy assessment.
The above mentioned Monte Carlo based technique has recently been used in calibration and
prediction studies for various ecosystems (Keesman and van Straten [1987,1988,1989,1990],
Keesman [19892,1990]) and is considered in this report in a slightly generalized version.
The key idea behind the method is to iteratively apply rotations of the parameter space in
combination with a random scan (Monte Carlo sampling) of the rotated parameter space,
in order to discover linear interactions (correlations) between parameters and to gradually
zoom in on the set of acceptable parameter vectors in an efficient way.

The main features of this so-called rotated-random-scan method are discussed in section 3, af-
ter having stated the calibration problem more formally in section 2. In section 4 the method
is illustrated by results from a real life study, concerning the calibration of the acidification
model sMART (cf. Posch et al. [1993]) on a data set of the Solling Spruce Site. This data
set has been extensively used to compare the performance of various international acidifica-
tion models during the international ‘Workshop on Comparison for Forest-Soil-Atmosphere
Models’, May 10-14, 1993, Leusden, the Netherlands (van Grinsven, Driscoll, Tiktak [1995]).
Section 5 sums up final remarks concerning the performance of the method. The appendices
contain detailed technical information on the presented method and its properties.

The software which has been developed for the rotated-random-scan method is described in
Janssen [1995a] and is available on request (PC-version). It relies heavily on the recently
developed software package UNcsAM which is commercially available (Janssen, Heuberger,
Sanders [1992,1994]). Tests with the rotated-random-scan method have been performed and
are reported in Janssen and Sanders [1995]. Moreover, related software has been developed to
perform sensitivity analyses® in a set theoretic calibration context (see Janssen [1995b,1995¢]).
This software is also available on request.

*For a successful calibration it will often be necessary to reduce the number of parameters to be calibrated
beforehand. A preliminary sensitivity analysis can be helpful in accomplishing this goal.



2 Problem statement

Similar to Klepper [1988], a model is primarily considered as a mapping, for specific input
functions (forcing functions), from a parameter space IR into the space of associated model
outputs?. Moreover, it is assumed that prior information on the parameters is available
which restricts the parameters to a certain subset of R”: the set of allowable parameter
values (i.e. © C IRP). Set-theoretic calibration is now aimed at restricting this parameter set
further, by confronting the associated model outputs with the available data/observations on
the system, and trying to find parameters for which the model outputs and the data match
decently. In this confrontation one should bear in mind that the observations on the system
will be uncertain or imprecise; moreover one should take the intended purpose of the model
into account. E.g. if the measurements have an accuracy of 10 %, the model results are
considered acceptable if their difference with the data is on the average at least this amount;
likewise, if the model is e.g. only intended for indicating general trends for certain long-term
scenarios, it often suffices to determine models which agree with the data within a certain
order of magnitude.

In the set-theoretic context this confrontation between observations and model outputs is
typically accomplished by first specifying an appropriate data range. This specification can
be achieved in various ways (cf. Fedra et al. [1981], Fedra [1983], Whitehead and Hornberger
[1984], Klepper and Rouse [1991], Keesman [1990]), and should reflect the scatter in the field
data and the desired accuracy for the intended model application at hand®. This data range
is subsequently compared (and hopefully overlaps) with (part of) the model output range
associated to the set of allowable parameter values ©. This is depicted in figure 1, which
indicates that the final intention is to identify the subset of ® which renders model outputs
falling in the data range, i.e. determining the subset O,.. of acceptable parameter values (in
the sequel denoted briefly as acceptable parameters). See Klepper [1988].

Model

simulation

Figure 1: An outline of the set-theoretic calibration problem. The shaded area in the
parameter range corresponds to the acceptable parameter values.

*p denotes the number of considered parameters.
®For ill-defined and information poor systems one often can not do more than giving a rough classification
of what is considered as acceptable behaviour, consistent with the available observations.



3 Features of the Rotated-Random-Scan method

In this section the main properties are described of the so-called rotated-random-scan method,
a simple method for set-theoretic calibration on basis of rotations in the parameter space in
combination with random scanning (see Keesman [1989a,1990], Keesman and van Straten

[1988,1989]).

[I] Key Idea:
The aim of the method is to efficiently collect a desired (prespecified) number (Ny,,)
of representative parameters in the acceptable parameter set ©,.., by updating, in an
iterative /adaptive fashion, the subset of currently available acceptable parameters on
basis of a suitable rotation or transformation of the parameter space followed by a
uniform random scan in this rotated or transformed parameter space.

The rotation or transformation of the parameter space is based on the subset of currently
available acceptable parameters, and is intended to zoom in on this subset (see figure
2). In this way one hopes to improve the efficiency of the subsequent uniform random
scanning step, i.e. one hopes that this ‘rotated’ random sampling yields the desired
number of acceptable parameters more quickly. Incorporation of this learning aspect
clearly improves the random-scan of the original parameter space, which appears to be
rather inefficient (Fedra et al. [1981]).

[ITI] Application Area:
The method is useful for a crude form of set-valued calibration, typically to be used
in settings where the information content is poor, or in the initial stages of conven-
tional calibration studies in order to delimit the wide uncertainty range of the unknown
parameters (e.g. in the context of regional calibration using binfilling and weighted
frequency matching methods; cf. Heuberger et al. [1992]).

Based on a crude dichotomy of the model outcomes in results which are judged as
acceptable (i.e. behaviour), or as inacceptable (i.e. non-behaviour), the procedure aims
to find the parameters which lead to acceptable model results (i.e. the acceptable
parameter set). See figure 1.

In this way more accurate information on the parameters is obtained (i.e. reduction of
the parameter uncertainty, e.g. tighter lower- and upper bounds), which consequently
leads to more accurate model predictions.

[III] Requirements:
Although in essence no prior limitations are put on the class of models to be calibrated
(models can be e.g. dynamic, steady-state, static etc.), application of this procedure
requires that:

1. Each parameter vector under consideration can be judged as being acceptable
or inacceptable. Typically, this amounts to evaluating the model for the spe-
cific parameter vector, and to deciding whether the associated model results are
‘(in)acceptable’ when compared with the data and/or the a priori knowledge. This
comparison can e.g. be based on

e evaluating whether a certain misfit measure remains under a predefined ac-
ceptable tolerance level (Whitehead and Hornberger [1984], Klepper and Rouse
[1991], Klepper and Hendrix [1994a,b]);



Figure 2: Transformation in the parameter space based on the subset of currently available acceptable
parameters (indicated by shaded area).

e evaluating whether the model outcomes are compatible with a predefined error
bound on the data or with the prior information (Keesman [1989a; 1990];
Fedra et al. [1981]).

Certainly other alternatives are possible. The specific form according to which this
comparison between data and model takes place in practice, should ideally reflect
the aspects which are deemed relevant for the study at hand, and the (amount of
scatter in the) available data.

2. Prior information on the parameters to be calibrated should be simple: lower- and
upper bounds on each parameter are required. More detailed information (e.g.
correlations between parameters; functional inequalities, e.g. 6, + 3 < 2) can not
be taken ezplicitly into account by the procedure, unless it can be transformed into
the specification of lower- and upper bounds by appropriate re-parametrization.
Hence, if more intricate constraints are present, the newly generated candidate
samples should always be checked afterwards on compliance with the more intricate
constraints.



Notice that all acceptable parameters are considered as equally likely. In this respect
the set-theoretic approach differs from the statistical approach where a probability is
associated to the acceptable parameters to denote the disparity in their occurrence.

[IV] Procedure:

The procedure is a slightly generalized version of the method presented in Keesman
[1989a,1990], Keesman and van Straten [1988,1989] (more choices are offered for scal-
ing, decomposition, sampling technique; see item [V] later on). It employs an iterative
search of the parameter space, which is preceded by an initialisation step in which an
initial subset of sampled parameters is determined, containing V;,; parameter combina-
tions which are subsequently judged on their (in)acceptability. Each of the subsequent
iterations typically consists of two parts (see figure 3):

e Part A: Generating new candidate samples:® First all currently available
acceptable parameters are collected. Next it is checked whether the number of
currently available acceptable samples already exceeds the (prespecified) number
Ny, of acceptable parameters which have to be obtained. If this is not the case,
then N_,.” new candidate samples are generated. This is achieved by:

1. Transforming or rotating the original parameter space to focus on the subset of
currently available acceptable parameters. This transformation is based on a
decomposition of the covariance matrix of the current acceptable parameters,
possibly after scaling (optional) and is updated in each iteration.

2. Performing a random scan on basis of uniform random sampling in this trans-
formed space. Next the randomly sampled ‘transformed’ parameters are back-
transformed to the original space, and serve as new candidate samples. Due to
these actions, the obtained samples can fall outside the range (lower and up-
per bounds) which was originally specified; therefore they have to be checked
explicitly on their compliance with these bounds.

e Part B: Simulation and acceptance:® Model simulations are performed for the
newly generated candidate samples obtained in part A, and it is decided whether
the results are acceptable or inacceptable. Subsequently one returns to the begin-
ning of the next iteration (i.e. starting again with part A).

A detailed outline of the rotated-random-scan procedure is presented in appendix A.
The specific progress of the procedure depends on a number of choices and options
which have to be specified by the user in the initialisation stage and in part A of a
typical iteration (see next item).

[V] Users choices:

In addition to the fundamental choices:

e Which parameters have to be calibrated®?
e What are their initial lower- and upper bounds?
e When is a parameter vector (in)acceptable?

the user has to make the following choices when applying the procedure sketched in
appendix A:

®I.e. step 1-5 of the procedure outlined in appendix A.

"See the sequel for information concerning the choice of Nijm and Nean.
81.e. step 6 of the procedure outlined in appendix A.

?See the remark at the end of this section.



INITIALISATION:

Determine initial subset of accept. params.

k-th iteration

PART A: Generating new candid. samples

1. Collect all current acceptable parameters
2. If number of accept. params. insufficient then
-a- Generate new candidate parameters
-b- Update transformation info
Else STOP

PART B: Simulation and acceptance

1. Simulate model with candidate parameters
2. Check their (in)acceptability

Figure 3: Flow scheme of the iterative rotated-random-scan procedure

1. Choice of the stop-criterion Ny, i.e. the amount of acceptable parameters which
one minimally likes to obtain.

2. Choice of the initial number N, of candidate samples, to be determined in the
initialisation stage.

3. Choice of the number of new candidate samples N,, to be determined in PART A
of each new iteration.

4. Choice of the sampling technique for performing the uniform random scan in the
transformed parameter space ([1]: random sampling, or [2]:Latin Hypercube sam-
pling).

5. Choice of whether or not the spurious correlations due to sampling should be
corrected.

6. Choice of the scaling option: Various options are available to scale the accept-
able parameters before computing their covariance matrix on basis of which the
desired transformation or rotation in the parameter space is determined. Scaling
can diminish the effects of numerical errors (rounding/truncation) due to possible
strongly varying sizes of the parameter values!®. Moreover it can serve to focus
attention on certain aspects of the parameter range. The user can choose amongst
four scaling options: [1] — no scaling; [2] — scaling on basis of the standard de-
viations of the currently available acceptable parameters; [3] — scaling on basis

°Tn calibration studies it is recommended to normalize parameters such that their values have comparable
sizes.



of the range of the currently available acceptable parameters, or [4] — scaling on
basis of the user-specified range of the parameter set ©.

7. Choice of the working space option: The covariance matrix of the (scaled) accept-
able parameters which forms the basis for the transformation can be expressed in
terms of, [1] — the original coordinates, or [2] — the transformed coordinates.

8. Choice of the decomposition option: In order to determine the transformation
matrix for a typical iteration, the covariance matrix of the currently available
(scaled) acceptable parameters has to be decomposed to obtain information on
the principal directions in the parameter space. Two methods are available for
decomposition of this matrix: [1] — the eigen-system decomposition, or [2] — the
Cholesky decomposition; see appendix A for details.

Janssen and Sanders [1995] study the influence of the various choices in more detail,
and present guidelines for making these choices: Concerning the choice of N, a value
is recommended which is (at least) 10 times the number of parameters (> 10 x p)
(Keesman [1990]). It is, however, difficult to give practical guidelines for the choice of
Nini and Ny,. Adequate choices of these quantities depend on the specific form and
volume of the complete set of acceptable parameters @, in the initial parameter space.
This set is however a priori unknown. Consequently, the best one can hope for is to
choose the initial candidate sample (N;y;) sufficiently large such that its ‘range’ covers,
albeit very incomplete, the major part of subset @,... Likewise Ny, should ideally be
chosen such that the finally obtained subset of acceptable parameters characterizes the
complete set ©,.. adequately. Since this, by nature, can not be guaranteed a priori, it
is recommended to try various values for N, and N,,;, and to study whether this will
influence the results considerably. See also item VII.

For the remaining calibration options 4-8, defaults choices are recommended (table 1).
The tests in Janssen and Sanders [1995] illustrate however that non-default choices lead
to comparable results.

Option Default

Sampling Technique Latin Hupercube Sampling
Correlation Correction | yes

Scaling Standard deviation of acceptable parameters
Working Space Original coordinates
Decomposition Figensystem-decomposition

Table 1: Recommended choices for the calibration options

[VI] Software:
Software tools have been developed to perform the rotated-random-scan method pre-
sented in appendix A (see Janssen [1995a] for a complete description of this software):

o The initialisation step of the procedure (i.e. STEP 0: obtaining an initial uniform
random sample in the parameter space and determining which sampled parameter
combinations lead to acceptable simulation results), can e.g. be performed with



the tools offered by the software package UNCsSAM (Janssen, Heuberger, Sanders
[1992]). The application program MCSAMP in UNCSAM can be employed to generate
the initial uniform random sample. The program MODGEN is subsequently applied
for passing these sampled parameters to the model in order to perform simulations
which should be judged on their acceptability (see also part B).

e PART A of a typical iteration (i.e. generating new candidate samples on basis
of a transformation and a random scan in the parameter space) can be easily
performed with the program rRORASC!!. RORASC has been developed in a model
independent!? way, thus offering the user the opportunity to treat a large variety of
models, irrespective of their specific implementation. On input, RORASC requires
data files which contain the currently available acceptable parameters. On output,
it generates a data file with new candidate samples. For a complete description
see Janssen [1995a].

e PART B of a typical iteration, i.e. simulation of the model for the sampled candidate
parameters which have been obtained in PART A, and determination whether these
results are acceptable, requires more explicit effort from the user: the various new
candidate samples in the file which resulted from application of RORASC in step
A should be passed in a suitable format to the model for subsequent simulation.
This interfacing task can be easily performed with the input-interfacing program
MODGEN of UNCSAM (see Janssen, Heuberger, Sanders [1992]). The subsequent
task of simulating the model and judging the acceptability of the results has to
be performed completely by the user. Careful processing and administration of
the various simulation runs will be required. Much time can be gained if the
simulation is stopped as soon as the results appear to be inacceptable. Especially
for simulation of computer-intensive dynamic models this can be very beneficial.

After the initialisation step, the various iterations for (gradually) obtaining a sufficient
number of acceptable parameter vectors are performed by repeated application of rO-
RASC (PART A) and the subsequent ‘simulation-and-acceptance’ step (PART B). See
figure 3.

Most input- and output files generated during these iterations have a structure which
corresponds with the file-structure employed in uNcsaM. Therefore it is recommended
to use RORASC in combination with UNCSAM to have maximal benefit of the various
facilities offered by uncsaMm (e.g. file-handling, sampling, plotting etc.). Moreover
UNCSAM plays a prominent role in accomplishing PART B of an iteration.

[VII] Disadvantages:

o Inherent to its nature, the set theoretic approach to calibration employs a rather
‘rough’ way of matching the model to the reality: it considers model results bluntly
as ‘acceptable’ or ‘non-acceptable’, without a further differentiation e.g. in terms
of a ‘degree of acceptability’. In ill-defined and information poor settings such a
‘rough’ approach is usually very adequate, but in other applications an additional
fine-tuning of the model to the reality may be required.

"RORASC =ROtated RAndom SCan. RORASC is a standard FORTRAN77 program which has been
embedded in an ANSI-C environment to enable dynamic memory allocation.

12This could be achieved since PART A is completely separated from PART B, where all simulations and
decisions on acceptability of the model results take place.
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o The initial step of the procedure (STEP 0) typically relies on a straightforward
uniform random scan of the original parameter space, and can therefore be rather
inefficient when compared to the subsequent iterations performed on basis of an
efficient rotated random scan.

The efficiency of this initial step depends on the (a priori unknown!) ratio p =
Vol(0O4..)/Vol(©) between the volumes of the subset of acceptable parameters © .
and the prior parameter space © in which the sampling is performed. If one
generates initially N;,; sampled points uniformly in the parameter space ©, then
on the average N;,; - p of these samples will be acceptable!®. Consequently N;n;
has to be very large to obtain a sufficiently large set of acceptable samples in case
that p is very small. This problem aggravates for higher dimensional parameter
spaces (p large) principally due to two reasons, i.e. (a) p can be very small in
these situations, and, (b) more acceptable parameters will be needed to obtain
a fair, albeit largely incomplete, cover of the acceptable subset, especially if this
subset has strongly irregular (non-ellipsoid, non-box) features. This illustrates the
importance and the necessity to restrict beforechand the number of parameters to
be calibrated, e.g. to maximally 6 & 10 parameters. See the remark at the end of
this section for more information on this issue.

e The rotated-random-scan procedure uses rotations/transformations in the param-
eter space on basis of (scaled) covariance matrices; consequently it mainly fo-
cusses on linear relations between the parameters or equivalently on ellipsoid/boz
shaped parameter sets. Therefore one can expect that identification of whimsi-
cal, ‘non-linear’ (i.e. non-ellipsoidal), disconnected parameter sets can be rather
inadequate/inefficient. The tests in Janssen and Sanders [1995] illustrate this.

[VIII] Remark:
For an effective use of the rotated random scan method it is desirable to restrict the
number of parameters to be calibrated beforehand. Moreover, due to the scarcity and
inaccuracy of the data, often only a small number of parameters (< 6 — 10) can be
handled satisfactorily (see Keesman [1989b]).

This reduction of the number of parameters can e.g. be achieved by applying a prelim-
inary sensitivity analysis**, using the software developed at the RIvM/cwWM (Janssen,
Heuberger, Sanders [1992], Janssen [1995b,1995c¢]). Various approaches can be applied,
as discussed in the sequel:

1. Conventional Sensitivity Analysis (CSA) on basis of Monte Carlo techniques (sam-
pling and simulation) in combination with regression analysis. Use can be made of the
software package UNCsaM (see Janssen, Heuberger, Sanders [1992]) to perform this type
of analysis.

The CSA is aimed at establishing how much the model outputs y (or functions of the
model outputs; e.g. misfit criteria) will be affected by variations of the model parameters

13Suppose that initially 8; € [0,1] for s = 1,---,p, and that the values ¢; € [0, 1] are acceptable. Then

p= (%)p. Suppose that we need 2 - p acceptable parameters for a representative covering in the initialisation
phase. Then N, should be approximately equal to 21 -p. For p = 9 this are already more than 9000
samples.

"1n situations where calibration is primarily intended to reduce the uncertainty in model predictions, it is
recommended to perform also a preliminary uncertainty analysison basis of the currently available information
on the uncertainty in the parameters (distributions), e.g. by using UNCSAM. This analysis helps to identify
the parameters which contribute substantially to the uncertainty. These parameters should thus be the primary
candidates for calibration.
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6 around certain nominal values. The variations can be small (local sensitivity analysis)
or large (global sensitivity analysis). Sensitivity is typically expressed in terms of (linear)
regression coefficients which approximately characterize the relation between parameters
and model outputs, and which can be seen as approximations of the first derivative dy/90;
of the output y with respect to the parameters 8;.

This approach can be used to identify those parameters which have (nearly) no effect on
the model outputs. These parameters can be excluded from calibration (e.g. by fixing
them to a nominal value) without affecting the mismatch between model and data much.
Although this approach helps restricting the number of parameters to be calibrated, it
does not completely preclude problems in identifying the remaining parameters: it can
occur that some sensitive parameter(combination)s affect the model outputs in completely
similar fashion, and therefore cancel out their influence and thus can not be determined
simultaneously on basis of measured outputs. See Janssen and Heuberger [1992] for more
information on this so called identifiability issue.

Janssen and Heuberger [1992] also mention an important additional limitation of the
conventional sensitivity analysis: the results of such an analysis pertain to a specific
nominal point in the parameter space around which the (local or global) variations are
considered, and can be heavily dependent on this point. A large dependence indicates that
strong non-linear effects are present in the relationship between parameters and model
outputs; therefore the results of a conventional sensitivity analysis in a specific nominal
point need not be representative for the complete parameter space. In this situation the
(local) conventional sensitivity analysis has to be repeated for various nominal points in
the parameter space. It can however be difficult to determine how many extra analyses
should be performed and where the associated nominal points should be chosen, especially
in calibration situations where the initial parameter space is large and where information
on meaningful and representative (nominal) parameter values is unreliable due to the
ill-definedness and information-poor character of the system under study.

2. Generalized Sensitivity Analysis (GSA), which is particularly appropriate for ill-
defined and information-poor situations. This technique was originally proposed by Horn-
berger, Spear and Young (Young et al. [1980], Hornberger and Spear [1980,1981,1983],
Hornberger and Cosby [1985], Spear and Hornberger [1980]) as a heuristic tool to identify
dominant aspects, parameters or processes during early stages of modelling, thus indicat-
ing useful directions for further research.

The method is based on a rough subdivision (dichotomy) of the model output space in
a subset of model outputs which are considered as acceptable (behaviour), and a comple-
mentary subset of model outputs which are considered as inacceptable (non-behaviour).
The prior knowledge on the parameters is expressed in terms of probability distributions
(e.g. uniform distributions to characterize the range and parameter bounds); samples
are randomly drawn from these distributions and the model is simulated for the sampled
parameter vectors. The above mentioned dichotomy of the model output space in ‘be-
haviours’ and ‘non-behaviours’ now induces a corresponding dichotomy of the sampled
parameters in ‘behaviour-giving’ and ‘non-behaviour giving’ parameter vectors. The dis-
crepancy between these subsets is evaluated and parameters or parameter combinations'®
are identified which yield a large discrepancy. These parameter(s) combinations are then
considered as sensitive/important for the applied dichotomy, and should thus be included
in the calibration.

The above mentioned discrepancy between the ‘behaviour giving’ or ‘non-behaviour giv-
ing’ parameter sets can be evaluated in terms of e.g. the associated ‘difference’ in the
means, the variances or the cumulative (marginal) distribution functions of the various

51f the ‘behaviour-giving’ parameters show important mutual correlations, one typically applies a transfor-
mation of the parameter space (on basis of an eigen-system decomposition of the covariance matrix) to make
the transformed parameters uncorrelated. These transformed parameters are combinations of the original
parameters. The discrepancy between the ‘behaviour giving’ and the ‘non-behaviour giving’ subset will be
expressed in terms of the transformed parameters, i.e. in terms of the established parameter combinations.
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parameters or the considered parameter combinations. Especially the ‘difference’ between
the (marginal) distribution functions is considered as an important discrepancy measure
and is expressed in terms of the well-known Kolmogorov-Smirnov statistic (see Press et
al. [1986]).

The above procedure depends on the prior distributions which are specified for the pa-
rameters. These distributions affect the ability to obtain samples in the ‘behaviour’ or
‘non-behaviour’ subset, and therefore the results can be significantly influenced by al-
teration of the distributions (cf. Spear and Hornberger [1980]). To mitigate this effect,
Keesman [1989b] proposes a minor modification of the GSA, by applying it to the set of
sampled parameter values which has been obtained after performing various iterations of
the rotated random scan procedure. This a posterior: parameter set renders a more effi-
cient and representative characterization of the ‘behaviour-giving’ subset, and is therefore
expected to generate better and more robust results.

Despite the heuristic nature of the GSA (Hornberger and Cosby [1985]) it appears to be
a practically useful approach to identify the critical parameters or processes and hence
restrict the number of parameters requiring calibration or indicate useful directions for
further model development (see also the recent application study of Lence and Takyi
[1992]). Its close relationship with the set-theoretic calibration (notice the dichotomy
between ‘behaviours’ and ‘non-behaviours’) makes it especially suited in this context.

The generalised sensitivity analysis method has been implemented in a computer program
and is avatlable on request (see Janssen [1995b] for more information).

3. Dominant Direction Analysis (DDA), aimed at determining the dominant directions
(parameter combinations) in the parameter space, on basis of an eigen-system decomposi-
tion of the (scaled) covariance matrix of the acceptable (i.e. ‘behaviour-giving’) parameters.
The eigenvectors associated to the smallest eigenvalues (i.e. smallest uncertainty) indi-
cate the best-determined directions. Notice that the method in fact focusses on lLnear
relationships between parameters (dominant directions).

This method, which also fits well into the set-theoretic calibration framework, was pro-
posed by Keesman [1989b]. For applications it requires an (initial) set of acceptable pa-
rameters, which often can only be obtained after performing some preliminary calibration
on the complete, i.e. non-reduced, set of parameters. The ‘dominant direction” method
has also been implemented in a computer program and is available on request (see Janssen
[1995c¢] for more information).

Unlike the CSA, the last two methods (GSA and DDA) in fact require an initial set
of acceptable parameters. Typically a preliminary calibration of all parameters will be
needed to determine this initial set. In order to prevent an excessive number of model
runs'®, it is recommended to perform this calibration in a tentative way applying e.g.
less strict conditions and using only limited information on the system (see Keesman
[1989b]). Later on, when applying a more complete and elaborate calibration, the
results of this GSA or DDA can be used to decide on how to restrict the number of
parameters which actually should be calibrated more accurately.

Another point of difference between the CSA and the GSA/DDA, is that the latter
approaches are oriented towards global sensitivity statements (i.e. for the whole param-
eter space), while the former typically suffers from the drawback that it pertains to a
particular (nominal) point and thus may be of limited use for obtaining statements on
the parameter space as a whole. This difference in orientation is mainly due to the fact
that the GSA and, to a lesser extent, the DDA consider the model in a far more crude
way than the CSA: classifying the model outputs as ‘acceptable’ or ‘non-acceptable’,

161t is obvious that this is imperative, since the very reason for performing the sensitivity analysis is the
reduction of the computational load.
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instead of looking at their actual values or variations, enables that the ‘sensitivity’ can
be assessed for the whole parameter space. Certainly a price has been paid for this
ability: the statements of the GSA and the DDA, albeit global, are less informative
and differentiated than the statements of a CSA which refer, albeit local, to actual
changes in the output values due to changes in the parameters.

Summarizing the above discussion on approaches to sensitivity analyses, it can be con-
cluded that the GSA and the DDA are especially useful in the context of set-theoretic
calibration for ill-defined and information poor systems. The results of the GSA and
DDA refer to the impact of individual parameters and their linear combinations on
acceptable model behaviour and pertain to the complete parameter space (global ori-
entation). The GSA studies the parametric sensitivity w.r.t. the (in)-acceptability
dichotomy, while the DDA in fact analyses the parametric uncertainty of the accept-
able parameters.

The CSA, on the other hand, is more appropriate for conventional calibration studies
e.g. aimed at minimizing a misfit criterion. It renders more differentiated and detailed
results than the GSA and DDA, but suffers from the drawback of (possible) local
dependence on the nominal point in the parameter space where the CSA is performed.
This makes the CSA sometimes less suitable for adequate assessment of the sensitivity
in models for ill-defined, information poor systems.
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4 A practical calibration study

The rotated-random-scan method is illustrated in this section by a preliminary calibration
study which has been performed with the model SMART (see Posch et al. [1993]).

The model

SMART is a one-layer dynamic soil-acidification model which has initially been developed to
obtain insight in the impact of different emission scenarios on forest soils in Europe (De Vries
et al. [1989]; Posch et al. [1993]). It computes important indicators for the status and ef-
fect of soil-acidification, such as the concentrations of Al, monovalent base cations (BC1, i.e.
Na+K), divalent base cations (BC2, i.e. Ca+Mg), NHy4, SO4, NO3 and H in the soil solution,
using a temporal resolution of one year. Annual values of hydrological data (drainage fluxes,
root uptake fluxes and water contents) serve as input for SMART, as well as annual deposition
data of SOz, NO,, NH3 and base cations (BC1, BC2).

SMART incorporates most of the geochemical processes which contribute to acidification
(weathering, cation exchange, sulphate adsorption, dynamic nitrogen immobilization), but
only a very limited number of biological processes is taken into account. Nutrient cycling
processes (e.g. litterfall, root decay and mineralization) are not included since the model
is based on the assumption that the amount of organic matter is in equilibrium. Cation
exchange, sulphate adsorption, dissolution of carbonates and Al-hydroxides are treated as
equilibrium reactions, while weathering of base cations and (de)nitrification are described as
first-order reactions (see De Vries et al. [1989], Posch et al. [1993]).

The data

The model SMART is applied to an intensively monitored spruce site at Solling, Germany (Van
der Salm et al. [1995]). Input parameters for SMART have been derived from measured data
concerning bulk precipitation, throughfall and soil solution chemistry at this site (Bredemeier
et al. [1995], Tiktak et al. [1995]). For calibration, the simulated concentrations and leaching
fluxes are compared with the measured values at this strongly acidified site during the period
1973-1989. In the present study, the comparison concerns the flux-weighted values in the
subsoil (90 cm depth), averaged over a time period of one year. To obtain these values, the
weekly measurements have been recasted into annual flux-weighted concentrations'”. These
annual data are displayed in figure 4. Notice the strong rise of SO4 and Al in the 1970s.
This is caused by the high sulphate!® load in the early 1970s onto a soil which had already
been saturated with respect to sulphate sorption in the preceding decades. In the 1980s, the
concentrations of S04, Al and BC2 decrease due to reductions in the atmospheric deposition
of SO4 and base cations (Ca and Mg) as a result of reduced industrial emissions after 1976.
The decrease of SO4 and Al is more gradual due to the desorption of adsorbed SOy, and the
buffering effects by Al immobilisation.

The observed H concentrations showed more or less similar tendencies as Al and SOy, but
the decrease in the 1980s is far more pronounced. Finally notice that the BC1 concentration

1"The flux-weighted annual average concentrations were obtained by dividing the ‘measured’ leaching fluxes
by the (simulated) annual water fluxes. The ‘measured’ leaching fluxes have been calculated by multiplying
measured concentrations with (monthly) simulated water fluxes, obtained by the model SWATRE, see Belmans
et al. [1983].

®The behaviour of Al is very similar to the SO4 behaviour because large parts of the (acid) SO4 input are
buffered by Al mobilisation.
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remains nearly constant, and that NOs and NH4 show a rather fickle behaviour, which is
mainly caused by hydrological variations. In the long run both concentrations stay more or
less at the same level.
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Figure 4: Annual flux-weighted concentration measurements over the period 1973-1989 at
the spruce site in Solling, Germany

The parameters

The present calibration study aims at matching the model outputs BC1, BC2, Al, NOj,
H, SO, and NH4 with the above-mentioned ‘measurements’ from figure 4, and is primarily
intended to illustrate the Rotated-Random-Scan method. The choice of the model parameters
to be estimated is largely based on expert judgment and previous experience with the related
soil-acidification model RESAM (see Kros et al. [1993]), and concerns parameters which are
considered highly uncertain and of influence on the chosen model outputs. This leads to the
parameters indicated in table 2; nominal values are specified in this table, as well as their
ranges (minima, maxima), which characterize the initial uncertainty.

The parameter kAloz is the gibbsite equilibrium constant, which characterizes the dissolution
of AI(OH)3 in non-calcareous soils. kAlex is the selectivity constant for the Al-BC exchange.
fden and frit are the (de)nitrification factors. The factors F_.BC1, F_BC2, F_S02 are multi-
plication factors to upgrade/downgrade the annual input-deposition fluxes of BC1, BC2 and
SO,. The considered parameters thus refer to process parameters as well as deposition input-
parameters. The corresponding model simulation for the nominal parameters is displayed in
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figure 5. Notice that the dynamic features of observed concentrations of BC1, BC2, Al and
SO, are mimicked fairly by the model results. The modelled H concentration does not display
the observed H increase in the 1970s. This is most likely caused by a large dispersion of the
H front, which is inherent to a one layer system, as used by SMART.

Parameters || Unit Nom. | Min. | Max. Important
effect on:

kAlox log((mol 171)=2)3 11 9.3 7 10 ALH

kAlex log(l mol™1)? 0.54 | -1 5 Al H, BC2

F_SO2 - 1 5 1.5 S04

F_BC1 - 1 D 1.5 BC1

F_BC2 - 1 5 1.5 BC2

fden - 0.10 | 0.00 | 0.50 || NOs

fnit - 0.98 0.80 | 1.00 NHy4, NO3

Table 2: Parameter ranges, nominal values and associated relevant outputs

Remark 1: The model simulations for the nominal parameters (cf. figure 5) indicate, amongst all, a
considerable underestimation of the SO4 and Al concentration. This can be due to several reasons, e.g.
a bad specification of associated model parameters (especially the weathering-rates FBCIwe, FBC2we
for the monovalent and divalent base cations, and the half-saturation constant £504ad for SO;-
adsorption), inadequate description'® of the involved mechanisms (i.e. process-equations), inadequacy
of the input-data which are needed for the model (e.g. deposition flux data of BC1, BC2, SO, etc. for
the period 1973-1989), and, last but not least, inadequate measurement values (i.e. the flux-weighted
annual average concentration measurements).

Though a more complete calibration study would require that the process-parameters FBClwe,
FBC2we, kS04ad should also be estimated, it was decided to attribute the mismatch in the SO4
and Al concentrations solely to flaws in the deposition data, and not to inadequate values of these
process-parameters. Three extra parameters F_BC1, F_BC2, F_502 have therefore been introduced
to account for inadequate deposition fluxes. These parameters are multiplication factors for the input-
deposition trajectories, to upgrade or downgrade these deposition-fluxes over the entire time period
1973-1989.

Exclusion of the above-mentioned process parameters FBCTwe, FBC2we, kSO4ad from calibration
has the advantage that extra identifiability problems are avoided: it is expected that the individual
effects of the involved process-parameters FBCIwe, FBC2we, kSOjad, and the multiplication-factors
F_BCI1, F_.BC2, F_.SO2 counterbalance each other, which leads to problems when trying to identify
them simultaneously.

Needless to say there is a certain arbitrariness® in this approach, since one assigns supposedly certain
(i.e. fixed) values to parameters (e.g. FBCIwe, FBC2we) which are inherently uncertain. Ideally a
more complete calibration study would be needed which considers these parameters also as candidates
for calibration, and which relies on a thorough sensitivity analysis to select the parameters which will
be estimated.

197t is e.g. expected that the ‘gibbsite-formulation’ employed in SMART falls short in accurately describing
the H, Al and SO4 behaviour.
#The use of (uniform) multiplication-factors to account for deposition-uncertainty is another arbitrary issue.
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Figure 5: Comparison of measurements (fat, solid) and results from the nominal model

(thin, solid)

The criterion

For application of the ‘rotated-random-scan’ method one needs to explicitly specify when
the model results are judged as (in)acceptable, when comparing them with observations and
accounting for the desired level of accuracy for the intended model application. For this pur-
pose a misfit criterion is employed which expresses quantitively how much the model results
deviate from the measurements. Various choices for such a criterion are possible. It was de-
cided to use a ‘normalized average absolute deviation’ criterion, due to its straightforwardness
and fair robustness to outliers?!. It has the form?2:

1 GE Y - M) |
C(')‘?'Z(Z SiL Mi(j) ) .

=1 \j=1

where Y;(j) denotes the value of the i-th model output in the year 1972 4+ j, and M;(5)
denotes the corresponding measured value. Here ¢ = 1,---,7 refers to the 7 model outputs

2! Expressing the deviations as a sum of absolute values, instead of as a sum-of-squares, renders better
robustness properties to outliers.

22For NH, the ‘measurements’ sometimes fall below the detection-limit. In these situations, the evaluation
of the absolute deviation is adapted, by replacing M;(7) in (1) by the value of the detection-limit (i.e. 0.005),
and by replacing Y;(7) by its censored value, i.e. max(Yi(s),0.005).
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which are considered (i.e. BC1, BC2, Al, NOg, H, SO4, NHy), while j = 1,---,17 indicate
the consecutive years in the period 1973-1989.
Notice that this criterion is composed of the normalized average absolute deviations:

& IYi(j)—Mi(j)l] CE X 1Y) - Mi(5) |
Ciim ), [ SiL M) ] L Mi(j)

7=1

(2)

of the individual model outputs (z = 1,---7). These deviations C; are weighted equally in the
overall criterion, and thus C(-) is the average of the individual misfits (i.e. C(-) = £ 5, Ci(+)),
allowing for mutual trade-offs®® between the misfits C;.

Remark 2: C; denotes the average (over time) absolute deviation between model output ¥;(j) and
measurement M;(j), expressed in terms of the averaged measurements Zj M;(j). The normaliza-
tion by 11—7 Zj M, (j) serves to treat the outputs in a universal way, making the deviations dimension-
less. A value of C; = .3 means that the absolute deviation for the i-th output is a factor .3 of the
averaged measurements (i.e. an average absolute deviation of 30 %).

Since the criterion (1) expresses the overall deviation on the average, visual inspection of the
individual model-outputs w.r.t. the measurements adds useful additional information on the
discrepancy between model results and measurements. Consider e.g. figure 5 and compare
this with the numeric information on the individual nominal misfits in table 6: The overall
criterion value for the nominal parameters is 0.37 (table 3), while the contributions of the
various outputs vary considerably. The mismatch for the nominal model is especially large
for NO3 (about .9, or 90 %). NH4 and BC2 show a nominal misfit of about 40 % (.4), H and
BC1 of 30 % (.3) and Al and SO4 of 20 %.

The acceptance strategy

The final aim of the present calibration study is to determine a set of at least 70 parameter
samples (i.e. Ny, = 70 = 10-p, where p ( =7) denotes the number of calibrated parameters)
which render an ‘acceptable’ misfit, allowing e.g. for a deviation of 25 % from the minimal
misfit. To achieve this in each iteration of the rotated-random-scan procedure candidate
parameter samples @ are considered as acceptable?4 if the associated misfit C’(G) is within a
factor F,.;; around the minimal value in that iteration (i.e. C(0) < Ferit - Crnin)-

Notice that this acceptance strategy is in fact iteration dependent, since it refers to the actual
minimal criterion value in each iteration. Consequently an extra final acceptance test will be

required to check which samples fulfill the condition C(8) < Fi.iy - CXL where CL% is the
minimal criterion value for all iterations.

The calibration results

To initialize the calibration (iteration 0) N,,; = 50 candidate samples are determined by
uniformly sampling the parameters between the bounds indicated in table 2. Subsequently
4 iterations of the random-random-scan method were performed. The results are reported
in table 3 and indicate that 82 ‘acceptable’ parameters have been generated applying the

2% An alternative aproach would be to define C(-) = max C;(-). This approach in fact focuses on the worst-
case situation.
**The exceedance of the parameter-ranges indicated in table 2 will be no reason for rejection.
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above acceptance strategy with the listed values F..;;. These values have deliberately been
chosen too high?® in this experiment to ensure that still a considerable number of ‘accepted’
candidates could be determined. Stricter (i.e. lower) values of F,.;; would have resulted in
an inefficient zoom-in search.

As a consequence of this liberal strategy only a small part (N,.. = 13) of the resulting
82 parameter samples show misfits which deviate less than 25 % from the minimal one.
These samples are subsequently selected as a starting point (prior information) for a second
calibration experiment to extend the set of acceptable parameter samples. The results are
summarized in table 4 and show that 84 runs result after 4 iterations, using Fi..;; = 1.25.
In addition those runs are selected with misfit values that deviate less than 25 % from the
overal?® minimum. Discarding finally the runs for which the parameter F_BC1 is beyond its
prespecified limits (i.e. <.5), and for which the parameter I.B(C? is negative, 64 parameter
samples remain which are considered as acceptable.

The minimum, mean, median and maximum of these selected 64 parameter-values are listed
in table 5 and give an indication for the resulting uncertainty after calibration (confidence
region). This information is displayed graphically in the scatterplots of figure 7 and in the
histograms of figure 8.

To obtain information on the misfit-contributions of the various outputs the normalized
average absolute deviations C;(+) (see equation 2) of the individual model outputs have been
evaluated for the selected 64 parameters, and their statistics are summarized in table 6,
showing that the misfit is largest for NOg, and NHy4 (approximately .5, i.e. 50 %), followed
by H (approximately .3, i.e. 30 %), BC2, BC1, Al (approximately .2, i.e. 20 %) and SOy4
(approximately .17, i.e. 17 %). Notice the considerable misfit improvement when comparing
the optimal setting with the nominal setting, especially for NO3, BC2 and BC1. The fit for
Al however deteriorates somewhat, and the fit for NH4 does not change. See also figure 6.

Discussion

From these results it is obvious that the uncertainty is reduced substantially for the parameter
fnit, and to a far lesser extent for the parameters kAloz, kAlex, F_.S0O2, F_BCI; see the ranges
in table 5 and in figures?” 7, 8.

The scatterplots for the criterion value in figure 7 suggest ‘unimodality’ for most parameters,
and seem to indicate a clear and unique optimum for the criterion. No significant correlations
between individual parameters can be inferred from figure 7, except some slight connection
between kAlex and F_BC2, and between F_BC2 and fden. Observe moreover that the two
latter parameters exceed the pre-specified ranges of table 2, and that the nominal parameter
value for fden differs much from the mean, median or optimal values (table 5).

The contribution of the various individual misfits C; to the overall criterion C(-) for the
selected parameters is shown graphically in the scatterplots of figure 9. This renders infor-
mation on the potential trade-off’s between the misfits C;. Notice e.g. the negative correla-
tions between various misfits, e.g. between NH4 and H, SO4, NOj3 etc., indicating that the
improvement of one individual misfit, tends to lead to a worse fit for the other outputs.

25Properly speaking Fer;: should be 1.25 to allow for a deviation of 25 % around the minimal misfit value.

261 e. over all iterations.

2"The range of the x-axis in these figures denote for all parameters, except F_BC2 and fden, the initial
parametric uncertainty range).
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Post-calibration uncertainty analysis

Using the 64 acceptable parameter samples for simulating the model, the ‘uncertainty’ of
the model outputs can be assessed which remains after calibration. Figure 10 illustrates
that the uncertainty bands can be fairly wide; nevertheless it is still not guaranteed that the
measurements fall completely within these bands. The uncertainty band for BC2 is very wide
due to the fact that the parameter F_BC?2 takes values over a broad range (0.4-1.2).

Summary

The previous results show that the uncertainty in the parameter fnit and to a lesser extent
in kAloz, kAlex, F_.502 and F_BC'1 is reduced by calibration. The other parameters fden,
F_BC?2 are badly identifiable, and moreover take values over a wide range, which need not
conform with the initial parameter bounds.

The resulting uncertainty in the model outputs is large (for BC2 very high), but the measure-
ments still do not fall completely within these bands. This is an indication that the model
with the employed input data is not fully able to describe the data.

Iteration || Min C(-) | Ferit | Nsam | Nace | % Accept.
Nominal 0.37 - 1 - -
0 0.38 1.75 50 13 26 %
1 0.35 1.5 50 13 26 %
2 0.29 1.5 50 11 22 %
3 0.32 1.5 50 20 40 %
4 0.34 1.5 50 25 50 %
| Total [ 020 [ - [ 250 [ 82 | 33% |

Table 3: Info on criterion values for various iterations in the first calibration experiment

Iteration || Min C(-) | Ferit | Nsam | Nace | % Accept.
Nominal 0.37 - 1 - -
0 0.29 1.25 82 13 16 %
1 0.27 1.25 50 14 28 %
2 0.26 1.25 50 18 36 %
3 0.26 1.25 50 16 32 %
4 0.26 1.25 50 23 46 %
| Total [ 026 [ - [ 282 ] 8 | 30% |

Table 4: Info on criterion values for various iterations in the second calibration experiment



kAlox | kAlex | F.SO2 | F_.BC1 | F.BC2 | fden | fnit
Min 8.30 -1.01 0.91 0.56 0.02 | 0.210.95
Median 8.98 0.58 1.10 0.83 0.42 | 0.47 | 0.98
Mean 8.95 0.67 1.10 0.85 0.50 | 0.46 | 0.98
Max 9.64 2.50 1.33 1.14 1.26 | 0.74 | 1.01
Nomin. 9.30 0.54 1.00 1.00 1.00 | 0.10 | 0.98
Optim. 9.00 0.47 1.25 0.78 0.54 | 0.47 | 0.98

| Nmb. exceed. | 0 | 1| 0] 0 | 38 27] 2|

Table 5: Statistics for selected accepted parameter values (C(-) < 1.25 - min C(-))

after calibration. The nominal and optimal parameter value and the number
of exceedances of the parameter bound are also indicated.

BC1 |BC2| Al | NH, [ NO3 | H | SO,
Min 0.18 | 0.09 | 0.16 | 0.42 | 0.43 | 0.23 | 0.15
Median || 0.20 | 0.21 | 0.21 | 0.45 | 0.49 | 0.26 | 0.16
Mean 0.23 | 0.22 | 0.21 | 0.48 | 0.51 | 0.31 | 0.17
Max 0.43 | 045 10.32 ¢ 0.75 | 0.71 | 0.65 | 0.25
Nomin. || 0.27 | 0.37 | 0.19 | 0.42 | 0.88 | 0.28 | 0.19
Optim. 0.18 | 0.12 | 0.23 | 0.42 | 0.47 | 0.23 | 0.18

21

Table 6: Statistics for the misfit-contributions C; of the various model outputs; the statistics
concern the selected acceptable parameter values after calibration.
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Figure 6: Comparison of measurements (solid) and results from the nominal model

(dash-dot) and the optimal model (dash).
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after calibration. The nominal values are indicated by a dot (o).
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Figure 8: Histograms for the selected (C'(+) < 1.25 - min C(+)) acceptable parameters after
calibration. Also the associated criterion values are indicated (Crit).
The z-axis for all parameters except F_BC?2, fden reflects the initial parametric
uncertainty range.
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5 Discussion

In information-poor and ill-defined settings, which are typically characterized by scarcity and
inaccuracy of data or incomplete and uncertain process knowledge, a statistical approach to
calibration is often misplaced. A viable alternative is to use a set-theoretic approach which
aims at finding a set of parameter vectors leading to acceptable model results. This requires in
the first place an adequate definition of when to judge the model results as acceptable; in the
second place it requires appropriate means to select which parameters should be calibraied,
and last but not least it demands adequate methods to determine the requested parameter
set.

The first task of defining when model results are considered (in)acceptable will certainly
depend on the problem at hand: the modelling objectives and the quantity and quality of
the available information and data play a major role in this.

Concerning the second task of deciding which parameters should be calibrated it is important
to realize that a reduction of the number of calibrated parameters can be very beneficial for
the success of calibration. Moreover, due to the scarcity and the inaccuracy of the data,
often only a small number (e.g. < 6 — 10) of parameters can be handled satisfactorily. Such
a reduction can be established by performing appropriate sensitivity analyses to detect the
most important parameters which should be calibrated. In addition to the conventional type
of sensitivity analysis in the software package UNCSAM (Janssen, Heuberger, Sanders [1992]),
recently two alternative approaches for sensitivity analysis in a set-theoretic context have
been implemented (Janssen [1995b,1995¢]).

For the third task of determining the set of acceptable parameters, the use of the rotated-
random-scan method was proposed in this report. The rotated-random-scan method is an
iterative Monte Carlo search procedure inspired by Keesman and van Straten [1988,1989],
Keesman [1989,1990]. It updates the currently available subset of acceptable parameter
vectors by iteratively applying rotations or transformations of the parameter space, followed
by a uniform random scan in the transformed space. In this way one hopes to gradually
and efficiently zoom in on the acceptable parameter set, and to determine an appropriate
representative subsample.

The rotated-random-scan procedure appears to be a useful and simple tool for set-valued
calibration, and is moreover applicable in a preliminary stage of conventional calibration
studies to delimit the prior uncertainty range of parameters to be calibrated. The method,
which is available as software (Janssen [1995a]), has been tested on various artificial examples
(Janssen and Sanders [1995]), and has been applied for the calibration of the soil-acidification
model SMART. The tests have clarified the properties of the proposed procedure, and have led
to useful recommendations in making the various user’s choices. The method appears to work
well in characterizing or covering acceptable parameter sets which are connected and regularly
shaped (e.g. box and ellipsoidal shaped sets). The uniform random scan which is used in
the initial step determines for a large part the efficiency of the method. For non-connected
or irregular shaped sets the performance decreases, since the procedure focusses basically on
linear relationships and therefore possibly fails to identify important non-linear dependences.
This situation can be improved by reparametrization, or by using more sophisticated set-
covering methods. The method proposed recently in Klepper and Hendrix [1994a,b] can be
a useful alternative in this context.

The reported case study on SMART showed that the calibration results were somewhat disap-
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pointing: only one parameter could be determined rather accurately, while the uncertainty
reduction in most other parameters is rather marginal. The resulting uncertainty in the
model outputs appears to be fairly large, but the measurements still do not fall completely
within these bands, indicating that the model with the employed input data and the associ-
ated parametrization is not fully able to describe the data. A more detailed calibration study
will be needed to analyse whether this situation can be improved.
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Appendix A: Outline of the Rotated-Random-Scan procedure

In this appendix the various steps are presented which constitute the rotated-random-scan
procedure. Application of this procedure requires a preliminary specification of the numbers
Niniy Neans Nim, indicating respectively the number of samples to be generated in the initiali-
sation step, the number of candidate samples to be generated in each iteration, and the total
number of acceptable samples which one minimally likes to obtain. The various steps of the
procedure are now as follows:

Step 0. Initialization:
Determine N,,; samples by sampling the parameters uniformly between their lower-
and upper bounds. Use can be made of the simple random sampling or of the efficient
Latin Hypercube Sampling technique (Mc Kay et al. [1979]; Iman and Conover [1980]).
Moreover the correction technique of Iman and Conover [1982] can be used to remove
spurious correlations in the sampled values. The software package UNCSAM can be
applied for this initial sampling (cf. Janssen, Heuberger, Sanders [1992]).

Subsequently, by simulating the model with the sampled parameters, and by comparing
the results with the measurements, it is determined which of the N,; sampled parameter
combinations are accepted. These parameter vectors are stored in the set ©,... N,
denotes the number of currently obtained acceptable parameter vectors.

Step 1. Preparation:
Consider the (updated) set 0,.. of acceptable parameter vectors obtained thus far, and
check first whether one has already obtained sufficiently many acceptable parameter
vectors, i.e. [’Is N,.. > Ny,?”], where Ny, denotes the number of acceptable parame-
ter vectors which one minimally likes to obtain. If the answer is affirmative, the search
can be completed. If not, the (sample) covariance matrix X of the accepted parameters
in the original parameter space (#-space, where 8 € RP) should be determined:

vt .=

AR Uiy (A1)

i=1 Neee =1
6% (i) denotes the i-th acceptable parameter vector; 8" denotes the sample mean of the
acceptable parameter vectors. It is assumed that N,.. > p+ 1 to ensure that X1 is
invertible.

Step 2. Scaling:
Scaling is applied primarily to prevent unnecessary numerical errors (rounding/trunca-
tion) due to the possible strongly varying sizes of the parameter values. Moreover it
can serve to focus attention on certain aspects of the parameter range.

First an appropriate scaling-matrix A, for scaling the centralized?® parameters (6% (i) —
6), is determined. A, is a diagonal matrix with positive diagonal entries which depend
on the user-specified scaling option (see below). Subsequently the covariance matrix of
the scaled acceptable centralized parameters (87, = A, - (8% — 67)) is determined:

= A, -SF A, (A.2)

Various options are available for scaling the parameters:

28 . . o . . -
Centralization is applied also due to numerical reasons, to avoid unnecessary accuracy loss due to trunca-
tion and round-off.
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(1) No scaling is used (A, = I).

(2) The acceptable parameters are scaled by their standard deviations (A, = Diag ([c;]7}),
where [cr?'] denotes the standard deviation of the i-th component of the set of acceptable

parameters, 1.e. 0?’ = I[Eti).

This means that the covariance mairix X} of the scaled parameters is equal to the correla-
tion matriz of the acceptable parameters. In this situation, the procedure in fact amounts
to applying principal component analysis (see Morrison [1984]).

(3) Scaling by the ranges of the acceptable parameters in the original parameter space (A; =

Diag ([Ggmax - Gfmm —1), where Olffmm and Hgfmar denote the minimal and maximal value

of the i-th component of the acceptable sampled parameter vectors obtained so far.

(4) Scaling by the (user-specified) ranges of all parameters in the original parameter space
(As = Diag ([6i,maz — 0i,min] '), where 6; min and 6; na, denote the user-specified mini-
mal and maximal value of the i-th component of all sampled parameter vectors.

The scaling affects the subsequent transformation or rotation of the parameter space. In Janssen
and Sanders [1995] it is studied how the applied scaling options influence the final results. See

also the theoretical results in appendix B.

Step 3. Determination of the transformation:
The scaled (centralized) parameter vectors typically show mutual correlations (i.e. the
covariance matrix ¥t is not a diagonal matrix). By applying a suitable transforma-
tion in the scaled (centralized) parameter space the resulting transformed parameters
become uncorrelated. This increases the efficiency of a further exploration of the (trans-
formed scaled) parameter space by the uniform random scanning in the subsequent step.

The desired transformation which renders uncorrelated parameter vectors can be de-
termined in two ways (it is assumed in the sequel that the matrix L7 is invertible, i.e.
there do not exist any (non-trivial) linear relationships between the components of the
acceptable parameter vectors):

(a) Using an eigen-system decomposition?® of the matrix 7:
st=U-A-UT (A.3)

where U is the orthogonal matrix®® of eigenvectors, and A is a diagonal matrix
whose diagonal entries consist of the (non-negative) eigenvalues of X7. The cor-
responding transformed (scaled) centralized parameter vector is defined by:

§:=UT.0,.,=UTA,-(0-6") (A.4)

Hence the associated transformation matrix T, which relates 6 to g (ie. 6 =
T.-(6 —6%)), is equal to
T.:=UTA, (A.5)

The transformed parameter space (é—space) is thus obtained by rotating the coor-
dinate axes in the scaled centralized parameter space (0, .-space) according to the
rotation matrix UZ. Notice that by applying the above compounded transforma-
tion matrix T,, the corresponding covariance matrix of the transformed acceptable

2°If A denotes a n x m matrix, then A7 denotes its transpose (m x n matrix).
3°A n x n real matrix W is called orthogonalif W - wT =1,.
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(centralized) parameters 8+ has become equal to the diagonal matrix A (Note: the

sample mean § is 0, due to centralization):

N )-8 -6

vt o=
2'2:; Nacc_l
= vl u=0T.U-AUT-U=A (A.6)

which means that the transformed acceptable parameters §+() are uncorrelated.

Using the Cholesky decomposition®! of the p x p-matrix £, see Golub and van
Loan [1989]:
yt.=r.17 (A.7)

where L is a lower triangular matrix with positive diagonal elements. The trans-
formed parameter®? is defined by:

0:=L"' - 0,,=L"A,-(6—0") (A.8)
Hence the (currently) associated transformation matrix 7, which relates 6 to 8

(0 =T,-(6 —01)), is equal to
T.:= L7'A, (A.9)

It is clear that the associated covariance matrix of the transformed acceptable

=+
parameters (Note: the sample mean 6 is 0, due to centralization):

IS

- =+ =+
% (B+(i) -0 )@ () -0 )T
i—1 Nacc - ]-
_ L"l.Ej-L‘T:L"l-L-LT-L_TII (A.10)

is equal to the identity matrix. This means that the transformed acceptable pa-
rameters 81 are uncorrelated and have unit variance.

Although the use of the Cholesky-decomposition is preferable to the use of the eigen-
system decomposition with regard to computational effort, it will reveal less clear infor-
mation on the correlation structure of the acceptable parameters (e.g. the eigen-system
decomposition clearly indicates the dominant directions in the parameter space). Notice
moreover that application of the eigensystem decomposition results in a rotation in the
scaled (centralized) parameter space, but application of the Cholesky decomposition
does not (L1 is not a rotation matrix). In Janssen and Sanders [1995] the influence of
the chosen decomposition option is studied in more detail. See also appendix B.

Step 4. Uniform sampling in the transformed parameter space (f-space):

Subsequently new samples (say N.,,) are generated in the transformed parameter space
by sampling each transformed centralized parameter component 6; uniformly between

the bounds (67 6 , which are determined by expanding the minimum and maxi-

t,min? l,max]

mum of the transformed accepted parameter components [0~+ 0F ] according to:

1,min? ~ 2,max

é;‘vmiﬂ = é?,-min - ﬁ : (él-{-max - é;l:min) (All)
é;max = é?:max + /B : (él—.i,—max - é?,_min) (A'12)

3 A similar transformation matrix can be obtained directly (i.e. without the need for computing and decom-
posing the covariance matrix E;") on basis of a () R-decomposition on a signal matrix of the scaled acceptable
parameters. We will not elaborate on this.

321f Bt is invertible, the lower triangular matrix L will also be invertible. Its inverse can be easily determined.
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where the expansion factor g is defined by:

1

ﬁ - (Nacc - 1)

(A.13)

This expansion is used because the sampled parameter points obtained thusfar do not
exactly reflect the bounds of the parameter space, since they have been obtained by a
finitely sized random sample. The specific choice of the expansion factor § is based on
the fact that

~ (Zmax - Zmin)
Zmax = Zmax T ————— A4
+ T (A.14)
can be used as an unbiased estimate®? of the upper-bound of a uniform sample 21, - - -, zn

of N points.

The above sketched uniform sampling can e.g. be performed by simple random sampling
or by the more efficient Latin Hypercube Sampling technique (Mc Kay et al. [1979]; Iman
and Conover [1980]). Moreover the correction technique of Iman and Conover [1982]
can be applied to remove spurious correlations which are introduced due to the finite
number of samples taken. It is expected that Latin Hypercube sampling generates a
more even covering of the transformed parameter space than simple random sampling,
and that the correction technique of Iman and Conover is beneficial in obtaining (near)
uncorrelatedness. See also Janssen and Sanders [1995].

Step 5. Back-transformation to the original parameter space:
The N.,, newly sampled transformed parameters are subsequently back-transformed to
the original parameter space by using the transformation:

9:=0t+T71.6 (A.15)

where T, is the transformation-matrix associated to the eigen-system decomposition
or the Cholesky decomposition (see formulae (A.3), (A.7)). The thus obtained set of
parameters O, will serve as a new set of candidate parameters for subsequent model
simulations.

Step 6. Simulation with candidate parameters in O,,:
Each parameter vector in the candidate parameter set O,,, obtained in the previous
step is used to simulate the model. On basis of the simulation results it is subsequently
determined which parameter vectors are acceptable and which are not. Finally one
returns to step 1 of the sketched procedure.

Remark 3: In the above sketched procedure the desired transformation/rotation is always based
on the (scaled) covariance matrix of the currently available acceptable parameters in the original
parameter space (i.e. using the original coordinates).

An alternative approach would be to express the covariance matrix in terms of the coordinates in
the current transformed parameter space instead, and to base the transformation/rotation on the
decomposition of this matrix. This has the following consequences for the steps of the procedure:

e Step 0: The current transformation matrix T, is initially equal to the identity matrix, and the
initial bounds in the ‘transformed’ parameter space are set equal to the specified upper and
lower bounds on the original parameters.

33Reason for the unbiasedness is the fact that the order statistics zmin and zmax of N samples of a uniform

distribution on the interval [a, b] have expectation a + f\’,:f; and b — ;\’,1“1 respectively.
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e Step 1: Assuming that the current transformation matrix 7;, which has been obtained during
the previous iterations, is available, the covariance matrix of the acceptable parameters in the
transformed coordinates (0, := T¢ - ) is given by:

vho=1,.32t.17 (A.16)

e Step 2: Scaling will be based on the standard deviations or the ranges/bounds of the (accept-
able) parameters in the transformed coordinates. Denoting the diagonal scaling matrix as As ir,
the scaled transformed covariance matrix will be equal to:

E+

s,ir

= Ay e SF - Agtr (A.17)
Notice that this matrix is the sample covariance matrix of the acceptable parameters in the
scaled transformed (centralized) parameter space (s ¢ ir-space; 05 c.op = Mg tr - (Opr — o).

e Step 3: Determination of the transformation is based on the eigenvector-eigenvalue decompo-
sition or the Cholesky decomposition of the matrix Ej',tr. The resulting transformed parameter

will be
(a) when using the eigenvector-eigenvalue decomposition (EI" = UAUT):
b1 =UT 0y orr=UT Agir-(0r —05)=UT Ay - To- (0 —6F) (A.18)

This leads to an update of the current transformation matrix 7, according to:
Tr =0T A4y - T (A.19)
(b) when using the Cholesky decomposition (Ej’tr =L-L%):

ét,- = L_l . 63’”- = L_l N As,” . (0“« —_ §+ = L_l . As,tr . Tc . (6 - g+) (AQO)

ir) —
This leads to an update of the current transformation matrix 7, according to:
TH =L Ay T (A.21)
e Step 4: Subsequently the uniform sampling is performed in the transformed parameter space

(0;,-space), according to similar bounds as used in (A.11) and (A.12).

e Step 5: Back-transformation to the original parameter is performed by:
0:= 0% + [T]10,, (A.22)
where [TF]7! is the inverse of the updated transformation matrix in (A.19) or (A.21).

e Step 6 remains the same.

In Janssen and Sanders [1995] it is studied by means of test-examples how the use of this alterna-
tive approach will affect the results. Their findings are supported by the theoretical results in the
subsequent appendix B.

The rotated-random-scan procedure presented above, is more general than the procedure pro-
posed in Keesman [1989,1990], Keesman and van Straten [1988,1989]. It offers more choices®!
with respect to scaling, transformation determination, sampling technique etc. Moreover the
choice of the expansion factor § in eqn. (A.13) differs slightly from Keesman’s choice.

**Keesman considers scaling based on standard deviations, and applies the eigensystem decomposition.
Uniform sampling of new candidates is performed by means of ordinary Monte Carlo sampling.
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Appendix B: Theoretical considerations on the influence of
working space, scaling and decomposition

In applying the rotated-random-scan procedure the user has to choose between various op-
tions, concerning:

1. Working space: Should one work in the original coordinates, or in the transformed
coordinates?

2. Scaling: Should one apply no scaling to the (transformed) parameters, or should one
apply scaling on basis of the standard-deviations, the ranges of the acceptable parameters
or the ranges of all parameters?

3. Decomposition: Should one apply a transformation on basis of an eigen-system de-
composition or a Cholesky decomposition of the scaled (transformed) covariance matrix?

In order to provide the user with guidelines for making these choices, various numerical ex-
periments were performed in Janssen and Sanders [1995] to study the impact of the above
options on the final results. In this appendix this issue is investigated theoretically, and it is
tentatively indicated in what way the outcomes can differ due to these choices. It is however
difficult to relate these differences directly to the various inidividual options; this will be very
much case-dependent.

In order to ‘prove’ the above statement, two distinct ways (i.e. j = 1,2) are considered of
obtaining new candidate samples in a typical iteration of the rotated random scan procedure,
depending on the user-specified options. Let L% denote the covariance matrix of the ac-
ceptable parameters in the current iteration, as expressed in the original coordinate system.
Assume that the transformed parameter space xg) = TC(]) - (z — z%) is subsequently con-
sidered as working-space, where z+ denotes the sample mean of the acceptable parameters
in the original coordinates. The matrix Tc(j) will be equal to the identity matrix Iy, if the

working space option is equal to 1, i.e. working in the original coordinates; if this option is 2,

)

i.e. working in the transformed coordinates, Tc(j indicates the actual transformation matrix

associated to these transformed coordinates.

)

formed covariance matrix €2; (see the notation in appendix A) is then given by:

Assume moreover that the scaling matrix Aﬁj is applied. The corresponding scaled trans-

Q= AP TE 5+ IO AD (5=1,2) (B.1)
Suppose finally that this matrix is decomposed according to
Q; =V AV (1=1,2) (B.2)

This decomposition refers to the eigensystem decomposition as well as to the Cholesky de-
composition, depending on the chosen decomposition option. If the decomposition option is
(1) (i.e. based on eigensystem decomposition) V; denotes the orthogonal matrix of eigenvec-
tors of ;, and A; is the diagonal matrix of eigenvalues. If the decomposition option is (2)
(i.e. based on Cholesky decomposition) V; is the lower triangular Cholesky factor, and A; is
the identity matrix I,yyp.

During a typical iteration of the rotated-random-scan procedure, new coordinates are defined
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on basis of the above-mentioned decomposition of the scaled transformed covariance matrix
Q; (cf. the procedure described in appendix A):

Fj=T-(e-2")  (j=12) (B.3)
where the transformation matrix TJ- is given by

T =V AP TV (j=1,2) (B.4)
From equation (B.1) it is easily established that the original covariance matrix X+ of the
acceptable parameters, will be equal to a diagonal matrix, when expressed in these new
coordinates: i.e.

T;- S [G)F = A (7=1,2) (B.5)

The transformed acceptable samples i;’ are thus uncorrelated, and therefore an uncorrelated
uniform scan is performed in this transformed space to generate new candidate samples. This
scan is determined by uniform sampling between the associated upper- and lower bounds of
the transformed parameters; these upper- and lower bounds are computed according to the

procedure in step (4) of the rotated-random-scan method (see formulae (A.11),(A.12)).

In order to establish relationships between the results obtained for j = 1 and j = 2, we nor-
malize/standardize the candidate parameters by defining the vector &; by scaling Z; according
to:

. L . )

&= [A;]72 -3 (j=1,2) (B.6)
Notice that uncorrelated uniform sampling in the Z;-space is equivalent to uncorrelated uni-
form sampling in the &;-space. The relation between the original space and the &;-space is

(use equation (B.3)): A
gj=T; (v —z") (j=1,2) (B.7)

where T is the associated transformation matrix:

a _1
T; = [A)]72 T
= A VTAR T (G=1,2) (B3)

As a result of this additional scaling the transformed acceptable parameters have a covariance
matrix in the &;-space which is equal to the identity matrix, since

Tj PR [Tj]T = Ipxp J=1 2) (B.9)

From this equality it follows that:

A (20) = () (B.10)
and thus
W =1y [T1]7" (B.11)
fulfils
W-WT =Ly, (B.12)

Le. Wis an orthogonal matrix. From this a simple relationship can be obtained between T1
and T5:
Th=W:-T3 (B.13)
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for the orthogonal matrix W in (B.11). Consequently the #;- and #,-space are related as:

.fg = Wii'l (B14)

The previous relationships can now be used to indicate how the results of the rotated-random-
scan procedure are affected by the chosen options. Suppose therefore that a specific set of
currently available acceptable samples O, with (sample) covariance matrix ¥t is taken
as starting point. Depicting this set in the Z;-space and the Z,-space respectively, renders
the sets G)Q)T and @E?)T, which are rotated versions of each other, due to relationship (B.14).
Notice that the parameters in these sets have covariance matrix I. For ease of demonstration,
we suppose that the acceptable set Ol in the #1-space is the shaded square [-1, 1] x [-1,1]
depicted in figure 11 (a), while (—)&?)T is the same square, but rotated over 45 degrees (shaded
diamond in figure 11 (b).

According to step 4 of the rotated-scan procedure (see appendix A), first the (expanded)
minima and maxima are determined of the transformed acceptable parameters in the £;- and
&o-space. Subsequently, uniform sampling is performed between these (expanded) ranges;
this results e.g. in the candidate samples &1 cq4n and &2 con, Which lie in the enclosing squares
indicated in figure 11 (a) and (b). In the example we have employed an expansion factor of
1.1. Notice that the candidate set in the space & is larger than in the space Z;.

These candidate samples are subsequently back-transformed into the original coordinates
according to

eM —zt = T iy can (B.15)
e — gt = Tyl i cen (B.16)

Notice that (B.16) can be rewritten as (use B.13):
@ — gt = TTHWT - 25 can] (B.17)

thus illustrating the relationship with z(): [2(2) — 5] is obtained by first rotating &2 can
according to WT (i.e. the inverse of the rotation characterized by W), and then back-
transforming it according to Tl_l, while [:z:(l) — z1] is obtained by directly back-transforming
21 cqn according to T T 1 The difference between the thus obtained new candidates according
to the first set of options (i.e. using Tc(l),Agl),Vl,Al), and the second set of options (i.e.
using TC(Z), Ag2), Va, Ag) is illustrated in figure 12, where the candidates & cqn (dotted square)
and the back-rotated W7T - &9,can (hatched diamond) are depicted in the &;-space, i.e. before
back-transformation to the original space by the matrix Tfl. Notice that the different options
render candidate-sets of different sizes and orientation in the Z;-space. It is however difficult
to relate these differences directly to the specific choices of working-space option, scaling
option and decomposition option, since the resulting matrices W and Ty are determined by
these options in an indirect way. The experimental results in Janssen and Sanders [1995]
indicate however that the influence of the options is not critical.
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€:) (b)

Figure 11: The set of currently available acceptable samples in the #;- (a) and the
#y-space (b) (shaded figures), as well as the set of new (uniform, uncorrelated)
candidate samples in these spaces (enclosing squares).






