NATIONAL INSTITUTE OF PUBLIC HEALTH AND ENVIRONMENTAL PROTECTION BILTHOVEN

Report nr. 773002003

SCENARIOS FOR GLOBAL EMISSIONS FROM AIR TRAFFIC.

The development of regional and gridded (5°x5°) emissions scenarios for aircraft and for surface sources, based on CPB scenarios and existing emission inventories for aircraft and surface sources.

J.G.J. Olivier

July 1995

This study was commissioned by the Directorate-General for Environmental Protection, Department Sound and Transportation, of the Dutch Ministry of Housing, Physical Planning and Environment, project number 773 002, within the framework of the Dutch research programme on Air Traffic and Air Pollution (LuLu).

MAILING LIST

```
Ir. A.J. Baaijen, Directeur Geluid en Verkeer van het DG voor Milieubeheer Mr. H.A.P.M. Pont, Directeur-Generaal Milieubeheer Dr.Ir. B.C.J. Zoeteman, plv. Directeur-Generaal Milieubeheer Mr. G.J.R. Wolters, plv. Directeur-Generaal Milieubeheer Drs. P.E. de Jongh, plv. Directeur-Generaal Milieubeheer
    1
2
3
4
5
                                                                                                              Ir. J. Polman, DGM/GV
Ir. J.H.A.M. Peeters, DGM/GV
Drs. P.A. de Ruiter, DGM/GV
Ir. F. van Deventer, DGM/LE
Dr.Ir. B. Metz, Themacoördinator Klimaatverandering, DGM/LE
Mr.J. Cozijnsen, DGM/LE
Dr. K. Krijgsheld, DGM/LE
Mr. W.J. Lenstra, DGM/LE
Dr. L.A. Meyer, DGM/LE
Ir. S. Smeulders, DGM/LE
    13
    14
15
                                                                                                  Ir. S. Smeulders, DGM/LE

Mr.K. Adams, EC/DG XI, Brussels (B)
Drs. R. Baart, PSB, Amsterdam
Dr. M. Barrett, Earth Resources Research, London
Drs. E. van Beek, Royal Dutch Airforce, Den Haag
Dr. J.J.M. Berdowski, TNO-MW, Delft
Ing. A. van de Berg, Royal Dutch Airforce, Den Haag
Mr.A.J.M. van dem Biggelaar, St. Natuur & Milieu, Utrecht
Dr. Mr. J. van der Bij, IOO, Den Haag
Dr. J. den Boeft, TNO-MW, Delft
Dr. Ir. E. Boletis, Fokker Aircraft BV, Schiphol
Dr. H. ten Brink, ECN, Petten
Mrs. J. Corfee-Morlot, IEA/OECD, Paris (F)
Dr. W.P.A. van Deursen, Resource Analysis, Delft
Ir. R. van Drimmelen, Nl.R. Amsterdam
Dr. R. Dunker, EU/DG XII, Brussels (B)
Dr. R. Egli, Schaffhausen (CH)
Ir. W. Fransen, KNMI, De Bilt
Dr. R. M. Gardner, DOT, London (GB)
Ir. H.B.G. ten Have, NLR, Amsterdam
Ir. J.H.J. Hulskotte, TNO, Apeldoorn
Mr.P. Hurst, WWF, Gland (SW)
Ir. C. Huygen, TNO-MW, Delft
Dr. M. Jonas, IIASA, Laxenburg (AU)
Dr. A. de Jong, CPB, Den Haag
Dr. C. Johnson, AEA, Harwell (GB)
Dr. H. Kelder, KNMI, De Bilt
Dr. N. Kilde, RISØ, Roskilde (DK)
Drs. T. Kolkena, Ministerie van Economische Zaken, Den Haag
Dr. M. Lecht, DLR, Oberpfaffenhofen (D)
Dr. D.S. Lee, AEA Technology, Harwell (GB)
Prof. J. Lelieveld, Landbouw Universiteit (LUW), Wageningen
Dr. D. H. Lister, Defence Research Agency, Pyestock (GB)
Dr. J.-F. Müller, OMA, Brussels (B)
Dr. P.J. Newton, DTI, London (GB)
Dr. H. Ott, EU, Brussels (B)
Dr. P.J. Newton, DTI, London (GB)
Dr. H. Ott, EU, Brussels (B)
Dr. J.-F. Müller, OMA, Brussels (B)
Dr. J.-F. Müller, OMA, Brussels (B)
Dr. J.-R. Weller, RLD, Den Haag
Ir. J.A. Peper, Transavia, Amstelveen
Ir. F. M. Post, RLD, Den Haag
Ir. J.A. Peper, Transavia, Amstelveen
Ir. F. M. Post, RLD, Den Haag
Ir. J.A. Peper, RLD, Den Haag
Ir. J.A. Peper, RLD, Den Haag
Ir. J.A. Peper, RLD, Ben Haag
Ir. J. Schipper, LBL, Berkeley, Ca. (USA)
   16
17
                                                                                                                 Mr.K. Adams, EC/DG XI, Brussels (B)
```

```
Prof.Dr. U. Schumann, DLR, Oberpfaffenhofen (D)
Mrs. H. Segal, FAA, Washington (USA)
Prof.Dr. J. Slanina, ECN, Petten
Mr. J.P.W.M. Smeets, KLM, Amsterdam
Drs. H.J.M. Snoep, Ministerie van Economische Zaken, Den Haag
Dr. J. Veldhuis, RLD, Den Haag
Prof.Dr. P. Vellinga, VU, Amsterdam
Dr. P.F.J. van Velthoven, KNMI, De Bilt
Dr. C.T. Walker, AEA Technology, Risley, Warrington (GB)
Dr. R.T. Watson, NASA, Washington (USA)
Dr. W. Wauben, KNMI, De Bilt
Dr. H.L. Wesoky, NASA, Washington (USA)
Mr. P. Wiederkehr, OECD, Paris (F)
Dr. P. Wiesen, Bergische Universität, Wuppertal (D)
Dr. D.A. Wuebbles, LLNL, Livermore (USA)
Drs. E. Zonneveld, CBS, Voorburg
Drs. S. Zwerver, Secretariaat NOP-MLK, Bilthoven
 60
 61
62
  63
  64
  65
 66
67
 68
69
70
71
72
73
74
  75
76
 77
                                            Depot Nederlandse publicaties en Nederlandse Bibliografie
 78
79
80
                                            Directie RIVM
                                            Dr. R.M. van Aalst
Dr. J.A. Alcamo
                                            Drs. A.R. van Amstel
Ir. J.P. Beck
 81
82
83
84
85
86
87
                                           Ir. A.H.M. Bresser
Ir. P.H. Bruinsma
Ir. N.D. van Egmond
Drs. L.H.M. Kohsiek
                                          Drs. L.H.M. Kohsiek
Ir. F. Langeweg
Dr. F.A.A.M. de Leeuw
Dr. R.J.M. Maas
Ing. C.W.M. van der Maas
Dr. D. Onderdelinde
Ing P. van de Poel
Drs. J.P.M. Ros
Ir. J. Spakman
Dr.Ir. R.J. Swart
Drs. H. The
Dr. R. Thomas
Dr. Ir. G. J. M. Velders
 96
                                          Dr. Ir. G.J.M. Velders
Ir. K. Visscher
Drs. D.L. Veenstra
Drs. G.P. van Wee
98
 99
 100
 101
102-106
                                           Author
                                          SBD/Voorlichting en Public Relations
Bibliotheek RIVM (2x BIB, LAE, LLO)
Bureau Projecten en Rapportenregistratie
Reserve-exemplaren RIVM
 107
 108-111
112
113-180
```

PREFACE

This report describes the part of the global environmental assessments of air traffic performed by RIVM for the Advisory Group 'LuLu', that is related to global emissions. This work has been carried out within the framework of the Dutch research in support of the preparation of the Memorandum to the Parliament on 'Air traffic and Air pollution', which has the Dutch acronym 'LuLu' (of 'Luchtvaart en Luchtverontreiniging').

In the study current trends of global emissions of greenhouse gases from air traffic were analysed and related to other anthropogenic emissions. To this end economic assumptions of three reference scenarios were used, as described by the Dutch Central Planning Bureau, since they are well known in the Netherlands and often used in Dutch economic and environmental scenario studies. In addition, to allow for a comprehensive and consistent assessment by atmospheric models, three dimensional distributions of emissions from aircraft and from other sources were generated for present and future emissions related to the baseline scenarios. More details about this topic can be found in Veenstra *et al.* (1995).

This study is unique in that it combines the results of an air traffic projection model with a gridded air traffic emissions database to generate for future years three dimensional spatial distributions of aircraft emissions using well recognized and documented reference scenarios, thus allowing a comprehensive assessment of the atmospheric impact of aircraft emissions relative to other sources.

The assistance and co-operation of the following persons and organizations is greatfully acknowledged: dr. C.T. Walker of the (former) Warren Spring Laboratory (WSL) for the use of the WSL air traffic database and making the necessary modifications, dr. P.J. Newton of the Aerospace Division of the British Department of Trade and Industry (DTI) for performing computer runs with the DTI civil air traffic demand projection model, dr. R.M. Gardner of the British Department of Transport (DOT) for his advice on the use of gridded aircraft emissions inventories, drs. J. Veldhuis of the Dutch Ministry of Transport, Directorate-General of Civil Aviation (RLD) for his advice and providing economic information related to the CPB scenarios, ir. J.A. Peper formerly at the National Aerospace Laboratory (NLR) for his advice on technological air traffic scenario variables and for providing emission factors for carbon monoxide to the WSL database, dr. A.K. Mortlock (McDonnell-Douglas) for providing information on the seasonal variation of air traffic, dr J.-F. Müller of the Belgian Institute for Space Aeronomy (OMA) for assistance and providing the gridded inventory of surface source emissions, and dr D.A. Wuebbles of LLNL and Mrs K. Sage of NASA for providing the military air traffic emissions inventory part of the NASA inventory. Drs R. Baart of PSB developed the EDGAR software to handle the emission inventories on 5°x 5° resolution.

To improve to readability of this report for readers of different backgrounds a list of abbreviations has been added to the report.

TABLE OF CONTENTS

Pre Tab Tab Figu Abb Abs	iling list face ble of contents ble captions ure captions breviations and units stract (English) ecute summary nenvatting (Dutch)	ii iv v vii ix xi xiii xiv xix
1.	Introduction	1
2. 2.1 2.2	 2.1.1 Global total emissions 2.1.2 Spatial distribution of emissions: existing inventories 2.1.3 Comparison of WSL and NASA inventories 2.1.4 Temporal distribution of emissions 2.1.5 Data preparation for atmospheric models 	3 3 5 8 13 15 17 17
3. 3.1 3.2 3.3 3.4	Methodology for scenario construction Objective Aspects to be considered Requirements within 'LULU' Outline of the approach	19 19 19 21 21
4. 4. 2 4. 3 4. 4 4. 5 4. 6	4.1.1 Assumptions 4.1.2 General description of CPB scenarios ER, GS and BG Additional assumptions for air traffic scenarios Air traffic model selection	25 25 25 25 28 28 30 32 35 35
5.	Policy alternatives for air traffic scenarios	37
6. 6.1 6.2 6.3	Scenario results Projection of passenger-km Global aircraft emission projections Comparison of aircraft emissions with other sources	39 39 39 46
7.	Integrated policies for CO ₂ and NO _x emissions	54
8.	Conclusions	60
Refe	erences	62

APPENDICES:

A:	Decision points for scenarios for global environmental assessments of air traffic.	67
B :	Overview of models to generate emissions scenarios for air traffic.	69
C:	Emissions and fuel consumption in the NASA/HSRP global total air traffic inventory for 1990.	71
D:	Emission factors for NO_x and CO used in the WSL civil air traffic inventory for 1989.	73
E:	Characterization of CPB scenarios ER, GS and BG.	75
F :	Example of ticket price assumptions related to CPB scenarios.	77
G:	Regional subdivisions of CPB, DTI, ABC/WSL and IATA	79
H:	Aircraft types and distance ranges of DTI (seat bands/ranges) and WSL (types/ranges).	81
I:	Example of DTI scenario results aggregated to LULU regions, links and aircraft/distance type	83
J:	Documentation provided with the EDGAR/LuLu air traffic results for the ER0 scenario (1990, 2003 and 2015).	87
K :	Documentation provided with the EDGAR/LuLu surface sources results for the ER0 scenario (1990, 2003 and 2015).	89
L:	Fuel consumption by air traffic in USA in EIA scenario.	91
M :	Global jet fuel consumption: regional distribution and annual growth.	93

TABLES

Table 2.1:	Fuel combustion in the WSL database: original data and scaled to 1990.	3
Table 2.2:	Fleet average emission factors (in g/kg) for 1990: WSL, NASA, LULU.	4
Table 2.3:	Global emissions in 1990 from air traffic and from anthropogenic sources.	5
Table 2.4:	Comparison of global emissions of NO_x , CO and CH_4 in 1990 per category as estimated by Müller and by IPCC.	18
Table 4.1:	GNP development per region in CPB scenarios ER, GS and BG (index; 1990 = 1).	26
Table 4.2:	Common assumptions about ticket prices, autonomous development of the fleet average Specific Fuel Consumption (SFC), Emission Factors (EF), and Load Factors (LF) for air traffic scenarios ER, BG and GS.	29
Table 4.3:	Definition of LULU regions.	32
Table 4.4:	Definition of LULU aircraft types and ranges.	32
Table 4.5:	Comparison between GNP growth rates of CPB scenarios and IPCC IS92 scenarios.	33
Table 4.6:	Global surface emissions per source category related to CPB scenarios ER, GS and BG (derived from selected IPCC scenarios).	34
Table 4.7:	Calculation scheme for present and future levels of fuel consumption (FC) and emissions (EM), based on Seat-Km-Offered (SKO), Load factors (LF) and Emission Factors (EF).	35
Table 5.1:	Additional assumptions for the effect of alternative policies in aircraft emission scenarios.	37
Table 6.1:	Indexed development of Passenger-km in the ER, BG and GS scenarios.	41
Table 6.2.a:	Aircraft and energy-related emissions of CO ₂ , N ₂ O and CH ₄ for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).	43
Table 6.2.b:	Aircraft and energy-related emissions of NO _x and SO ₂ for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).	44
Table 6.2.c:	Aircraft and energy-related emissions of CO and VOC for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).	45
Table 6.3:	Index of aircraft emissions as fraction of energy-related emissions for reference scenarios and alternative policies.	50
Table 7.1:	Factors affecting future CO ₂ from aircraft and fleet average changes in 2015.	54
Table 7.2:	Factors affecting future NO _x from aircraft and fleet average changes in 2015.	54
Table 7.3:	Assumptions on the development of Specific Fuel Consumption (kg fuel/P-km).	55
Table 7.4:	Assumptions on the development of average NO _x emission factor (g NO ₂ /kg fuel).	55

Table 7.5:	Development of average NO_x emission index (g NO2/P-km), including SFC development.	55
Table 7.6:	Emission scenarios for CO ₂ from air traffic for different policy alternatives (Mton CO ₂ and index).	57
Table 7.7 :	Emission scenarios for NO_x from air traffic for different policy alternatives (kton NO_x and index).	58

FIGURES

Figure 2.1:	Spatial distribution of NO_x emission at 6-13 km in 1989 in the WSL database on a $5^{\circ}x5^{\circ}$ grid.	6
Figure 2.2:	Altitude distribution of NO _x and CO emissions per region/link.	7
Figure 2.3:	Altitude distribution of fuel consumption according to the WSL and NASA air traffic database.	9
Figure 2.4:	Spatial distribution of fuel consumption in the NASA database on 1°x1° grid (1990).	10
Figure 2.5:	Global distribution of fuel consumption by aircraft at 0-1 km altitude (LTO cycle) in the WSL database (5°x5°).	11
Figure 2.6:	Global distribution of fuel consumption by aircraft at 0-1 km altitude (LTO cycle) in the NASA database (1°x1°).	12
Figure 2.7:	Altitude distribution of fuel consumption of air traffic per hemisphere in 1990.	13
Figure 2.8:	Seasonal variation of civil air traffic by IATA region/flow (seat-km, based on OAG passenger air traffic data from 1976 through 1991).	14
Figure 2.9:	Time profile for aircraft activities within LuLu (based on Mortlock, 1994).	15
Figure 2.10:	Spatial distribution of NO_x emissions from surface sources in the Müller database on $5^{\circ}x5^{\circ}$ grid (1990).	16
Figure 3.1:	Organization of environmental effect calculations for LuLu.	20
Figure 4.1:	Regional economic growth assumptions in CPB scenarios ER, GS and BG.	27
Figure 4.2:	Outline of structure and data flows of the civil aircraft market forecast model of DTI.	31
Figure 6.1:	Indexed development of Passenger-km in scenarios ER, BG and GS.	40
Figure 6.2:	Indexed development of Seat-km by region and by aircraft type in ER scenario.	42
Figure 6.3.a:	Global aircraft emissions of CO ₂ , N ₂ O and CH ₄ for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).	47
Figure 6.3.b:	Global aircraft emissions of NO _x and SO ₂ for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).	48
Figure 6.3c:	Global aircraft emissions of CO and VOC for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).	49
Figure 6.4.a:	Global emissions of CO ₂ , N ₂ O and CH ₄ from aircraft related to energy use for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).	51

Figure 6.4.b:	Global emissions of NO_x and SO_2 from aircraft related to energy use for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).	52
Figure 6.4.c:	Global emissions of CO and VOC from aircraft related to energy use for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).	53
Figure 7.1:	Policy alternatives for global emissions of CO ₂ from air traffic.	57
Figure 7.2:	Policy alternatives for global emissions of NO _x from air traffic.	58

ABBREVIATIONS AND UNITS

AL Activity Level

ANCAT Abatement of Nuisances Caused by Air Transport (environmental committee of ECAC)

BG Balanced Growth (CPB scenario)

BG0 Balanced Growth (CPB scenario), with DTI assumptions on air fares

CBP Central Planning Bureau

CH₄ Methane

CHI China (CPB region)

CIS Commonwealth of Independent States (i.e. former USSR)

CO Carbon monoxide CO₂ Carbon dioxide

CPE Centrally Planned Europe (i.e. Eastern Europe and the former USSR)

DAE Dynamic Asian Economies (CPB region)

DC Developed Countries (OECD countries) (CPB region)
DTI Department of Trade and Industry (UK Ministry)

ECAC European Civil Aviation Conference

EDGAR Emission Database for Global Atmospheric Research (RIVM)

EF Emission Factor (Emission Index) EFTA European Free Trade Association

EIA Energy Information Administration (of US-DOE)

EM Emission

ER European Renaissance (CPB scenario)

ERO European Renaissance (CPB scenario), with DTI assumptions on air fares

EU European Union
FTP File Transfer Protocol
FC Fuel Consumption

GATT Global Agreement on Trade and Tariffs

GNP Gross National Product
GS Global Shift (CPB scenario)

GSO Global Shift (CPB scenario), with DTI assumptions on air fares

HSCT High Speed Civil Transport HSRP High-Speed Research Programma

H₂O Water (vapour)

IATA International Air Transport Organization

IEA International Energy Agency

IIASA International Institute for Applied Systems Analysis

IPCC Intergovernmental Panel on Climate Change

IS92 IPCC Scenario constructed in 1992

KNMI Royal Netherlands Meteorological Institute LDC Less Developed Countries (IPCC/CPB region)

LDC+ Less Developed Countries plus Australia and New Zealand (LULU region)

LF Load Factor (fraction of seats occupied)

LH Long Haul

Link (i.e. all flights from one world region to another region)

LLO Laboratory for Air Research (RIVM)

LTO Landing and Take-Off

LuLu, LULU Luchtvaart en Luchtverontreiniging (Dutch acronym for 'Air traffic and Air pollution')

N Nitrogen (element basis)

NA North America; Not Available; Not Applicable NASA National Aeronautics and Space Administration

NLR National Aerospace Laboratory

NME New Market Economies (CPB region)

NO_x Nitrogen oxide (NO and NO₂)

N₂O Nitrous oxide

OAG Official Airline Guide

OECD Organisation for Economic Cooperation and Development

PMMS Project Mainport and Environment Schiphol rLDC Rest of Less Developed Countries (CPB region)

S Sulphur (element basis)

SFC Specific Fuel Consumption (kg fuel per P-km or per S-km)

SH Short Haul SO₂ Sulphur dioxide

SST Super Sonic Transport

TC Traffic Conference (IATA area)

TPES Total Primary Energy Supply (IEA definition)

TNO Netherlands Organization for Applied Scientific Research

VAT Value Added Tax

VOC Volatile Organic Compounds (here assumed to be equal to 'unburned hydrocarbons')

WE Western Europe (OECD Europe)
WSL Former Warren Spring Laboratory

UN United Nations

UNEP United Nations Environment Programme

3D Three-dimensional

Units

Btu British Thermal Unit (1005.04 Joule)

EJ Exa Joule (10¹⁸ Joule) kton kiloton (1 000 metic tonne) Mton Megaton (1 000 000 metric tonne) Pg Peta gramme (10¹⁵ gramme)

P-km Passenger-kilometre

S-km Seat kilometre (irrespective whether of not it is occupied)

SKO Seat Kilometres Offered
Tg Tera gramme (10¹² gramme)

t-km tonne-kilometre

ABSTRACT

An estimate was made of present global emissions from air traffic using statistical information on fuel consumption, aircraft types and applying emission factors for various compounds. To generate scenarios for future emissions from air traffic, assumptions were used regarding the development of the volume of air traffic, of specific fuel consumption and of the emission factors. In addition, some policy alternatives were calculated in which a number of measures were implemented to reduce aircraft emissions. In co-operation with the UK Department of Trade and Industry (DTI) scenarios of the development of the volume of global air traffic have been constructed, using economic growth figures from three scenarios defined by the Dutch Central Planning Bureau (CPB), labelled 'European Renaissance' (ER), 'Global Shift' (GS) and 'Balanced Growth' (BG). Combined with assumptions on the development of specific fuel consumption and on the emission factors global emission scenarios for air traffic were constructed for the years 2003 en 2015.

Current trends of global emissions of greenhouse gases from air traffic show for the period 1990-2015 a substantial autonomous growth of about 140-190% for NO_x and between 180-250% for other compounds. Global totals appear to be rather insensible with regard to the economic scenarios used for the projections. Related to other energy-related emissions, the growth will be larger since air traffic is expected to grow faster than other energy consumption.

Furthermore, indications are given of the maximum potential of policy measures to reduce aircraft emissions globally. Depending on the compound, emissions could be reduced substantially in 2015 (typically 25% compared with the reference scenarios), if strong technological measures would be implemented to a high degree (without retrofits of the current fleet). The cumulative effect of integrated (technical, operational or economic) control policies can be substantial, in particular with regard to NO_x emissions. The results indicate that a substantial limitation - in some cases even a reduction in absolute figures - of the uncontrolled growth of emissions may be achieved, provided that the assumed strong technological development would indeed occur and were implemented to a high degree, and were combined with other (operational and economic) policy measures.

The calculated future global emissions were spatially distributed in three dimensions using the 3D air traffic database of Warren Spring Laboratory (WSL) (now: AEA, Harwell) and emission factors defined by WSL and the Dutch National Aerospace Laboratory (NLR). The data from this database were aggregated and included as Version 1 of the Emissions Database for Global Atmospheric Research (EDGAR) of RIVM/TNO. Subsequently, the EDGAR functionality was used to generate 3-dimensional distributions of emissions for the years 2003 and 2015. Combined with time profiles, which were compiled from data provided by McDonnell-Douglas, these 3D emissions scenarios were used for atmospheric-chemical research. The cruising altitude per aircraft type and the seasonal variation were assumed to stay constant in time.

This study combines the results of an air traffic projection model with a gridded air traffic emissions database to generate for future years three-dimensional spatial distributions of aircraft emissions using well recognized and documented reference scenarios, thus allowing a comprehensive assessment of the atmospheric impact of aircraft emissions relative to other sources. This complements the aggregated comparison of global emissions from aircraft and other sources, such as presented in this report, and provides pivotal information for environmental assessments of the impact of the emissions by atmospheric models.

EXECUTIVE SUMMARY

This report describes the part of the global environmental assessments of air traffic performed by RIVM for the Advisory Group 'LuLu', that is related to global emissions of greenhouse gases. This work has been carried out within the framework of the Dutch research in support of the preparation of the Memorandum to the Parliament on 'Air traffic and Air pollution', which has the Dutch acronym 'LuLu' (of 'Luchtvaart en Luchtverontreiniging'). In this study current trends of global emissions of greenhouse gases from air traffic were analysed and related to other energy-related emissions. To this end the regional GNP assumptions of three reference scenarios were used, as described by the Dutch Central Planning Bureau (CPB). Furthermore, indications are given of the potential of policy measures to reduce aircraft emissions globally.

In addition, to allow for a comprehensive and consistent assessment of these scenarios by atmospheric models, three-dimensional distributions of emissions of nitrogen oxides (NO_x), methane (CH₄) and carbon monoxide (CO) from aircraft and from other sources were generated for present and future emissions related to the baseline scenarios, based on available emission inventories at 5°x5°x 1 km. To relate regional air traffic demand projections with the spatial emission inventory, regions and aircraft types were aggregated to a common level in order to match the results of the projection model with the groupings identified in the gridded inventory. A similar type of aggregation was done for the surface sources.

The objectives of this study were: (1) to estimate and analyse current trends of global and regional emissions of greenhouse gases from air traffic and to relate these to other anthropogenic emissions, (2) to show the possible impact of policy measures to reduce aircraft emissions globally, and (3) to estimate the associated three dimensional distribution of emissions from aircraft and from other sources. The latter part required the availability of gridded inventories of present emissions of air traffic and other sources and scenarios describing trends for source categories, that could be related to the gridded emissions inventories.

For the aggregate calculations the following compounds were considered: the direct greenhouse gases CO₂, CH₄ and N₂O, and the indirect greenhouse gases NO_x, SO₂ (also acidifying gases), CO and VOC (also gases contributing to the formation of photochemical smog). Since NO_x, CH₄ and CO are all precursors of tropospheric ozone, which is both a toxic compound and enhances radiative forcing (greenhouse effect), these are considered the most important gases for the atmospheric models used in the LULU programme. According to recent assessments by the Intergovernmental Panel on Climate Change (IPCC) NO_x emissions from aircraft are most important

for the formation of tropospheric ozone, whereas the gases CO_2 and NO_x appear to be compounds of air traffic emissions which contribute most to the enhanced greenhouse effect.

Present emissions

Present emissions of various compounds from global total air traffic were calculated using global jet fuel consumption data for 1990 (Table 2.1) and aggregate, fleet average emission factors for NO_x from the air traffic database of Warren Spring Laboratory (WSL) and for other compounds from other sources (Table 2.2). When resulting global air traffic emissions are compared with other energy-related emissions, CO₂, NO_x en VOC appear to contribute about 2% to total emissions from fossil fuel combustion (Table 2.3). Emissions of CH₄, CO and SO₂ contribute about 0.1% or less, whereas the share in the emission of N₂O is rather uncertain with a range of 1 to 13%.

Reference scenarios

Using GNP assumptions of three CPB scenarios "European Renaissance" (ER), "Global Shift" (GS) and "Balanced Growth" (BG) of the CPB (Table 4.1), together with specific assumptions regarding air traffic (load factor, ticket prices) and with the assistance of the UK Department of Trade and Industry (DTI), which was willing to perform a number of scenario runs with their civil air traffic projection model, it was possible to generate three reference aircraft emissions scenarios. By incorporating assumptions about global average load factors, specific fuel consumption and emission factors (Table 4.2), the projected Seat-Km-Offered were converted into emissions for the years 2003 and 2015. Emissions from air traffic were compared with other energy-related emissions using IPCC estimates for both current and future emissions. By relating one of the IPCC IS92 scenarios to one CPB scenario, estimates of future global aircraft emissions were compared with global surface source emissions (Table 6.2).

From the scenario studies it is tentatively concluded that there will likely be a substantial growth of global aircraft emissions in the base case of autonomous development, also including the substantial effects of the assumed autonomous improvement of the fleet average Specific Fuel Consumption (-12.5%) and load factor (+4%) in 2015 (Table 6.3): the *autonomous growth* by 2015 of global air traffic emissions is somewhere between 140-190% for NO_x and between 180-250% for other compounds. The results of the three reference scenarios in terms of global total emissions show only minor differences, in particular when compared to the overall growth rates. The contribution of North America to total aircraft emissions will remain high, but by 2015 the share of the Far East has increased almost to a similar level (Figure I.1).

The very low emissions of methane, sulphur dioxide and carbon monoxide can be neglected (Table 6.2). Although nitrous oxide emission levels are rather uncertain, they are negligible when compared to the total of all anthropogenic sources (Tables 6.2 and 4.6).

Policy alternatives

Per compound (except for nitrous oxide) the effect on emissions of one technical policy measure was added to illustrate the impact of additional policy on aircraft emissions. If strong technological measures are implemented to a high degree in new aircraft (Table 5.1), this could reduce emissions in 2015 substantially (typically 25%, with a range of 10-40% without retrofits). Reduction of sulphur dioxide emissions requires a change in the fuel quality, whereas other emissions are reduced by technical improvement of the engines (or indirectly by reducing the aerodynamic drag of the aircraft, or by operational measures such as an increase of the load factor). Assuming no additional policies for other energy-related emissions, the share in 2015 in energy-related emissions could be effected by individual measures as follows (Table 6.3):

- * NO_x and SO₂: controlled emissions share may be stabilized (GS), or reduced up to 40% (ER);
- * CO and VOC: controlled emissions share may be stabilized (ER), or growth limited up to 40% (GS);
- * CO₂, CH₄ and N₂O: controlled growth of the share limited to 40% (ER) to 90% (GS), except for N₂O in GS (130%).

These percentages are only meant to give an indication of what could be achieved 'at maximum' by individual technical control options; the practical potential is a fraction of this. Thus, NO_x and SO_2 emissions from aircraft may be technically controlled most effectively, whereas CO_2 emissions appear to be most difficult to control.

Integrated policies

Subsequently, it was illustrated for CO_2 and NO_x that the cumulative effect of integrated control policies by applying different control options - either being technical, or operational or economic - can be substantial, in particular with regard to NO_x emissions (Table 7.7; Figure 7.2). With respect to CO_2 emissions the selected examples show that the effect of each type of control option can be of a similar size (Table 7.6; Figure 7.1) and that the combined effect on CO_2 and NO_x emissions may result in a substantial limitation, or for NO_x even a reduction in absolute figures, of the uncontrolled growth of emissions - if the assumed strong technological development is indeed taking place and is implemented to a high degree.

Spatial emission scenarios; seasonal variation

With the available gridded emission inventories at 5°x5°x 1 km resolution for air traffic, provided by Warren Spring Laboratory (WSL) and for surface sources (including the monthly variation), provided by J.-F. Müller, we generated 3D emission fields related to the regional emission scenarios as input for atmospheric modellers. To this end the WSL base year emissions data for NO_x and, with support of NLR, of CO, calculated and aggregated to LULU regions/aircraft and to the 5°x5°x0.5 km LULU grid, were extracted from the WSL database and included as Version 1 of RIVM's global emissions database EDGAR. Information on the monthly variation of air traffic provided by Mortlock completed the air traffic data required by atmospheric models of KNMI and LLO. Using the EDGAR functionality, 3D emissions for NO_x and CO (and 3D fuel consumption) were calculated for the years 2003 and 2015 for the reference scenarios using different growth rates per region/aircraft type and a globally uniform development of emission factors, specific fuel consumption and load factors. Subsequently, the results were extracted from the database and supplied to modellers at KNMI and RIVM-LLO, together with temporal information (monthly variation).

Regarding the temporal distribution of air traffic, it was shown that in particular flights between North America and (Western) Europe show a very strong seasonality effect, as is the case for flights within Europe. This is an important factor to take into account since the height of the tropopause also varies substantially per season.

For the surface source emissions a similar procedure was followed. The data provided by Müller were first converted to the required 5°x5° LULU grid and then included as Version 1 of the Emission Database for Global Atmospheric Research (EDGAR) of RIVM/TNO. From the emissions of IPCC source categories indices for the development of global emissions were derived for the sources distinguished by Muller. Using the EDGAR functionality, emissions of NO_x, CH₄ and CO were calculated for the three scenarios using different, though globally uniform, growth rates per Müller category. Subsequently, as done for aircraft emissions, the results were extracted from the database and supplied to KNMI and RIVM-LLO.

Conclusions

Current trends of global emissions of greenhouse gases from air traffic show for the period 1990-2015 a substantial autonomous growth of about 140-190% for NO_x and between 180-250% for other compounds. Global totals appear to be rather insensible with regard to the quite different economic scenarios used for the projections. Related to other energy-related emissions, the growth will be

larger since air traffic is expected to grow faster than other energy consumption.

Furthermore, indications are given of the maximum potential of policy measures to reduce aircraft emissions globally. Depending on the compound, emissions could be reduced substantially (typically 25% compared to the base line scenarios), if strong technological measures would be implemented to a high degree (without retrofits of the current fleet). The cumulative effect of integrated (technical, or operational or economic) control policies can be substantial, in particular with regard to NO_x emissions. The results indicate that a considerable limitation - or in some cases even a reduction in absolute figures - of the uncontrolled growth of emissions may be achieved, provided that the assumed strong technological development would indeed occur and were implemented to a high degree, and were combined with other (operational and economic) policy measures.

This study combines the results of an air traffic projection model with a gridded air traffic emissions database to generate for future years three-dimensional spatial distributions of aircraft emissions using well recognized and documented reference scenarios, thus allowing a comprehensive assessment of the atmospheric impact of aircraft emissions relative to other sources. An important result is the creation of a comprehensive and consistent set of spatial and temporal emissions data for both aircraft and other sources for both CPB and IPCC scenarios, especially dedicated to spatial developments in aircraft activities, which has been achieved by a unique combination of spatial data from the air traffic database of WSL, detailed projections by the DTI scenario model, information of the monthly variation of air traffic by Mortlock, and spatial and temporal data from the surface source database of Müller, and integrated by trend calculations of EDGAR. This complements the aggregated comparison of global emissions from aircraft and other sources, such as presented in this report, and provides pivotal information for environmental assessments of the impact of the emissions by atmospheric models.

SAMENVATTING

Een schatting is gemaakt van de huidige mondiale emissies van vliegverkeer met behulp van statistische informatie over brandstofverbruik, vliegtuigtypen en de toepassing van emissiefactoren voor verschillende stoffen. Voor scenario's van toekomstige emissies van vliegverkeer zijn aannames gebruikt over de volume-ontwikkeling van vliegverkeer, de ontwikkeling van het specifiek energieverbruik en voor de emissiefactoren. Tevens zijn enkele varianten opgesteld van scenario's waarin extra emissiereducerende maatregelen verondersteld zijn. In samenwerking met het Britse Department of Trade and Industry (DTI) zijn met het DTI-luchtvaartmodel scenario's voor de volume-ontwikkeling van de mondiale luchtvaart opgesteld waarbij de economische groeicijfers zijn gebruikt van drie door het Centraal Plan Bureau gedefinieerde scenario's genaamd 'European Renaissance' (ER), 'Global Shift' (GS) en 'Balanced Growth' (BG). Samen met veronderstellingen voor de ontwikkeling van specifiek brandstofverbruik en emissiefactoren zijn hiermee mondiale emissiescenario's voor luchtvaart opgesteld voor 2003 en 2015.

De huidige trend van broeikasgasemissies door vliegverkeer vertoont in de periode 1990-2015 een aanzienlijke autonome groei van 140 tot 190% voor NO_x en tussen 180 en 250% voor andere stoffen. De ontwikkeling van de wereldwijde emissies van broeikasgassen door vliegverkeer is tamelijk ongevoelig voor de verschillen tussen de economische scenario's die gebruikt zijn. Ten opzichte van andere energie-gerelateerde emissies is de groei van luchtvaartemissies groter, omdat luchtverkeer naar verwachting sneller zal groeien dan het overige energiegebruik.

Er is ook een schatting gemaakt van het maximale mondiale effect van beleidsmaatregelen gericht op de reductie van luchtvaartemissies. Afhankelijk van de stof zouden de emissies in 2015 aanmerkelijk gereduceerd kunnen worden ten opzichte van de referentiescenario's (gemiddeld zo'n 25%), indien een zwaar pakket van maatregelen volledig geïmplementeerd zou worden (zonder zgn. retrofits bij de bestaande luchtvloot). Het cumulatieve effect van een geïntegreerd (technisch, operationeel en economisch) pakket van reductiemaatregelen kan aanzienlijk zijn, in het bijzonder bij de emissies van NO_x. De resultaten laten zien dat een aanzienlijke beperking - en in sommige gevallen zelfs een reductie in absolute zin - van de autonome groei van de emissies zou kunnen worden bereikt, mits de veronderstelde sterke technologische ontwikkeling inderdaad plaats vindt en deze nieuwe technologie ook volledig wordt toegepast, en wordt gecombineerd met andere, stringente (operationele en economische) beleidsmaatregelen.

De berekende toekomstige mondiale emissies zijn drie-dimensional verdeeld met behulp van de 3D-luchtvaartdatabase van Warren Spring Laboratory (WSL) (nu: AEA, Harwell) en emissiefactoren opgesteld door WSL en het Nationaal Lucht- en Ruimtevaart Laboratorium (NLR). De gegevens van deze database zijn opgenomen in Versie 1 van de Emissions Database for Global Atmospheric Research (EDGAR) van het RIVM, en vervolgens bewerkt tot drie-dimensionale emissieverdelingen voor de jaren 2003 en 2015. Vlieghoogte per vliegtuigtype en tijdverdeling (over maanden) zijn daarbij constant verondersteld. Samen met tijdprofielen, die ontwikkeld zijn door bewerking van

gegevens van McDonnell-Douglas, zijn deze emissiescenario's gebruikt worden voor atmosferischchemisch onderzoek.

Door de combinatie van resultaten van een luchtvaart-scenariomodel met een luchtvaartemissiedatabase op grid zijn voor toekomstige jaren 3-dimensionale ruimtelijke verdelingen van luchtvaartemissies verkregen, die gebaseerd zijn op bekende en goed gedocumenteerde basisscenarios. Dit maakt het mogelijk om een geïntegreerde analyse te maken van de atmosferische effecten van de emissies van luchtverkeer tegen de achtergrond van andere emissiebronnen. Deze resultaten zijn een 'ruimtelijke aanvulling' van de geaggregeerde vergelijking tussen de totale luchtvaart en wereldwijde grondemissies zoals hierboven beschreven en verschaffen informatie voor analyse van de milieu-effecten van de emissies door atmosferisch-chemische modellen.

1. INTRODUCTION

The objectives of this study were: (1) to estimate and analyse current trends of global and regional emissions of greenhouse gases from air traffic and relate these to other anthropogenic emissions, (2) to show the possible impact of policy measures to reduce aircraft emissions globally, and (3) to estimate the associated three dimensional distribution of emissions from aircraft and from other sources. The latter part was required to provide atmospheric modellers with a consistent set of emissions data related to the scenarios used in this study, thus resulting in a comprehensive and consistent analysis of the present and future environmental impact of air traffic. It also required the availability of gridded inventories of present emissions of air traffic and other sources and scenarios describing trends for source categories, that could be related to the gridded emissions inventories.

Being part of the overall **LULU** project, we used reference scenarios comparable with those used for assessment of future air traffic in the Netherlands, more specific air traffic to and from Schiphol Airport (CPB scenarios applied by the air traffic projection model of the RLD for the Project Mainport and Environment Schiphol [PMMS]).

In the next chapters we present the main results of the study: an analysis of present emissions, both from aircraft and from surface sources (Chapter 2), an outline of the different steps in scenario definition and calculation (Chapter 3), definition of the reference scenarios, including specific assumptions regarding air traffic required by the air traffic projection model and assumptions to convert global or regional emissions scenarios into gridded emissions (Chapter 4), a discussion on some key policy alternatives to show the potential when policies measures were implemented globally (Chapter 5). Next, we discuss the main results, including a comparison of emissions of air traffic and surface sources on a global basis and the effects of individual policy measures (Chapter 6), followed by a discussion of the potential of integrated policy measures on the emissions of CO₂ and NO_x (Chapter 7). Finally, we recall the main conclusions we can draw from this work (Chapter 8). We focused our analysis on global aircraft emissions, but attention was also given to surface sources and we related regional to gridded emissions. More details are provided in the appendices.

The route to arrive at global and gridded emissions scenarios consisted of the following key elements, as will be discussed in Section 3.4:

- 1. Definition of the reference scenarios
- 2. Selection of the air traffic projection model
- 3. Air traffic model runs (regional)
- 4. Selection of gridded air traffic emissions inventories; data processing and extraction for 1990
- 5. Calculation of reference emissions scenarios for air traffic, including key policy alternatives
- 6. Ibidem for surface sources
- 7. Spatial (3D) emission calculations for reference scenarios for air traffic; data extraction
- 8. Selection of gridded inventory of surface sources; data processing and extraction for 1990

9. Spatial calculation for reference scenarios of surface sources; data extraction.

To relate air traffic demand projections (by region and by aircraft type) with the spatial emission inventory it was necessary to aggregate both to a common level, in order to match the results of the projection model with the groupings identified in the gridded inventory. The same aggregation step was necessary for the surface sources. As mentioned above, the elaboration and relations to the requirements posed by 'LULU', including the practical limitations posed by the time schedule and availability of models and inventories, are discussed in more detail in Chapter 3.

Compound	WSL (1)	NASA (11)	LULU grid calc.	global calc.	Reference
CO2	-	4	3188 (3)	3188	(4)
CH4	4		0.3 (2)	0.3	(5)
N2O	4	4	0.15 (3)	0.15	(6)
SO2	-	4	1(3)	1	(7)
NOx	11.4	10.94	11.4	11.4	(8)
co	4.3 (9)	8.45	4.3 (1)	4.3	(9)
voc	` 1	2.64	-	2.6	(10)

Table 2.2: Fleet average emission factors (in g/kg) for 1990: WSL, NASA, LULU.

Notes/references: (1) Fleet averaged WSL database (McInnes and Walker, 1992).

- (2) Emissions on grid can be derived from the 0-1 km altitude map for fuel consumption.
- (3) Emissions on grid can be derived from the altitude maps for fuel consumption.
- (4) IPCC 1994
- (5) Calculated as 10% of the VOC emission factor for the LTO cycle (Olivier, 1991) based on the VOC emission factor of 3 g/kg for 0-1 km of NASA, 1993.
- (6) Wiesen et al., 1994.
- (7) Olivier, 1991.
- (8) WSL database (McInnes and Walker, 1992).
- (9) Average factor based on WSL database average of emission factors specified by NLR for the WSL aircraft types/flights modes (Peper, 1994).
- (10) Fleet averaged emission factor of NASA, 1993.
- (11) Fleet averaged emission factors (NASA, 1993).

For NO_x until a few years ago no measurement data for emissions during cruise were available (Arnold *et al.*, 1992). The fleet average emission factors for NO_x and carbon monoxide (CO) were calculated using the aircraft/flight mode specific factors in the WSL database. The NO_x factors in the WSL database were calculated for the LTO modes from statistics of the ICAO exhaust emissions database, and for the climb, cruise and descend mode from relationships derived by Rolls Royce (McInnes and Walker, 1992). For CO the factors for the WSL aircraft types and flight modes were estimated by NLR (Peper, 1993b, pers. comm.) (see Appendix D).

Recently, some measurements were reported of aircraft emissions of direct greenhouse gases methane (CH₄) and nitrous oxide (N₂O) (Wiesen *et al.*, 1994). The emissions of CH₄ are negligible in most flight conditions, except for the Landing and Take-Off (LTO) cycle, where according to Olivier (1991) the emission of methane is about 10% of the total VOC emissions. To estimate CH₄ emissions from air traffic we used 1/10 of the fleet average emission factor of 3 g VOC per kg fuel during the LTO cycle, multiplied by the fuel used during the LTO cycles. This was calculated from the fraction of fuel used in the 0-1 km altitude band of the NASA/HSRP aircraft inventory (NASA, 1993) (see Appendix C). The first measurements of N₂O indicated an emission factor of about 0.15 g N₂O/kg fuel. A range of 0.05-0.5 g/kg is used in this study as uncertainty estimate of the fleet average factor.

In this study the emission factor for Volatile Organic Compounds (VOC) is assumed to be equal to the factor for unburned hydrocarbons, in aircraft literature often referred to as C_xH_y. The fleet

2. PRESENT EMISSIONS

First we discuss in this chapter current emissions, global totals and global distributions over regions or links, over the hemispheres and over altitude bands, and the seasonality of air traffic. Furthermore two inventories of WSL and NASA are discussed as well as the activities required to create emissions files for the atmospheric models, based upon the WSL inventory and time profiles which describe the seasonality of air traffic. Subsequently, global estimates of present emissions of surface sources are discussed, both totals and sectoral contributions.

2.1 Present emissions of air traffic

2.1.1 Global total emissions

For the aggregate calculations the following compounds were considered: the direct greenhouse gases CO₂, CH₄ and N₂O, and the indirect greenhouse gases NO_x, SO₂ (also acidifying gases), CO and VOC (also gases contributing to the formation of photochemical smog). In particular NO_x, CH₄ and CO are precursors of tropospheric ozone, which is both a toxic compound and enhances radiative forcing (greenhouse effect). For atmospheric models used in the 'LULU' programme the most important gases are NO_x, CO and CH₄.

Present emissions by global total air traffic were calculated using global jet fuel consumption data for 1990 from UN statistics (UN, 1992) (Table 2.1) and fleet average emission factors (Table 2.2). The emission factor for nitrogen oxides (NO_x) was taken from the WSL database (WSL, 1993). Emission factors for carbon dioxide (CO₂) and sulphur dioxide (SO₂) do not depend on the aircraft but only on the fuel composition (quality) and were taken from (IPCC, 1995) and (Olivier, 1991), respectively.

Table 2.1: Fuel combustion in the WSL database: original data and scaled to 1990.

Code	Region	in WSL-database (ki	ion):		scaled WSL (1	990 total)	IEA (1990 total)	
l	•	region	link	1989 total	(kton)	%	(kton)	%
R1	North America (o)	34,660	4,946	39,606	73,648	47	74,920	44
R2	W. Europe (o)	11,450	4,991	16,441	30,572	20	28,905	17
R3	Far East (o)	12,760	NA	12,760	23,728	15	20,430	12
R4	LDC+ (o)	13,590	NA	13,590	25,271	16	23,950	14
R5	Former CPE (u)	1,639	NA	1,639	3,048	2	22,520	13
Sum	Total	74,099	9,937	84,036	156,267	100	170,725	100

Source: EDGAR, 1994; based on data extracted from WSL database (Walker, 1993). EDGAR, 1995; based on IEA country statistics (IEA, 1994).

Notes: Flights are allocated according to the region of departure.

Acc. to UN in 1990: 156.2 Mton (UN, 1992) Scale factor WSL to 1990: 156.2/84 = 1.860

Scale factor WSL to 1990: 156.2/84 = 1.860
(o) = Overestimated, due to incomplete coverage of air traffic of CIS and scaling to global total fuel consumption.

(u) = Underestimated, due to incompete coverage of regional air traffic.

NA = Not Applicable

Regions:
North America USA and Canada
W. Europe OECD Europe
Far East Asia, including Japan

.DC+ Less Developed Countries (+): Latin America,

Africa, Middle East, Oceania + Australia & New Zeala

Former CPE Former Centrally Planned Europe:

Eastern (= non-OECD) Europe and former USSR

Page 5 of 93 Report no. 773002003

average value has been taken from the NASA/HSRP inventory for 1990 (NASA, 1993) (see Appendix C).

Table 2.3 shows the global total emissions as calculated from these emission factors and the total jet fuel consumption in 1990 as specified in the energy statistics of the UN (UN, 1992).

Table 2.3: Global emissions in 1990 from air traffic and from anthropogenic sources.

Compound	Unit	Air traffic **	Energy	% aircraft of energy	All anthr. sources	Uncertainty ind.
CO2	Mton	498	22,000	2.26	27,000	10%
CH4	kton	5	91,000	0.01	351,000	30%
N2O	kton	23 (8-78) *	600	4 (1-13)	7,000	50-75%
NOx	kton	1,786	82,000	2.18	112,000	20-50%
SO2	kton	156	130,000	0.12	150,000	10%
co	kton	679	303,000	0.22	996,000	50%
voc	kton	406	27,000	1.50	103,000	50%

Source:

UN, 1992 (jet fuel consumption); Pepper et al., 1992 (energy and all anthropogenic emissions).

Uncertainty indication of total anthropogenic emissions are based on: Houghton et al., 1992; Ahuja, 1992; own estimates.

Notes:

- * Aircraft emissions of N2O are very uncertain; range and middle value is indicated here
- ** Calculations based on global jet fuel consumption in 1990 of 156.3 Mton and fleet average emission factors of Table 2.1; numbers shown do not indicate the accuracy but re merely the result of the calculation

2.1.2 Spatial distribution of emissions: existing inventories

At the time of the study there were only two inventories available showing the global 3 dimensional distribution of aircraft emissions: the Warren Spring Laboratory (WSL) database for 1989, covering about 50% of total jet fuel consumption and including data on fuel consumption and NO_x (McInnes and Walker, 1992), and the comprehensive NASA inventory for 1990, covering about 85% of jet fuel consumption of civil airlines, general aviation and military aircraft and including fuel consumption, and emissions of NO_v, CO and VOC (Wuebbles et al., 1992). The NASA inventory has been adopted by the Global Emission Inventory Activity (GEIA), a core project of the International Global Atmospheric Chemistry (IGAC) programme, as first version of an emissions inventory for air traffic in a collection of 1°x1° grid emissions inventories that is being compiled or constructed by GEIA for use by the international modelling community. The NASA inventory is only available as is, together with a number of scenarios designed for the purpose of NASA's High Speed Research Programme (HSRP). No regional details nor information on aircraft types is made available, so the applicability of the NASA inventory for the construction of new scenarios is in practice limited to globally uniform scaling of the emissions. Nevertheless, it provided useful information for this study (e.g. for methane and VOC emissions) and could be used to check the global distribution of the WSL inventory. A third detailed and comprehensive inventory was being constructed by the ECAC/ANCAT emissions inventory database group in support of the AERONOX research project of the European Union (ECAC/ANCAT, 1994). Unfortunately, this database was not available within the time schedule of this project.

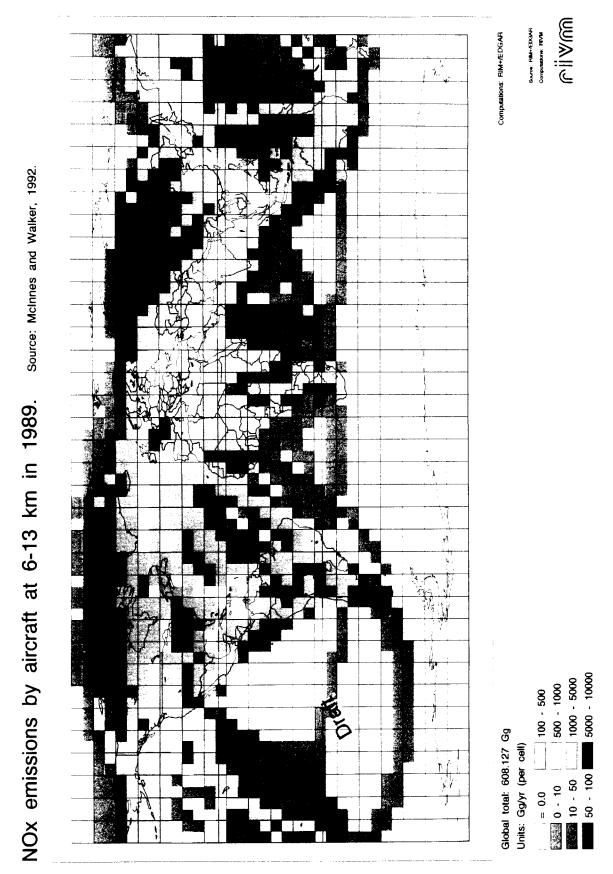


Figure 2.1: Spatial distribution of NO_x emission at 6-13 km in 1989 in the WSL database on a $5^{\circ}x5^{\circ}$ grid.

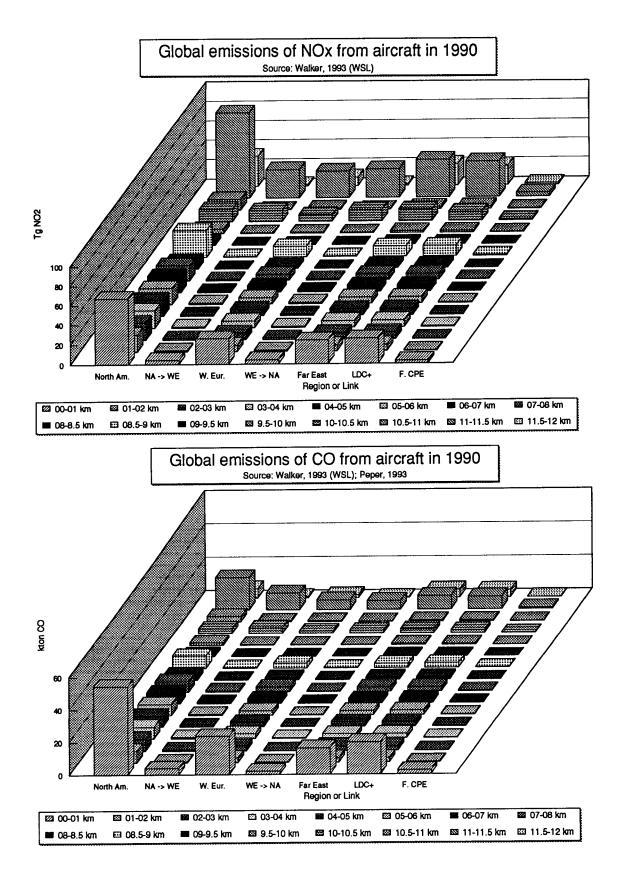


Figure 2.2: Altitude distribution of NO_x and CO emissions per region/link.

For scenario applications it was decided to use the WSL database, since it could be made available with regional and aircraft cross sections that allowed us to construct gridded aircraft emission scenarios using differentiated growth rates by region and by aircraft/range types, thereby simulating structural changes in the 3D flight distribution caused by this differentiation. Although it has not such an extensive coverage of global air traffic as the NASA/HSRP or the ECAC/ANCAT database, the WSL database is based on ABC time table data of scheduled flight statistics for a representative week in September 1989 and scaled up to one year. It does not include military aviation, nonscheduled flights, charter and general aviation (also not included in the original scaling up). Also, most of the domestic flights in the former USSR and of China are not included in the database. Charter flights occur predominantly in Western Europe and in North America. The overall coverage is about 50% in terms of fuel consumption; the other 50% being the sum of underestimated civil transport (in particular in the former USSR and in China), of military air traffic and of charter traffic (in particular in Western Europe). The ANCAT database has 1992 as its base year. As shown in Table M.3 of Appendix M, the differences in base years of the three inventories can not explain the differences in their estimate of global total fuel consumption by air traffic (and thus of emissions). However, comparison of the regional fuel consumption in the WSL database with IEA data in Table 2.1 - although both are defined somewhat differently - reveals that in particular the former USSR is heavily undervalued in the WSL inventory. This table also shows that global total estimates of jet fuel consumption in 1990 by UN and IEA differ about 9%, indicating the apparent difficulty in estimating this figure, in particular in an area in which military activities play a substantial role. As mentioned in Section 2.1.1, NO_x emissions are provided with the WSL database; CO emissions were added using differentiated emission factors from NLR (see Appendix D).

Within these limitations we can draw some conclusions from the cross sections made of the WSL database. Table 2.1 indicates that at present air traffic is dominated by North America, in particular the USA. Furthermore, it shows that traffic in the North Trans-Atlantic flight corridor between North America and Europe (column marked 'link') is of the same magnitude as traffic starting from other regions: Western Europe, the Far East (predominantly Japan), and the Less Developed Countries plus Australia and New Zealand. In Figure 2.1 the global distribution of NO_x emissions in the WSL database is presented in the 5°x5° LULU grid. Figure 2.2 clearly shows that NO_x is emitted mainly during cruise (at about 11 km altitude) and during the LTO cycle (below 1 km). Also note the dominant position of North America and the occurrence of cruise levels of minor importance at about 9 and 10 km. The distribution of NO_x emissions closely follows the distribution of fuel consumption shown in Figure 2.3. In contrast, CO are emitted mostly below 1 km, because of the rather high degree of incomplete combustion during the LTO cycle, notably in the idle and taxi modes.

2.1.3 Comparison of WSL and NASA inventories

When we compare the WSL emissions map on 5°x5° of Figure 2.1 with the NASA map of fuel

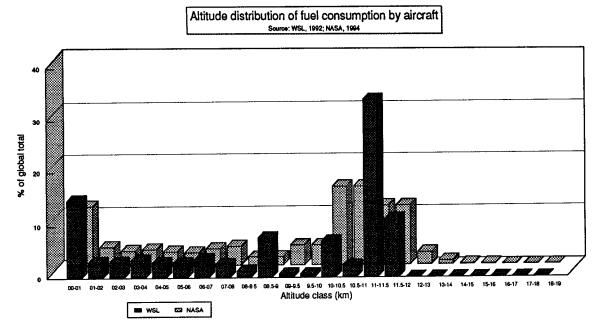


Figure 2.3: Altitude distribution of fuel consumption according to the WSL and NASA air traffic database

use on a 1°x1° grid (Figure 2.4) the resemblance of the general horizontal pattern and of the most intensively flown areas is quite good. If we compare the altitude distribution of the two inventories, they also look rather similar (Figure 2.3). This confirms the choice of using the WSL data for gridded scenario construction. The main difference is that NASA inventory assumes a different mix of cruise levels and is dispersed to higher altitudes, because of the inclusion of flight profiles for some military aircraft, flying at altitudes between 13 and 16 km, and for the concorde, which cruises at an altitude between 16 and 19 km, whereas the majority of civil aircraft cruise at levels between 10 and 12 km. A comparison of the LTO emission/fuel consumption maps (see Figures 2.5 and 2.6) - i.e. near airports up to 1 km altitude - shows that air traffic in the former USSR and, to a lesser extent, China is not fully represented in the WSL database. In Appendix C the NASA/HSRP inventory of aircraft activities is summarized by a number of overview tables, showing the averages, totals and altitude distributions of fuel consumption, emissions and emission factors. In Figure 2.7 the distribution of fuel consumption over the two hemispheres is shown. About 94% of all aircraft emissions occur in the Northern Hemisphere, which is a consequence of the very high share in global air traffic of OECD countries, most of them being located at the Northern Hemisphere. In this inventory military aircraft contribute to about 19% of global fuel consumption but to about 13% of NO_x emissions by aircraft. Military aircraft appear to have fleet average emission factors for NO, which are 30% below the global average, but factors for CO and VOC which are more than double the world average; also their flight levels are more dispersed to higher altitudes: LTO and cruise bands include the zones between 1 and 2 km and between 13 and 16 km, respectively (NASA/HSRP inventory of military air traffic as provided by Sage (1994, pers. comm.).

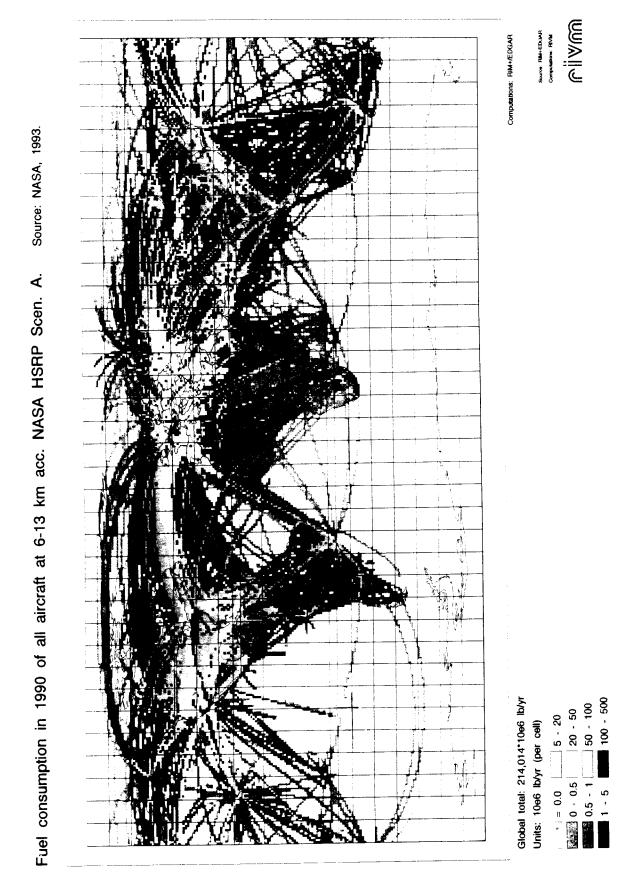


Figure 2.4: Spatial distribution of fuel consumption in the NASA database on 1°x1° grid (1990).

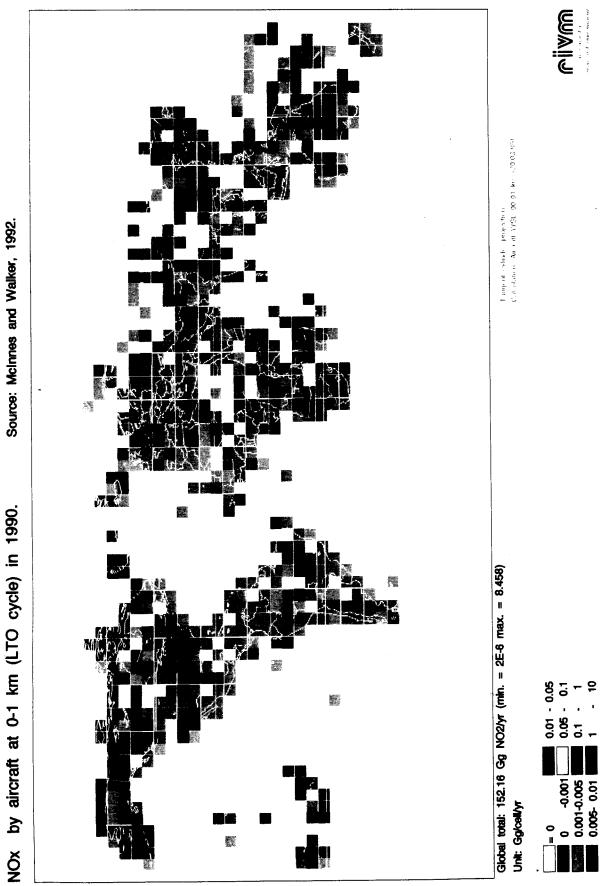
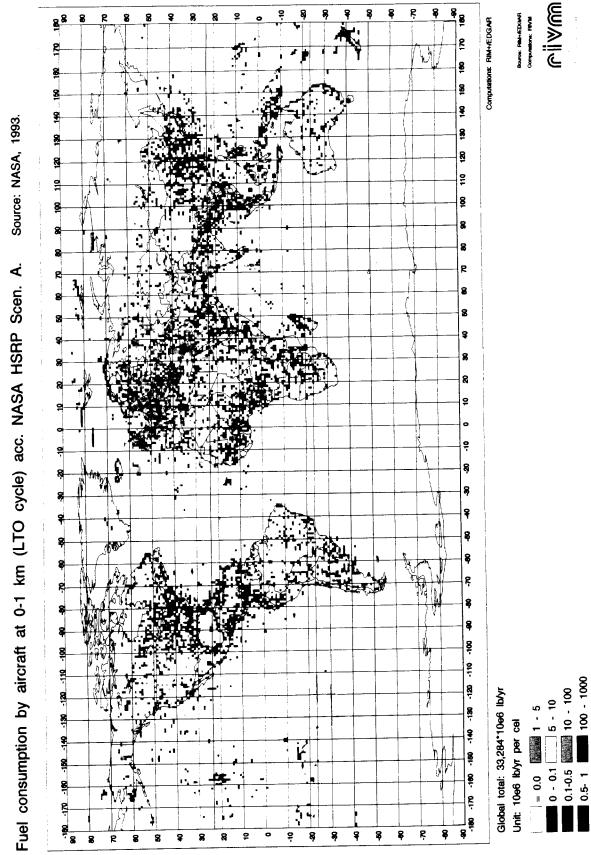



Figure 2.5: Global distribution of fuel consumption by aircraft at 0-1 km altitude (LTO cycle) in the WSL database ($5^{\circ}x5^{\circ}$).

Figure 2.6: Global distribution of fuel consumption by aircraft at 0-1 km altitude (LTO cycle) in the NASA database ($1^{\circ}x1^{\circ}$).

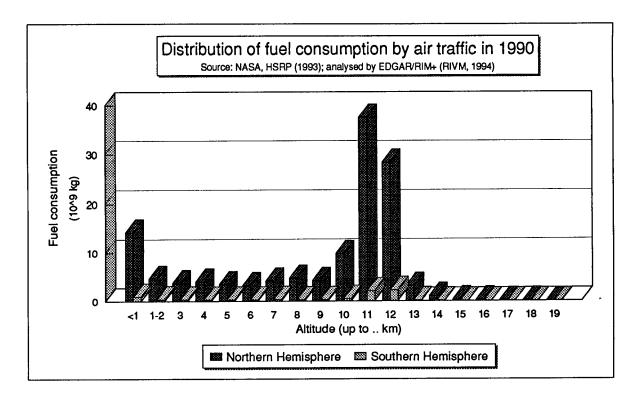
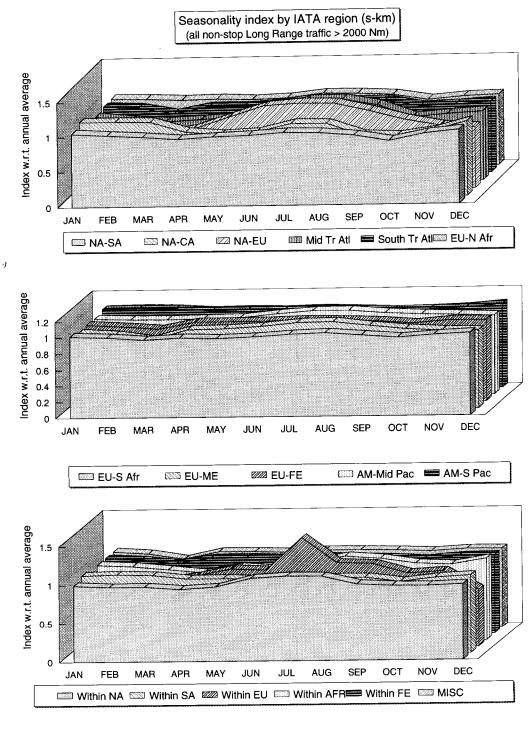



Figure 2.7: Altitude distribution of fuel consumption of air traffic per hemisphere in 1990.

2.1.4 Temporal distribution of emissions

Finally, we estimated the temporal distribution of air traffic. Both WSL and NASA inventories only show annual total distributions, whereas atmospheric models need emissions data on a monthly basis. The importance of this dimension is easily recognized when we recall, that the altitude of the tropopause, which separates the troposphere from the stratosphere, varies not only according to the latitude but also according to the season (Olivier, 1991). Mortlock of McDonnell-Douglas kindly provided us with the results of his analysis for the HSRP of seasonality of air traffic, which was done for all non-stop long range passenger traffic greater than 2000 miles in 19 IATA regions/links, and was based on monthly Official Airline Guide (OAG) traffic data from 1976 through 1991 (Mortlock, 1994, pers. comm.). Details for the 19 IATA regions can be found in Appendix G.

From his analysis it was concluded that the strongest seasonal effects, with monthly deviations from the average of more than 20%, are found for North Trans Atlantic flights and for flights within Europe (see Figure 2.8). The former shows a strong but smoothly seasonal variation, whereas in Europe there is a high peak in July (presumably holiday traffic) and a deep dip in December (presumably much less business travel). Based on these results we have split global air traffic in three seasonality sections, with time profiles as shown in Figure 2.9: the links North America-Western

N.B. Scheduled OAG passenger air traffic data from 1976 through 1991.

Source: Mortlock, 1994.

Note:

NA = North America CA = Central America EU = Europe, incl. former USSR (West of Urals)

ME = Middle East

FE = Far East, incl. former USSR (East of Urals)

SA = South America FE = Far East, incl. for AM = Americas MISC = Miscellaneous

Figure 2.8: Seasonal variation of civil air traffic by IATA region/flow (seat-km, based on OAG passenger air traffic data from 1976 through 1991).

Europe and *vice versa*, short and medium range flights within Western Europe, both with a distinct seasonality, and the rest of the world, for which a uniform distribution was assumed.

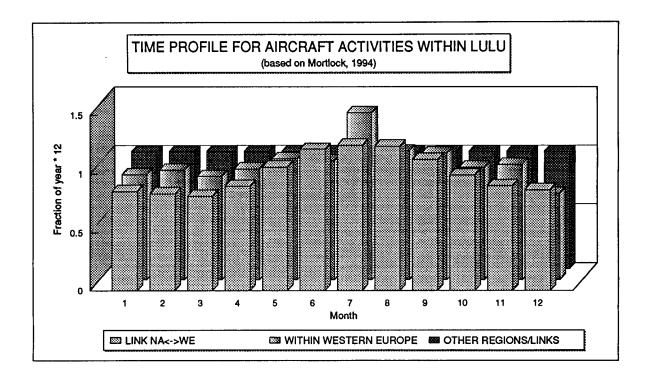
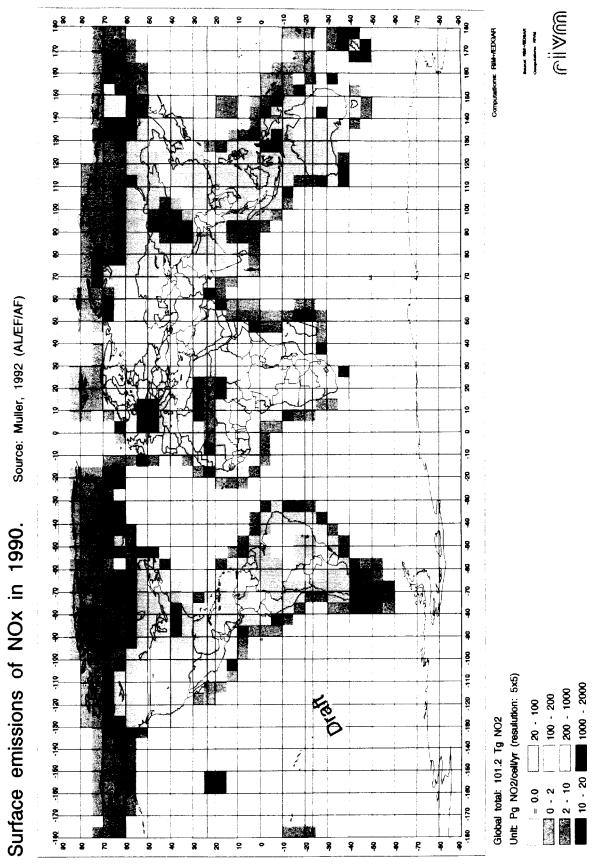



Figure 2.9: Time profile for aircraft activities within LULU (based on Mortlock, 1994).

2.1.5 <u>Data preparation for atmospheric models</u>

The atmospheric models of LLO and KNMI require emissions of NO_x, CH₄ and CO on a monthly basis to evaluate the impact of aircraft emission on tropospheric ozone (Beck *et al.*, 1992). To this end the WSL base year emissions data for NO_x and of CO were calculated and included in Version 1 of RIVM's global emission database EDGAR (Emission database for Global Atmospheric Research) (Olivier *et al.*, 1994b). The NO_x and CO emissions were exported from the EDGAR database for the three different seasonality sections discussed above. For methane no aircraft emissions files were prepared, since only aircraft activities below 1 km emit this compound (see Section 2.1.2), and this contribution is negligible compared to other surface sources. Information on the monthly variation of air traffic provided by Mortlock completed the air traffic data required by atmospheric models of KNMI and LLO.

Figure 2.10: Spatial distribution of NO_x emissions from surface sources in the Müller database on $5^{\circ}x5^{\circ}$ grid (1990).

2.2 Surface source emissions

2.2.1 Global total emissions

To compare present as well as future emissions from air traffic with other anthropogenic emissions - e.g. energy-related emissions - we need emissions from surface sources as well. Because the uncertainty is quite high in some cases, we decided to use the consensus view of the IPCC estimate of current emissions as presented in Table 2.3 (Pepper et al., 1992). This table also shows an indication of the uncertainty in the estimate of global anthropogenic emissions based on Houghton et al. (1992), Ahuja (1992) and own estimates. More details on the contribution from individual sources can be found in Table 4.6.

Global aircraft emissions expressed as fraction of energy-related emissions appear to play a limited role (~2%) (CO₂, NO₃, and VOC, possibly N₂O) or are almost negligible (~0.1%) (CH₄, SO₂, CO). From this comparison, however, one may *not* conclude that aircraft emissions only play a minor role in the environmental impact of these emissions, since the *effect* of their discharge at higher altitudes - in contrast with all other sources - may be quite different compared to emissions at ground level (WMO, 1994).

2.2.2 Spatial distribution of emissions: Müller inventory

To generate the spatial and temporal distribution of the background emissions, the inventory of NO_x CO and CH₄ emissions constructed and provided Müller was selected, as the more advanced EDGAR database was not yet available for this study (Müller, 1992). This gridded inventory of the surface sources has been used for LULU calculations on grid, as it was the only inventory of this type available and since it has the required spatial and temporal resolution. Two aspects should be mentioned in using this inventory for generating background emissions for this study: (1) the original 5°x5° grid had to be moved to the requested grid definition by LLO, and (2) the calculated annual sectoral and global total emissions are somewhat different from the IPCC 'best estimate' figures for 1990 used in the IPCC emission scenarios. The latter data are used in this study for comparison of global total aircraft emissions and energy related emissions. The spatial distribution of NO_x emissions for surface sources is shown in Figure 2.10.

2.2.3 Comparison of global emissions estimates of IPCC and Müller

Comparison between the two global total figures of the source strength for 1990 shows that the Müller data differ at most plus and minus 30% from the IPCC 'best estimate', but are within the uncertainty ranges estimated by IPCC (see Table 2.4). Regarding specific source strengths used by atmospheric modellers, the Müller figures are also within the uncertainty range of IPCC, except

<i>Table 2.4:</i>	Comparison of global emissions of NO_x , CO and CH_4 in 1990 per category as estimated by Müller and by IPCC.
-------------------	---

Compound	Category	Muller	IPCC total	Difference	IPCC'92 Sup
		Tg NO2		(%)	(range)
NOx	Anthropog.	72	82	-12	82
	Bio Bur (*)	15	30	-49	10-43
	Soil	22	39	-44	16-66
	TOTAL:	109	151	-28	108-191
		Tg CO			Tg CO
со	Anthropog.	383	303	26	400-1000
	Biogenic	784	693	13	400-1400
	Soil	166	131	27	50-200
	Sea	162	40	308	20-80
	TOTAL:	1495	1167	28	870-2680
		Tg CH4			Tg CH4
CH4	Anthropog.	131	154	-15	90-190
l	Bio	100	183	-45	126-380
	Cattle	80	110	-27	85-130
	Rice	90	60	50	20-150
	TOTAL:	401	507	-21	320-850

IPCC (Pepp	er et	al., 1	992)
Tg NOx-N			Ref.
25			
9			
12			
46			
Tg CO-C]
130			
297			
43	13		(1)
17			
500			
Tg CH4			
91	38	25	(2)
28	155		(3)
84	26		(4)
60			
507			

Sources:

Pepper et al., 1992; Houghton et al., 1992; Muller, 1992. Muller data received by FTP and analyzed with EDGAR.

Notes:

- (*) Biogenic and Biomass burning
- Emissions of plants and wildfires, respectively.
- (3) Emissions of biomass burning and natural sources, respectively. (2) Emissions of energy, landfills, and domestic sewage, respectively. (4) Emissions of enteric fermentation (ruminants) and animal wastes, resp

for carbon monoxide from oceans:

- * NO_x: the Müller data are at the lower end of the uncertainty range (differ about 30% from the IPCC best estimate). The anthropogenic NO_x emissions are 12% below the IPCC estimate, but this is within the expected uncertainty of this category. Biomass burning and soil emissions appear to be at the lower end of the range:
- * CH₄: the Müller data are well within the uncertainty range (differ about 20% below the IPCC best estimate). Biological sources appear to be quite low:
- the Müller data are well within the uncertainty range (differ about 30% above the IPCC best estimate). However, emissions from oceans appear to be very high compared to the uncertainty range.

The result of using these 'spatially shifted' emissions inventories is, that the emissions pattern is a somewhat dispersed to neighbouring grid cells, and the assessment of the impact of air traffic emissions by LLO and KNMI is using a somewhat different total source strength for the background sources than used in this report for the comparison of global total aircraft emissions and energy related emissions. However, these effects can be neglected (i) in comparison with the uncertainty in total aircraft emissions and in the spatial distribution, and (ii) as the Müller inventory is not of primary interest for this study, which are the emissions at altitude, but serves to provide a background for atmospheric models. Thus, it can be concluded that this data set was a good choice for the needs of this study.

Page 19 of 93 Report no. 773002003

3. METHODOLOGY FOR SCENARIO CONSTRUCTION

3.1 Objective

The aim of this study was to assess and to compare *global emissions* from aircraft and from other anthropogenic sources, both for *present* emissions and for possible *future* emission levels. Furthermore, the second aim was to generate also an estimate of the related *spatial and temporal distribution* of emissions, to allow for consistent assessment of environmental impacts by atmospheric models. To this end we needed for air traffic and other sources: (a) emissions estimates for the present; (b) either readily available emissions scenarios or a projection model capable of running chosen reference and policy scenarios; and (c) gridded emission inventories. In addition, because of the exploratory character of the study, the selected policy alternatives should cover a broad scope of options available on the global level.

To consistently compare global emissions scenarios for aircraft and for surface sources, common assumptions with respect to economic growth etc. are required for the reference scenarios and for the policy alternatives. To achieve this goal also for atmospheric model studies, the source categories used in the datasets of both the global emission aggregates and of the spatial and temporal distributed emission inventories must be related to each other. Figure 3.1 shows the role of emission scenarios within the context of other LULU studies.

3.2 Aspects to be considered

Several issues had to be defined before we could start to construct emission scenario: definition of areas, time horizon, level of detail of air traffic, emission compounds (in relation to the environmental themes for emission and effect evaluation), other source categories to relate air traffic emissions to, the type and the sets of policy measures (to be combined in a policy alternative), and the number of policy alternatives. Appendix A lists the options on these points. Also the number of scenarios, for air traffic as well as for surface sources, and the type of policy measures have been considered. Surface sources are required for the atmospheric models to create the proper 'background' of global 3D emissions.

Policy options which are specific at the global (i.e. international) level are *e.g.* emissions standards for aircraft in general or for specific aircraft or routes, or operational measures such as changes in cruise altitudes/cruise speed or of flight routes. Specific national measures, such as towing aircraft instead of taxiing, are in general not relevant for global emission calculations; therefore, they were not taken into consideration for this study.

In dealing with both an air traffic projection model for estimating future air traffic at the regional level and an aircraft movement database for generating gridded emissions, the coupling of regions and aircraft/range types used in these two separate models needs sufficient attention. However,

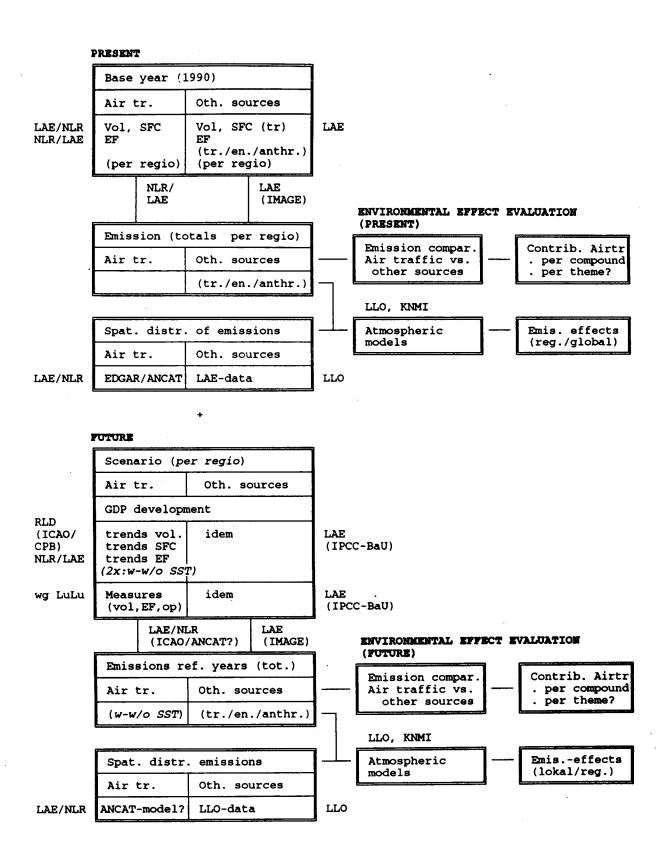


Figure 3.1: Organization of environmental effect calculations for LULU.

also the capabilities and timely availability of both regional projection model and gridded air traffic database pose restrictions to the type and level of detail of scenario calculations which can be done on a consistent basis.

3.3 Requirements within 'LULU'

The general approach of the study was discussed regularly during meetings of the Advisory Group **'LULU'** and with representatives of the Dutch Ministries of Environment and of Transportation. In particular the types of policy options that should be taken into account have been discussed intensively.

As the results of this study will be compared with or used by other studies carried out for 'LULU', in particular the air traffic scenarios for Schiphol Airport and atmospheric model studies of RIVM-LLO and of KNMI, the reference scenarios should preferably be consistent with the scenarios used to assess future *Dutch* air traffic emissions within the framework of the Project Mainport and Environment Schiphol (PMMS). This means selection of scenarios developed by the Central Planning Bureau (CPB), as well as the projection years used for these evaluations, i.e. 2003 and 2015.

Furthermore, the gridded 3D emissions data for atmospheric model calculations should comply with the aggregated (policy) scenarios used, and must be in a proper format to be used by RIVM-LLO and KNMI as input to their atmospheric models.

3.4 Outline of the approach

To generate the information needed, the following steps were distinguished (see also Figure 3.1):

1. Definition of reference scenarios

To fulfill the requirements within the 'LULU' programme, the construction of air traffic (and surface source) scenarios based upon the three CPB scenarios used for national studies of air traffic. Since we also would need to construct gridded emissions inventories for future years, it was decided to use for this LULU analysis only a few aggregated regions and aircraft types/regions, a few reference years, and to focus on specific emission compounds (see Appendices G and H). Key assumptions of these scenarios (e.g. on GNP) were identified and used as an input for the scenario calculations (Chapter 4).

2. Selection of air traffic scenario model

For this study we could use either the air traffic model developed by the Dutch Directorate-General of Civil Aviation (RLD) or the projection model of the British Department of Trade and Industry (DTI). The RLD scenario model is not applicable for global air traffic scenario studies as it has

Page 22 of 93 Report no. 773002003

been designed to project traffic to and from Schiphol only (no global coverage). The DTI model, though not fully covering global air traffic, could basically perform the required scenario calculations. Also, its model regions are comparable with the ones used in the CPB scenarios and its aircraft types/flight ranges could be related to the ones used in the WSL air traffic database, that was available and selected to generate spatial distributions of aircraft emissions. The DTI was willing to co-operate and to perform a number of scenario runs using our specifications, and also showed an interest in this study as the model was at the time also considered to be likely used to construct emission scenarios for the ANCAT group, to be applied in the AERONOX project of the European Union (see Section 2.1.2). This would also have the advantage of using an air traffic projection model that is widely used by the European modelling community (Chapter 4.3 and 4.4).

3. Air traffic model runs at regional level; input definition and aggregation of results

The DTI model was used to simulate three CPB reference scenarios by specifying economic growth rates per region from 1990 to 2015, with additional input assumptions regarding ticket prices and load factors by DTI and own estimates. The results - supplemented with own estimates for one LULU region not covered by the model - were converted to indexed growth rates for global air traffic (Passenger-kilometres) and for the LULU regions and LULU aircraft types, to be used in global aggregate analysis and to construct the gridded aircraft emissions inventory for future years, respectively.

- 4. Selection of gridded air traffic emissions inventory; data processing and extraction for 1990 Since the ECAC/ANCAT emissions inventory was not available in time we had to rely on another database: the WSL air traffic database, the first database of its kind. Although it has not such an extensive coverage of global air traffic as the ECAC/ANCAT or the NASA/HSRP database, it was made available with regional and aircraft cross sections that allowed us to construct gridded aircraft emission scenarios. The WSL base year emissions data for NO_x and with support of NLR of CO, calculated and aggregated to LULU regions/aircraft and to the 5°x5°x0.5 km LULU grid, were extracted from the database and included as Version 1 of EDGAR. Information on the monthly variation of air traffic provided by Mortlock completed the air traffic data required by atmospheric models of KNMI and LLO. Global total aircraft emissions for various compounds were calculated using global jet fuel consumption data for 1990 and aggregated emission factors from the WSL database and from other sources (see Chapter 2.1 and Appendix D).
- 5. Emission calculation for reference scenarios of air traffic on a global scale; policy alternatives
 The results of the DTI model, the regional demand for seat-km per aircraft size band, together
 with assumptions on the autonomous development of parameters such as the load factor (occupancy
 rate), specific fuel consumption (fuel per passenger-km) and emission factors, were used to calculate
 the future emissions in the three reference scenarios. Per compound (except for nitrous oxide)
 the effect on emissions of one technical policy measure was added to illustrate the maximum impact
 of additional policy on aircraft emissions (Chapters 5 and 6). Subsequently, the cumulative effect

Page 23 of 93 Report no. 773002003

of additional policies - including technical, operational and economic measures - was calculated for the gases CO_2 and NO_∞ which according to recent assessments of the Intergovernmental Panel on Climate Change (IPCC) appear to be of most importance for the contribution of air traffic emissions to the enhanced greenhouse effect (both gases) and to the formation of tropospheric ozone (NO_x) (Chapter 7).

6. Emission calculations for reference scenarios of other sources on a global scale

Next, present and future emissions from air traffic were compared with other anthropogenic emissions, that is: energy related emissions. As the uncertainty in some cases is quite high, we decided to use the consensus view of the IPCC estimate of current emissions. To compare future aircraft emissions with other (surface) sources, we had to estimate future surface emissions related to the three CPB scenarios. To this end, we compared the economic growth assumptions of each of the three CPB scenarios with the six IPCC 'IS92' scenarios and selected per CPB scenario the IPCC scenario which had the most similarity with the regional economic development as defined for the CPB scenarios. This approach was taken because the IPCC emissions scenarios are internationally well recognized and are well documented. Also, the IS92 scenarios cover a range of consistent sets of assumptions on how the world and the emissions may develop in time. The alternative of constructing new consistent emission scenarios would mean only using the precise economic growth rates of the CPB scenarios, while introducing many additional assumptions, which would be both highly time consuming and to some extent also arbitrary (Chapter 4.5).

7. Spatial (3D) emission calculations for reference scenarios of air traffic; data extraction Using the EDGAR functionality, 3D distributions of emissions of NO_x and CO (and 3D fuel consumption) were calculated for the years 2003 and 2015 for three scenarios using different growth rates per region/aircraft type and a globally uniform development of emission factors and of specific fuel consumption. Subsequently, the results were extracted from the database and supplied to RIVM-LLO and KNMI, together with temporal information (monthly variation) (Chapter 6.1). Methane emissions of aircraft were not calculated, as they are negligible at cruising altitude and very small near airports (LTO cycles) compared to other surface sources of methane. Thus, by combining data from the air traffic database of WSL, supplemented with CO emissions by NLR, the results of the DTI model and the trend calculations of EDGAR we were able to create unique scenario results of aircraft emissions on a grid. Although a preliminary version of the ANCAT database is now (1995) available for NO_x emissions, the WSL data were also applied in the AERONOX project, thereby allowing comparison of LULU results with other atmospheric models.

8. Selection of gridded inventory of surface sources; data processing and extraction for 1990 We could use the database constructed by Müller with current emissions of anthropogenic and biogenic emissions on 5°x5°, including the monthly variation. The data provided by Müller were first converted to the appropriate 5°x5° LULU grid and then included as Version 1 of EDGAR (Chapter 2.2).

9. Spatial calculation for reference scenarios of surface sources; data extraction

Assumptions on the development of surface source emissions were also required to construct a set of present and future emissions data of surface sources for the atmospheric models. Another argument in step 6 for selecting IPCC scenarios to 'simulate' CPB scenarios for surface sources is that they also provide a consistent set of emissions for all other non-energy sources. From the emissions of IPCC source categories we derived indices for the development of emissions according to the sources distinguished in the Müller database. Using the EDGAR functionality, emissions for NO_x, CH₄ and CO were calculated for the years 2003 and 2015 for different scenarios using different, though globally uniform, growth rates per Müller category. Subsequently, as was done for aircraft emissions, the results were extracted from the database and supplied to RIVM-LLO and KNMI (Chapter 4.6).

An important result of this exercise is the creation of a comprehensive and consistent set of spatial and temporal emissions data for both aircraft and other sources for both CPB and IPCC scenarios, especially dedicated to spatial developments in aircraft activities, which has been achieved by a unique combination of spatial data from the air traffic database of WSL, detailed projections by the DTI scenario model, information of the monthly variation of air traffic by Mortlock, and spatial and temporal data from the surface source database of Müller, and integrated by trend calculations of EDGAR. This complements the aggregated comparison of global emissions from aircraft and other sources, such as presented in this report, and provides pivotal information for environmental assessments of the impact of the emissions by atmospheric models.

4. DEFINITION OF REFERENCE SCENARIOS

To define the reference scenarios for emissions of air traffic and of surface sources, different levels of detail can be used. For the global assessments within the framework of LULU, we recall that it was decided (1) that compliance with basic assumptions of the scenarios developed by the Dutch Central Planning Bureau (CPB) was desirable, since these are well described and well known in the Netherlands, and were also used to evaluate the development of local activities at Schiphol Airport, and (2) that the emphasis in the spatial scenario construction would be on the development of determinants of the 3D distribution of aircraft emissions, because of the *a priori* unknown sensitivity of atmospheric models of the spatial (3D) distribution of the air traffic emissions. Other aspects which were discussed regarding the required scope of the emissions scenarios are summarized in Appendix A.

4.1 CPB scenarios

4.1.1 Assumptions

As the development of GNP per world region is a key variable for both general economic scenarios, such as the CPB scenarios, as well as for the development of air traffic, we used the regional development of GNP of the three CPB scenarios "European Renaissance" (ER), "Global Shift" (GS) and "Balanced Growth" (BG) as one of the key assumptions to define the emission scenarios. These three scenarios are most commonly used of the four scenarios, which the CPB developed for the period 1990-2015 within their global study "Scanning the future" (CPB, 1992) [The fourth one, called Global Crisis, is seldomly referred to.] These scenarios distinguish 11 world regions, each with distinct economic growth rates per scenario (see Table 4.1). Details on the definition of the world regions can be found in Appendix G. For the LULU scenario calculations we only used the economic assumptions on GNP as used by CPB for these scenarios. The three sets of GNP growth rates do not differ so much in the world average growth figure, but they are quite dynamically defined per region for consecutive 5 year periods, resulting in three quite different scenarios as is illustrated in Figure 4.1.

4.1.2 General description of scenarios ER, GS and BG

The scenarios developed by the CPB are based on information from economic theories, a comparative-strength analysis of the various world regions, and on long term trends, which was combined to give a number of different possible future development. Although for this study we do not use other features of the scenarios than the assumptions on regional development, we will

1990 2015: Region GS BG ER 2.31 2.12 1.51 1.00 North America 2.20 1.98 1.59 1.00 W. Europe 2.14 2.49 2.84 1.00 Japan 2.34 1.53 2.02 E. Europe 1.00 1.78 0.88 1.65 1.00 Former USSR 5.43 5.75 4.46 1.00 SE Asia (DAE) 4.55 4.83 3.55 1.00 China 2.20 2.42 2.36 Middle East 1.00 4.29 4.83 3.22 RoAsia (India+) 1.00

2.68

1.99

2.06

3.3

1.00

1.00

1.00

Table 4.1: GNP development per region in CPB scenarios ER, GS and BG (index; 1990= 1).

Source: CPB, 1992.

World (avg. % p.a.)

Africa

World

Latin America

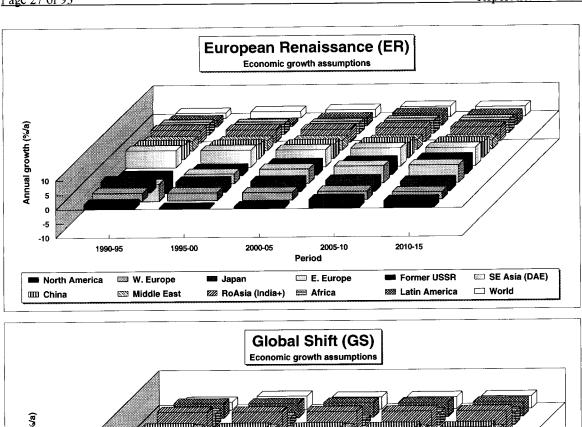
describe them briefly so that the reader has some knowledge of what is included in the original CPB scenarios (as described in CPB, 1992):

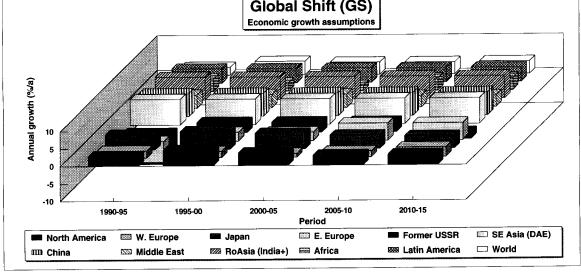
2.04

2.83

2.30

3.9


3.27


3.90

2.44

4.1

- * In "Global Shift" (GS) there is a quite rapid economic growth, much confidence in the working of the market and consequently a modest role for government. Little attention is paid to environmental questions or to energy savings, except for economic reasons. This means a rather rapid increase in energy demand. With little fear for an ever-increasing number of regulations and with a general faith in technological progress, nuclear power gets a new chance in this scenario, while coal is relatively favoured by its low production costs.
- * "European Renaissance" (ER) is a scenario with a somewhat lower economic growth at global level. More emphasis is put on cooperation and coordination, at least in Europe, in this scenario the region with a rather good performance, as the name already indicates. This means in that part of the world (including Eastern Europe and the former Soviet Union) for instance more attention for energy savings. At global level the results in this field are much less marked, due to the poor record in America. As far as the fuel mix is concerned, natural gas gets a boost especially thanks to the successful development of the Russian gas resources.
- * "Balanced Growth" (BG) explores under which conditions sustainable growth would be possible. On the one hand rapid economic growth is fostered by dynamic technical progress and by the removal of all kind of rigidifies in the functioning of the economy. On the other hand there is enough willingness to cooperate in the international field and to find solutions for global problems such as the greenhouse problem. A worldwide CO₂ tax is introduced, research and development in the field of energy saving is promoted as well as the transfer of the use of renewable energy sources is achieved. Notwithstanding a rapid economic growth, demand for energy increases less than in any other scenario while energy-related CO₂ emissions are nearly stabilized.

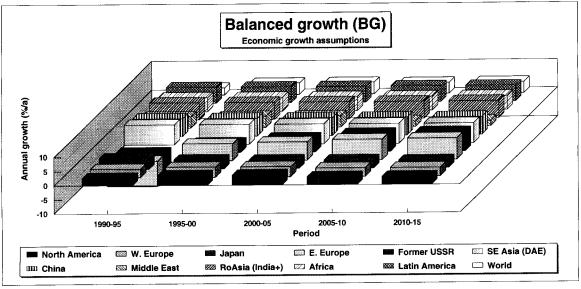


Figure 4.1: Regional economic growth assumptions in CPB scenarios ER, GS and BG.

In the Boxes 1, 2 and 3 in Appendix E the key characteristics are shown regarding the leading economic policy, regional developments, and of various trends. Summarizing these, the three scenarios can be characterized as follows (cited from CPB, 1992):

"Global Shift" (GS) and "European Renaissance" (ER) explore divergent developments with respect to the two most powerful economic blocs in the world: Western Europe and North America. The message is that both blocs are vulnerable, albeit on different grounds, and that their economic performance will have profound radiating effects on other regions, especially those located nearby.

"Balanced Growth" (BG) is the most optimistic scenario. It shows an annual growth rate of the world economy of more than 3 per cent, which is ecologically sustainable and embraces all the major regions of the world, is still a quite realistic possibility. The scenario will not easily be realized, as it demands formidable changes at the regional and at global levels.

This illustrates the wealth of other assumptions which were used to define the scenarios, of which we used only one determinant in our scenario analysis: regional economic growth.

4.2 Additional assumptions for air traffic scenarios

In addition to regional GNP growth rates, other assumptions are required to define an air traffic scenario. Analysis has shown that besides regional GNP, growth rates of air fares (ticket prices) and the load factor (fraction on seats occupied) are other key determinants of the development of the volume of air traffic. On could define various scenarios for ticket prices, based on the characteristics of the three scenarios (see e.g. Appendix F). However, due to time constraints for all three reference scenarios only one set of assumptions for development of ticket prices has been used, which was based on assumptions of DTI. In some cases these scenarios are therefore referred to as ER0, GS0 and BG0, as to recall that no scenario specific air fare assumptions were made. These and other assumptions on the autonomous development of load factors and of variables determining the emissions of air traffic, such as the specific fuel consumption (SFC) and emission factors (EF), are presented in Table 4.2. They are either defined by DTI (load factor) or based on figures reported in literature (Greene, 1992; Peper, 1993c).

4.3 Air traffic model selection

Several models can be used to generate aircraft emission scenarios: one group of models is aims at projecting the volume of air traffic, a second group aims at projecting aircraft emissions and a third group of models covers several source categories, including air traffic to some extent.

Appendix B gives an overview of the models identified at the start of the study. As it turns out, most specific air traffic projection models do not fully cover global air traffic: some exclude

Table 4.2: Common assumptions about ticket prices, autonomous development of the fleet average Specific Fuel Consumption (SFC), Emission Factors (EF), and Load Factors (LF) for air traffic scenarios ER, BG and GS.

ASSUMPTIONS FOR TICKET PRICES

(in%/a)

DTI region	1990-1995 1995-2015	Reference
Europe	-1.500 -0.125	Newton, 1993
Others	-0.750 -0.125	Newton, 1993

ASSUMPTIONS FOR AUTONOMOUS DEVELOPMENT OF SFC, EMISSION FACTORS AND LOAD FACTOR

Variable	Total change in 2015 w.r.t. 1990	Reference
	(50% penetration assumed *)	
SFC	-12.5%	Peper, 1993a
EF-NOx	-17.5%	Peper, 1993a
EF-other	0%	Peper, 1993a
Load Factor	+4% points (+6%) (see below)	Newton, 1993

^{*} Thus, for average new aircraft in 2015 the change with respect to the 1990 fleet average is twice the value mentioned here. In 2003 13/25 x 50% = 26% penetration was assumed. Put another way: changes in 2003 are assumed to be about half of the figures mentioned here for 2015.

Autonomous development of Load Factors (LF/LF90) common to the 3 scenarios (index; 1990=1).

LULU region	1990	1995	2000	2003	2005	2010	2015
North America	1.00	1.01	1.02	1.03	1.04	1.05	1.06
		1.01	1.02	1.03	1.04	1.05	1.06
Europe	1.00			1.03	1.04	1.05	1.06
Far East	1.00	1.01	1.02				
LDC+	1.00	1.01	1.02	1.03	1.04	1.05	1.06
Former CPE (Ea	1.00	1.01	1.02	1.03	1.04	1.05	1.06

Note

types of aircraft (e.g. military or charter), others do not cover all regions (e.g. not the former USSR or China), while the group of more general models only project the aggregate volume of regional air traffic without any further details such as distributions over short and long haul flights, larger and smaller aircraft, older and newer aircraft etc. It should be mentioned here, that projection models are always designed for specific purposes. Therefore, unavoidably, to model air traffic some characteristics were simplified or not taken into account at all. Examples are the impact of the development of hub and spoke structures within countries or regions on the volume of air traffic, the load factors, shares of short range and long range flights, or limitations on the growth of the number of flight movements at major airports on the development of the mix of smaller and larger aircraft, or the impact of development of high speed rail systems on regional air traffic. These aspects can only be simulated in dedicated models.

Criteria for model selection were: (i) availability, (ii) completeness of aircraft types and regions, (iii) similar level of detail in comparison with the spatial air traffic database of WSL, (iv) compliance of definitions of aircraft types and of regions with the WSL database, (v) use of economic scenario

In 2003 13/25 x 50% = 26% penetration was assumed. Put another way: changes in 2003 are assumed to be about half of the figures mentioned here for 2015.

parameters such as regional GNP and ticket prices.

To fulfill the requirements within the 'LULU' programme, we needed to construct air traffic (and surface source) scenarios based upon the three CPB scenarios used for national studies of air traffic.

For this study we could use either the RLD's air traffic model or the projection model of the British DTI. However, since the RLD's model used for scenario calculations is not suitable for global air traffic scenario studies as it has been designed for traffic to and from Schiphol only, it was concluded that the DTI model, though not covering Eastern Europe and the former USSR, could basically perform the required scenario calculations. Also, its model regions are comparable with the ones used in the CPB scenarios and its aircraft types/flight ranges can be related to the ones used in the WSL air traffic database, that was selected to generate spatially distributions of aircraft emissions. Since we also would need to construct gridded emissions inventories for future years, it was decided to use for this LULU analysis only a few aggregated regions and aircraft types/regions, which could be rather easily be connected with regions/aircraft types of the WSL inventory. In Appendix H details are given on how this was accomplished.

4.4 DTI civil aircraft market projection model

The civil aircraft market forecast model of the British Department of Trade and Industry (DTI) uses a *top down* approach - i.e. it projects the overall demand for air traffic per region/link (in Seat Kilometres Offered - SKO) as well as the distribution of aircraft per seat-size band and per range, rather than assessing the future requirements of individual airlines (*bottom-up* approach). A link is defined as all air traffic starting in one specific region and ending in another region (e.g. all traffic from North America to Western Europe). Figure 4.2 gives an overview of the inputs of the model. Key inputs are:

- * GNP assumptions per region
- * Assumptions on air fares (ticket prices and yield (earnings per SKO)
- * Maturity: assumptions on how the market will react to changes costs.

Other inputs are based on historical fleet performance (see Figure 4.2).

In the runs simulating the three CPB scenarios, we used assumptions on GNP, load factor and ticket prices as specified in Table 4.1 and 4.2; all other assumptions were defined by DTI. The GNP growth rates for the 11 DTI regions were defined by relating the CPB regions to the regions distinguished by the DTI model (see Appendix G). Most regions are defined the same; only in the case of Rest of Asia (Indian sub-continent), Middle East and Africa there is no perfect match. In those cases we simply coupled these regions one to one and assumed the GNP index of the DTI region to be equal to the index of the related CPB region.

Taking these inputs DTI used their projection model to calculate the number of Seat-km Offered (S-km or SKO), by DTI region and by DTI aircraft type. By incorporating assumptions

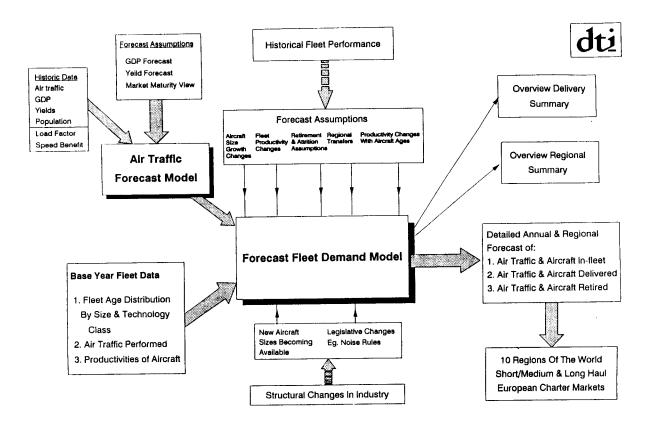


Figure 4.2: Outline of structure and data flows of civil aircraft market forecast model of DTI.

about load factors we arrive at the indexed development of Passenger-km (P-km) per region. Next, DTI results were aggregated to LULU regions and LULU aircraft types (Tables 4.3 and 4.4), in order to facilitate the construction of gridded emissions using the spatial WSL aircraft database. In Figure 6.1 aggregated results of the indexed development of P-km for the three reference scenarios are presented. In Appendix I the index numbers are specified in a table and more details are provided on the output for the ER scenario and on the aggregation of the output to LULU regions/links and aircraft types.

The model did not (yet) include Eastern Europe and the Former USSR; for a complete the air traffic scenario, for these regions the development was estimated by comparison with other regions with a similar development of GNP (see Appendix I).

It is stressed that the model results are a function of the economic relations included in the model, here notably GNP, ticket prices and 'yields' as drivers for the volume development. The model does not take into account subtle effects such as possible substitution by High Speed Rail transport or development of airlines an explicit hub and spoke system, which affects both load factors and the ratio between short range and long range flights. Also possible saturation effects of upper limits technically or politically posed on the number flight movements of the major airports of the world are not explicitly taken into account.

The related emissions scenarios are based on the projection results in terms of total P-km

per region/link and calculated using the additional assumptions on SFC and emission factors. This is described in more detail in Section 4.5.1. For the spatial 3D distribution of emissions the more detailed results of the projection model were used, specifying the development per aircraft type/distance range. The DTI model specifies demand in 10 seat bands, here indicated as A to J, and 2 distance ranges, indicated SH and LH. For this study the DTI aircraft/range definitions were coupled with the types distinguished in the WSL air traffic database by aggregation to 6 LULU types/ranges (see Appendix H).

 Table 4.3:
 Definition of LULU regions.

	LULU Region/Link	ABC/WSL-DTI Entity
R1	North America 1)	USA + Canada
R2	(Western) Europe 1)	Europe
R3	Far East	Japan + South East Asia + China + Indian sub-continent
R4	LDC+ 2)	Central/Latin America + Africa + Middle East + Oceania
R5	Former CPE 3)	Eastern Europe + Former USSR
L1	North Am> W. Europe	USA + Canada -> (Western) Europe
L2	W. Europe -> North Am.	(Western) Europe -> USA + Canada

Notes:

- 1) Excluding the link North America to (Western) Europe and vice versa.
- 2) LDC = Less Developed Countries
- 3) CPE = Centrally Planned Europe

Table 4.4: Definition of LULU aircraft types and ranges.

ſ	LULU type/range	WSL type	WSL range	DTI type	DTI range
F	T1-AL	type 1+2	all ranges (= 1+2+3+4)	A+B	all ranges
	T2-SH; T2-LH	type 3+4	range 1+2+3; range 4	C+D+1/2E+1/2F	SH; LH
	T3-SH; T3-LH	type 5+6	range 1+2+3; range 4	G+H+I+J+1/2E+1/2F	SH;LH
	T4-AL	type 7+8+9+10	all ranges (= '0')	N.A.	N.A.

Notes:

SH = Short Haul; LH = Long Haul; AL = All ranges. N.A. = Not Applicable. (see Appendix H for definition of WSL types/ranges and DTI ranges)

4.5 Derivation of surface source emissions scenarios

To compare future aircraft emissions with other (i.e. surface) sources, we need to estimate future surface emissions related to the three CPB scenarios. However, the CPB scenarios are economic scenarios, which do not provide estimates of future emissions (except for CO₂). The 1992 Supplement Report of the Intergovernmental Panel on Climate Change (IPCC) on the other hand provides a port-folio of emission scenarios (IS92a-f) for seven greenhouse gases (and for CFCs) based on a variety of assumptions regarding the different source categories (Houghton *et al.*, 1992;

Pepper et al., 1992). It is not simple and straightforward to create such an emission scenario from the three CPB scenarios under consideration. Since the surface source emissions serve to compare air traffic emissions with (aggregate analysis) and serve as background sources (atmospheric models), it was decided just to match each of the three CPB scenarios to one of the six *IS92* scenarios based on 'most' similarity of the regional annual GNP growth rates. This approach was taken because the IPCC emissions scenarios are internationally well recognized and are well documented. Also, the *IS92* scenarios cover a range of consistent sets of assumptions on how the world may develop in time. The alternative of constructing new consistent scenarios would mean only using the precise economic growth rates of the CPB scenarios, while introducing many additional assumptions, which would be both highly time consuming and to some extent also rather arbitrary.

Table 4.5 shows how per CPB scenario the selection was done by seeking three different IPCC scenarios with most regions (and global total) with a good correspondence and with least regions (and global total) with a bad correspondence with the CPB scenario in question: *IS92e* was used for the BG scenario since it has most correspondence and has the highest global total growth rate; *IS92f* was used for the ER scenario as it was closest to this scenario; *IS92a* was used to represent the GS scenario, because it had a (slightly) better correspondence with GS than the other two remaining options (*IS92c* and *IS92d*).

Table 4.5: Comparison between GNP growth rates of CPB scenarios and IPCC IS92 scenarios.

Region CPB/IPCC	CPB %/a (90-15)	IPCC [%/a (ave IS92a.b	rage over 90-	15)] d		1
ER scenario: total DC/OECD NME/CPE CHI/CHI+ rLDC/OTHER	3.3 2.5 2.3 5.2 4.3	2.9 2.7 2.1 5.3 4.0	1.9 1.8 1.2 3.9 2.7	2.8 2.5 2.1 5.1 3.8	3.6 3.2 3.1 6.2 4.8	1 2.7 2.3 5.3 4.2
GS scenario: total DC/OECD NME/CPE CHI/CHI+ rLDC/OTHER	3.9 3 0.2 6.5 5.3	2.9 2.7 2.1 5.3 4.0	1.9 1.8 1.2 3.9 2.7	2.8 2.5 2.1 5.1 3.8	3.6 3.2 3.1 6.2 4.8	3 2.7 2.3 5.3 4.2
BG scenario total DC/OECD NME/CPE CHI/CHI+ rLDC/OTHER	4.1 3.1 2.7 6.2 5.5	2.9 2.7 2.1 5.3 4.0	1.9 1.8 1.2 3.9 2.7	2.8 2.5 2.1 5.1 3.8	3.6 3.2 3.1 6.2 4.8	3 2.7 <u>2.3</u> 5.3 4.2

Source: CPB, 1992; Pepper et al., 1992. Notes: Underline = good or best correspondance bad or worst correspondance selected set corresponding most to CPB scenario Regions: CPB: **Developed Countries** New Market Economies (Central Europe and CIS) NME = CHI = China rLDC = Rest of Less Developed Countries OECD = IPCC: Industrialized Countries CPE = Formerly Centrally Planned Europe (Eastern Europe and CIS) China and other Centrally Planned Asia CHI+ OTHER = Rest of Less Developed Countries

Table 4.6: Global surface emissions per source category related to CPB scenarios ER, GS and BG (derived from selected IPCC scenarios).

			ER scena	rio (IS92	f)	GS scena	ario (IS92	a)	BG scen	ario (IS92	2e)
IPPC category	Unit of	1990	2025	2003	2015	2025	2003	2015	2025	2003	2015
	values	<u>value</u>	value	index	index	value	index	index	value	index	index
CO2 sources	Pg CO2										
Energy	3	22.0	49.5	1.46	1.89	22.0	1.29	1.56	46.2	1.41	1.79
Cement	1	0.7	1.8	1.56	2.07	0.7	1.37	1.71	1.5	1.37	1.71
Deforestation		4.4	4.0	0.97	0.94	4.8	0.94	0.89	4.8	1.00	1.00
TOTAL		26.8	55.4	1.40	1.76	27.1	1.24	1.46	52.8	1.35	1.68
IOIAL	}	20.0	00.7	7.70	1.70	27.1	1.27	1.40	02.0	7.00	7.00
CH4 sources	Tg CH4										
Energy	1.9 0.1.4	91.0	128	1.15	1.29	91.0	1.08	1.15	135.0	1.18	1.35
Cattle		84.0	140	1.25	1.48	84.0	1.24	1.46	138.0	1.24	1.46
Rice		60.0	85	1.15	1.30	60.0	1.11	1.21	78.0	1.11	1.21
Animal waste		26.0	44	1.26	1.49	26.0	1.24	1.47	43.0	1.24	1.47
Landfills	ļ	38.0	67	1.28	1.55	38.0	1.24	1.47	71.0	1.32	1.62
Biomass burning*		28.0	33	1.07	1.13	28.0	1.05	1.10		1.05	1.10
Sewage	i	25.0	45	1.30	1.57	25.0	1.22	1.43	40.0	1.22	1.43
Naturale		155.0	155	1.00	1.00	155.0	1.00	1.00	155.0	1.00	1.00
TOTAL		506.0	697	1.14	1.27	506.0	1.11	1.22	692.0	1.14	1.26
*o.w. fuelwood:	l	7.0	6.3	0.96	0.93	7.0	0.96	0.93	6.3	0.96	0.93
N2O sources	Tg N2O										
	191420	0.6	1.3	1.37	1.71	0.6	1.28	1.54	1.7	1.65	2.25
Energy	1			1.37	1.71	1.1	1.32	1.61	2.2	1.37	1.71
Industry		1.1	2.2						1	1.15	1.29
Biomass burning	1	0.8	1.1	1.15	1.29	0.8	1.15	1.29	1.1	1.13	1.43
Agriculture	l	4.7	7.9	1.25	1.48	4.7	1.22	1.43	7.5	1.22	1.43
Natural]	13.0	13.0	1.00	1.00	13.0	1.00	1.00	13.0		
TOTAL	Ì	20.3	25.5	1.10	1.18	20.3	1.08	1.16	25.6	1.10	1.19
NOx sources	Tg NO2										
Energy	• • • • • • • • • • • • • • • • • • •	82.1	151.1	1.31	1.60	82.1	1.27	1.51	161.0	1.36	1.69
Biomass burning*	ļ	29.6	36.1	1.08	1.16	29.6	1.04	1.08	32.9	1.04	1.08
Naturale	I	39.4	39.4	1.00	1.00	39.4	1.00	1.00	39.4	1.00	1.00
Lightning	1	29.6	29.6	1.00	1.00	29.6	1.00	1.00		1.00	1.00
TOTAL		180.7	256.3	1.16	1.30	180.7	1.02	1.04	1	1.18	1.34
*o.w. fuelwood:		7.6	6.9	0.97	0.94	7.6	0.97	0.94	6.9	0.97	0.94
	1		0.0		0.07		0.07	•.• .	"	0.0.	
SO2 sources	Tg SO2										
Energy		130.0	220.0	1.26	1.49	130.0	1.21	1.40	220.0	1.26	1.49
Industrial		16.0	34.0	1.42	1.80	16.0	1.37	1.71	34.0	1.42	1.80
Biomass burning		4.0	6.0	1.19	1.36	4.0	1.19	1.36	6.0	1.19	1.36
Natural		44.0	44.0	1.00	1.00	44.0	1.00	1.00	44.0	1.00	1.00
TOTAL		194.0	304.0	1.21	1.41	194.0	1.17	1.33	304.0	1.21	1.41
00 000	T- 00										
CO sources	Tg CO		445.5			200	4 00		0000	0.04	0.04
Energy	•	303.3	415.3	1.14	1.26	303.3	1.09	1.16	1	0.91	0.84
Biomass burning*		693.0	823.7	1.07	1.13	693.0	1.06	1.11		1.06	1.11
Natural		100.3	100.3	1.00	1.00		1.00	1.00		1.00	1.00
Oceans		39.7	39.7	1.00	1.00		1.00	1.00		1.00	1.00
Wildfires		30.3	30.3	1.00	1.00		1.00	1.00		1.00	1.00
TOTAL		1166.7	1407.0	1.08	1.15	1166.7	1.08	1.15	1199.3	1.01	1.02
*o.w. fuelwood:		174.3	157.7	0.96	0.93	174.3	0.96	0.93	157.7	0.96	0.93
V00	T-										
VOC sources	Tg	07.0	50	4.00	1 00	27.0	1 20	1 E0	53.0	1 20	1.69
Energy		27.0	53	1.36	1.69		1.29	1.56		1.36	
Industry		23.0	39	1.26	1.50		1.21	1.40		1.26	
Biomass burning	1	53.0	55	1.01	1.03		1.01	1.01		1.01	1.03
Other	1	18.0		1.21	1.40	18.0	1.17	1.32		1.21	1.40
TOTAL		121.0	175	1.17	1.32	121.0	1.13	1.25	175.0	1.17	1.32

			ER scena	ER scenario			GS scenario			BG scenario		
	Unit of	1990	2025	2003	2015	2025	2003	2015	2025	2003	2015	
TPES *	values	<u>value</u>	value	index	index	value	index	index	yalue	<u>index</u>	index	
Energy	EJ	344	741	1.43	1.82	344.0	1.39	1.76	837.0	1.53	2.02	
Primary liquid	EJ	123	228	1.32	1.61	123.0	1.13	1.24	470.0	1.34	1.65	
CO2 .	Pg CO2 C	22	49.5	1.46	1.89	6.0	1.29	1.56	46.2	1.46	1.89	

^{*} Total Primary Energy Supply.

source: Pepper et al; 1992; IS92a also in Houghton et al., 1992

Subsequently, the emission trend of those IPCC scenarios was used to simulate the emissions related to the CPB scenarios. The specified emissions in 1990 and 2025 were interpolated to estimate the surface source emissions in 2003 and 2015 (see Table 4.6).

For the spatially distributed emissions we used the indexed global total development of emissions of the source categories distinguished in the emission inventories for 1990, derived from the IPCC scenarios as mentioned above, to simulate the future spatial emission distribution pattern (see below under Section 5.2.2).

4.6 Regional emissions and gridded emissions

Air traffic 4.6.1

Regional and total emissions from air traffic are based on the projected fuel consumption and assumptions about future values of emission factors. The calculation procedure is summarized in Table 4.7.

Although for policy analysis aggregated regional and global total emissions from aircraft and from surface sources are sufficient, for assessment of the environmental impacts of aircraft emissions we need to define the emissions in three dimensions. Actually there are four dimensions, since the seasonal variation is also of importance here.

Table 4.7: Calculation scheme for present and future levels of fuel consumption (FC) and emissions (EM), based on Seat-Km-Offered (SKO), Load factors (LF) and Emission Factors (EF).

```
AL90 =
               SKO90
SFC =
               FC/P-km
FCt =
                        SKOVSKO90* LFt/LF90*
                                                 SFCt/SFC90
               FC90*
                        (index)
                                      (DTI ass.) (own ass.)
                       SKOVSKO90* LFVLF90*
                                                 dSEC/SEC90* dEE/EE90
FMt =
               FM90*
                                                               (ass. for NOx and the others)
                                                 (own ass.)
                                      (DTI ass.)
                        (index)
               EM90*
                        FCt/FC90*
                                      EFVEF90
                                      (ass. for NOx and the others)
                        (index)
Dividing FCt and EMt by the levels in 1990 (FC90 and EM90, respectively) results in an indexed development.
For emissions in 1990 of:
                        use WSL fuel* scale to 90* EF (3188) (OECD/IPCC, 1995)
               CO2
                        use WSL fuel* scale to 90* EF (1)(Olivier, 1991)
               SO2
                        use WSL*
               NOx
                                      scale to 90 (EF calculated = 11.4 (WSL, 1993))
               CO
                        use WSL*
                                      scale to 90 (EF calculated = 4.3 (WSL/NLR, 1994)
                        WSL-LTO ton*scale to 90* EF (0.3) (Olivier; this report)
               CH4
                        use WSL fuel* scale to 90* EF(0.15) (Wiesen et al., 1994) (range: 0.05-0.5)
               N2O
                        use WSL fuel* scale to 90* EF (2.6) (average of NASA inventory; NASA, 1994)
               VOC
```

Notes:

Activity Level Fuel consumption Emission Seat-Km Offered Load Factor Specific Fuel Consumption

In this study we do no assume structural changes in the vertical and horizontal flight distribution pattern, except for those resulting from a changed mix of flights between regions/links and per type of aircraft/range within regions/links as specified by the aggregated DTI projection of passenger kilometres. This means that we assume that new aircraft of a specific size will fly at the same cruise levels as the current fleet mix. This may not be true completely, e.g. part of the new fleet could be new Super Sonic Transport aircraft which are now under development, but in order to keep the gridded scenarios as transparent as possible we refrained from including this kind of effects. For the same reason the temporal distribution of air traffic was assumed to be the same as in the base year 1990.

We note that the regional and global total emissions of NO_x and CO of the gridded reference emission scenarios will unavoidably differ slightly from the aggregate global projections. This is due to the fact that the emissions of these compounds are calculated using aircraft/range specific emission factors and differentiated growth rates of P-km, whereas the aggregate projections were constructed using only the regional total development of passenger kilometres.

4.6.2 Surface sources

The surface emissions are for aggregate analysis only used on a global total level. For practical reasons and as the gridded distribution of surface emissions is 'only' used as background to the aircraft emission, we applied globally uniform multiplication factors per source category and per compound to generate the future gridded emission pattern, which the atmospheric chemists used as input for their models. As in the case for air traffic, the temporal distribution per source category (distribution of annual emissions over calender months) was also kept constant in time. As a result, future surface emissions *per sector* differ only from 1990 emissions by a scaling factor per compound the spatial and temporal distribution pattern is kept constant in time. However, due to the use of different sectoral scaling factors the *composite* distribution patterns in 2003 and 2015 are not equal to the 1990 distribution.

Page 37 of 93 Report no. 773002003

5. POLICY ALTERNATIVES FOR AIR TRAFFIC SCENARIOS

In order to show the potential of additional policy measures, additional assumptions were made for policy alternatives each aiming at a specific compound, which are summarized in Table 5.1 (own estimates and estimates by Peper of NLR (Peper, 1993b, pers. comm.; see also Peper, 1993c; Greene, 1992; Schipper *et al.*, 1992). Shown here is the total change compared to the case where the variables are kept constant in time. Thus, the figures presented include the autonomous development described in Table 4.2. As an operational measure to reduce CO2 emissions, we considered an additional increase of the fleet average load factor with 6 per cent points to 75% in 2015 (instead of 69% in the autonomous case). The alternatives presented here aim at showing the effect of maximum technologically and operationally achievable emission reduction per compound.

To keep the analysis transparent, per compound we investigated the effect of just one measure, implemented at two levels:

- (1) in new aircraft only, taking into account the slow replacement rate due to the long service life of aircraft, thereby achieving a penetration of the entire fleet in 2015 of about 50% (this is shown in Table 5.1);
- (2) assuming also a partial implementation in the fleet of existing aircraft, by assuming a 50% retrofit of the engines, thus achieving a total penetration of the entire fleet of 75% (not shown in Table 5.1).

Table 5.1: Additional assumptions on the effect of alternative policies in aircraft emission scenarios.

Measure	Total change 2015 w.r.t. 1990	Reference
Technical measures/	(50% penetration assumed *)	
Variable		
SFC	-20.0% (including -12.5% of baseline)	Own estimate
EF-NOx	-42.5% (including -17.5% of baseline)	Peper, 1993b,c
EF-SO2 **)	-37.5%	Own estimate
EF-CO/VOC/CH4	-25%	Own estimate
EF-N2O ***)	0%	Own estimate
Operational measures:		
Load Factor	4+6% pnts (to 75% total in 2015)	Own estimate

Notes

^{*} Thus, for average new aircraft in 2015 the change with respect to the 1990 fleet average is twice the value mentioned here. In 2003 13/25 x 50% = 26% penetration was assumed.

^{**} For SO2, which emission factor is dependent on the fuel composition, we assume 50% penetration; i.e. that 50% of the refineries will produce jetfuel with a 75% lower sulphur content.

^{***} For N2O no measures are assumed due to lack of knowledge for this compound. Also the current global average emission factor is quite uncertain, since it is based on only a few measurements for a few engines.

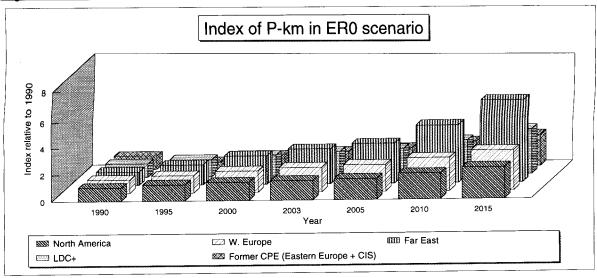
^{****} This corresponds with -9% specific fuel consumption.

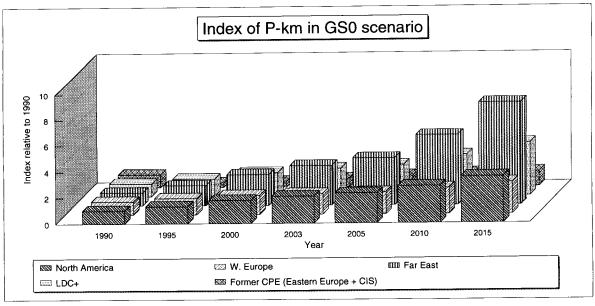
The effects of the assumed policy measures, although to some extent 'own estimates', are in line with other insights and illustrate the maximum of the range of effects that individual additional measures could have, provided that technological progress will indeed be realized to the assumed level *and* within the time frame assumed.

To conclude the analysis we have also investigated the combined effect of a package of these measures on CO_2 and NO_x . This will be discussed further in Chapter 7.

We emphasize that these policy alternatives assume a very strong technological development as well as immediate introduction of newly developed technologies, starting in about 2000. These alternatives could only be realized in optimal circumstances: by strong governmental support of R&D, technological developments within the time frame as assumed, and concrete policy measures for a timely introduction of the new technology. However, in all scenarios a gradual replacement of the existing fleet has been taken into account by assuming a 50% penetration of the total fleet by 2015, corresponding with the share of newest aircraft introduced after 2000 (see e.g. DTI, 1993). For 2003 we assumed an interpolated $13/25 \times 50\% = 26\%$ penetration of new technology. Thus, the changes in 2003 are assumed to be about half of the changes mentioned for 2015.

For SO_2 , of which the emission factor is not dependent on engine technology but on the fuel quality, we assume 50% penetration by 2015; i.e. that 50% of the refineries will produce jet fuel with a 75% lower sulphur content than the present average. For N_2O no measures are assumed due to lack of knowledge for this compound. Also the current global average emission factor for this compound is quite uncertain, since it is based only on a few measurements for a few engines (Wiesen *et al.*, 992) (see Section 2.1).


6. SCENARIO RESULTS


6.1 Projections of passenger-km

We started with the definition of the CPB scenarios in terms of assumptions for regional economic growth, which are illustrated in Fig. 4.1, as well as with (globally uniform) additional assumptions regarding ticket price development and autonomous development of the Specific Fuel Consumption (SFC), Emission Factors (EF), and Load Factors (LF) (see Table 4.2). Taking the inputs for the three CPB scenario's ER, GS and BG, DTI used its Air Traffic Demand Projection Model to calculate the number of Seat-km Offered (S-km or SKO), by DTI region and by DTI aircraft type. By incorporating the assumptions about load factors, we arrived at the indexed development of Passenger-km (P-km) per region. Next, DTI results were aggregated to LULU regions and LULU aircraft types (Tables 4.3 and 4.4), in order to facilitate the construction of gridded emissions using the spatial WSL aircraft database. As an example in Figure 6.1 the Seat-km projections in the ER scenario are presented in absolute figures, both by region and by aircraft/range type. Indexed results for the three scenarios in terms of P-km are presented in Table 6.1 and Figure 6.2. (More figures are given in Appendix I.) It shows, that the contribution of North America to total aircraft emissions will remain high, but in 2015 the share of the Far East has increased almost to a similar level. Also emissions of Western Europe still have a substantial share in global total in 2015. These strong regional differences are also visible in the historical development of jet fuel consumption (see Appendix M). The autonomous development of the global average load factor was presented in an indexed form in Table 4.2.

6.2 Global aircraft emission projections

Subsequently, the associated aircraft emissions were calculated. The method applied was summarized in Table 4.7. Surface emissions related to the three CPB scenarios were taken from selected IPCC scenarios (and interpolated to make estimates for 2003 and 2015) (Table 4.5). The results of the emissions estimates for both air traffic and energy-related sources are presented in Tables 6.2.a to c for CO₂, CH₄ and N₂O; for NO_x and SO₂; and for CO and VOC, respectively. It should be stressed that the regional sub-division of aircraft emissions shown in the upper part of the tables are only meaningful in the sense that the ratio between North America, Western Europe, Far East and the LDC+ region is more or less realistic. In particular former Centrally Planned Europe (CPE), i.e. Eastern Europe and the former USSR, are strongly underestimated due to missing data in the WSL database. Global total figures, however, are scaled to global jet fuel consumption by aircraft in 1990. The lower part of the tables shows the projection of energy-related emissions and the aircraft emissions expressed as percentage of energy-related emissions (1% aircraft of energy).

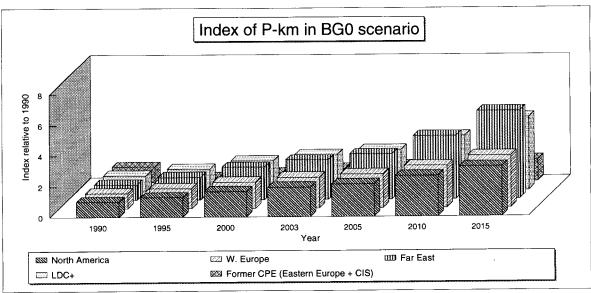


Figure 6.1: Indexed development of Passenger-km in scenarios ER, BG and GS.

Table 6.1: Indexed development of Passenger-km in the ER, BG and GS scenarios.

ER0 scenario (index of SKO*LF)

LULU region	1990	1995	2000	2003	2005	2010	2015
North America	1.00	1.21	1.36	1.46	1.57	1.95	2.36
W. Europe	1.00	1.29	1.61	1.84	2.00	2.48	3.02
Far East	1.00	1.48	2.13	2.63	3.03	4.36	6.18
LDC+	1.00	1.27	1.57	1.79	1.98	2.61	3.38
Former CPE (Eastern Europe + CIS)	1.00	0.49	0.98	1.21	1.45	1.91	2.36
Total	1.00	1.27	1.56	1.77	1.94	2.53	3.23

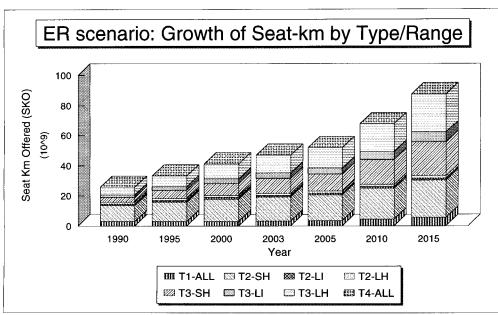
Note: CPE: period 90-95 about 50% negative growth, "opposite" of Far East period 95-15 about factor 5 growth, in line with Far East

GS0 scenario (index of SKO*LF)

LULU region	1990	1995	2000	2003	2005	2010	2015
North America	1.00	1.32	1.79	2.10	2.32	2.89	3.61
W. Europe	1.00	1.24	1.48	1.60	1.70	2.01	2.45
Far East	1.00	1.55	2.39	3.04	3.59	5.33	7.85
LDC+	1.00	1.37	1.84	2.14	2.39	3.11	4.02
Former CPE (Eastern Europe + CIS)	1.00	0.40	0.49	0.68	0.87	1.05	1.13
Total	1.00	1.34	1.82	2.13	2.37	3.08	4.03

Note: CPE estimate based on Far East/LDC+ similarity.

BG0 scenario (index of SKO*LF)


LULU region	1990	1995	2000	2003	2005	2010	2015
North America	1.00	1.29	1.67	1.94	2.14	2.64	3.23
W. Europe	1.00	1.31	1.71	1.99	2.19	2.73	3.39
Far East	1.00	1.46	2.09	2.57	2.95	4.12	5.74
LDC+	1.00	1.41	1.95	2.35	2.66	3.56	4.76
Former CPE (Eastern Europe + CIS)	1.00	0.30	0.59	0.87	1.06	1.24	1.42
Total	1.00	1.32	1.73	2.01	2.23	2.89	3.75

Note: CPE estimate based on Far East/LDC+ similarity

Emissions of methane can be neglected as they are extremely small, also compared to other source (Table 6.2). Emissions of nitrous oxide on the other hand are rather uncertain: as a percentage of other energy related emissions it could be of the order of 10%, but total energy related N_2O emissions are only a minor anthropogenic source (Tables 6.2 and 4.6).

The impact of additional technical measures to reduce emissions is simulated by assuming one measure per compound (except for N_2O). This is presented in the tables in the six *italic* lines, showing the impact of (1) a strong (maximum) implementation in new aircraft only, and (2) including also a partial implementation in the existing fleet (by retrofitting 50% the existing aircraft engines). This method of simulating the effect of one technical measure per compound and not of a package of measures was done for reasons of transparency.

Note:	
T1 =	WSL types 1 and 2 (DTI types A and B)
T2 =	WSL types 3 and 4 (DTI types C and D and part of E and F)
T3 =	WSL types 5 and 6 (DTI types G to J and part of E and F)
T4 =	WSL types 7 to 10 (no DTI types)
SH =	Short Haul (< 2900 Nm)
LH =	Long Haul (> 2900 Nm)
ALL =	All distance ranges

Figure 6.2: Indexed development of Seat-km by region and by aircraft type in ER scenario.

Table 6.2.a: Aircraft and energy-related emissions of CO₂, N₂O and CH₄ for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure). N.B. Policy alternatives are shown in *italics*.

CO2 (Mton)	(SKO indexed; autonomous development of SFC 1990 2003 2015						
Air traffic	1990	2003-ER	2003-GS	2003-BG			
North America (o)	234.8	321.3	461.5	426.6	2015-ER	2015-GS	2015-B
W. Europe (o)	97.5	167.3	145.7	181.7	485.7	741.0	664.
Far East (o)	75.6	185.8	214.7	181.4	257.5	209.2	289.
LDC+ (o)	80.6	134.9	161.3	177.0	409.3 238.4	519.7	380.
Former CPE (u)	9.7	11.0	6.2	7.9		283.1	335.
Total air traffic	498.2	820.3	989.3	974.6	20.1	9.6	12.
Index autonomous dev.	1.00	1.65	1.99	1.96	1,411.0 2.83	1,762.6	1,681.
Policy altern. 1 (max. techn.)	498.2	786.1	948.1	934.0	1290.1	3.54 1611.5	3.3
Index policy alt. #1	1.00	1.58	1.90	1.87	2.59	3.23	1537. 3.0.
Policy altern. 2 (50% retrofit)	498.2	763.3	920.6	906.9	1209.5	1510.8	3.0. 1441.
Index policy alt. #2	1.00	1.53	1.85	1.82	2.43	3.03	2.8:
Energy:	22,000.0	31020.0	28380.0	32120.0	39380.0	34320.0	44500
Index	1.00	1.41	1.29	1.46	1.79	1.56	41580.0
% of energy sources				1.40	1.70	1.36	1.89
Autonomous development	2.3	2.6	3.5	3.0	3.6	5.1	4.0
Policy altern. 1 (max. techn.)	2.3	2.5	3.3	2.9	3.3	4.7	3.7 3.7
Policy altern. 2 (50% retrofit)	2.3	2.5	3.2	2.8	3.1	4.4	3.5
CH4 (kton)	1990	2003			2015		
Air traffic		ERO	GS0	BG0	ERO	GSO	BGO
North America (o)	2.5	3.4	4.9	4.5	5.2	7.9	7.1
W. Europe (o)	1.0	1.8	1.5	1.9	2.7	2.2	3.1
Far East (o)	0.8	2.0	2.3	1.9	4.3	5.5	4.0
LDC+ (o)	0.9	1.4	1.7	1.9	2.5	3.0	3.6
Former CPE (u)	0.1	0.1	0.1	0.1	0.2	0.1	0.1
Total air traffic	5.3	8.7	10.5	10.4	15.0	18.7	17.9
Index autonomous dev.	1.00	1.65	1.99	1.96	2.83	3.54	3.37
Policy altern. 1 (max. techn.)	5.3	7.6	9.1	9.0	11.2	14.0	13.4
Index policy alt. #1	1.00	1.43	1.73	1.70	2.12	2.65	2.53
Policy altern. 2 (50% retrofit)	<i>5.3</i>	7.0	8.5	8.3	9.4	11.7	11.2
index policy alt. #2	1.00	1.33	1.60	1.57	1.77	2.21	2.11
Energy:	91,000.0	104650.0	98280.0	107380.0	117390.0	104650.0	122850.0
Index	1.00	1.15	1.08	1.18	1.29	1.15	1.35
% of energy sources							
Autonomous dev.	0.006	800.0	0.011	0.010	0.013	0.018	0.015
Policy altern. 1 (max. techn.)	0.006	0.007	0.009	0.008	0.010	0.013	0.011
Policy altern. 2 (50% retrofit)	0.006	0.007	0.009	0.008	0.008	0.011	0.009
N2O (kton)	1990	2003			2015		
Air traffic		ERO	<u>G\$0</u>	BGQ	ERO	GSO	BG0
North America (o)	11.0	15.1	21.7	20.1	22.9	34.9	31.3
W. Europe (o)	4.6	7.9	6.9	8.5	12.1	9.8	13.6
Far East (o)	3.6	8.7	10.1	8.5	19.3	24.5	17.9
LDC+ (o)	3.8	6.3	7.6	8.3	11.2	13.3	15.8
Former CPE (u) Total (middle range)	0.5	0.5	0.3	0.4	0.9	0.5	0.6
Index (middle)	23.4	38.6	46.6	45.9	66.4	82.9	79.1
Lower range	1.00	1.65	1.99	1.96	2.83	3.54	3.37
index lower range	7.8 1.0	12.9	15.5	15.3	22.1	27.6	26.4
Higher range	78.1	1.6 128.7	2.0	2.0	2.8	3.5	3.4
Index higher range	1.0	1.6	155.2 2.0	152.9 2.0	221.3 2.8	276.4 3.5	263.7 3.4
Energy:	628.6	886.3					
Index	1.00	1.41	810.9	917.7	1125.1	980.6	1188.0
	1.00	1.41	1.29	1.46	1.79	1.56	1.89
% of energy sources							
	3.7	4.4	5.7	5.0	E 0	e =	
% of energy sources Autonomous development Lower range	3.7 1.2	4.4 1.5	5.7 1.9	5.0 1.7	5.9 2.0	8.5 2.8	6.7 2.2

Index autonomous dev.

Index policy alt. #1

Index policy alt. #2

% of energy sources
Autonomous development

Energy:

Policy altern. 1 (strong techn.)

Policy altern. 1 (strong techn.)

Policy altern. 2 (50% compliance)

Policy altern. 2 (50% compliance)

Table 6.2.b: Aircraft and energy-related emissions of NO_x and SO₂ for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure). N.B. Policy alternatives are shown in *italics*.

NOx (kton NO2)	(SKO index	2003			2015		
Air traffic		ERO	GS0	BG0	ERO	GS0	BG0
North America (o)	841.5	1046.9	1503.5	1389.7	1436.1	2190.9	1965.1
W. Europe (o)	349.3	545.1	474.7	592.0	761.5	618.6	854.4
Far East (o)	271.1	605.5	699.5	591.1	1210.4	1536.7	1124.1
LDC+ (o)	288.7	439.4	525.4	576.7	705.0	837.0	992.1
Former CPE (u)	34.8	35.9	20.1	25.8	59.3	28.5	35.6
Total air traffic	1,785.5	2,672.6	3,223.2	3,175.2	4,172.3	5,211.7	4,971.3
Index autonomous dev.	1.00	1.50	1.81	1.78	2.34	2.92	2.78
Policy altern. 1 (max. techn.)	1,785.5	2290.4	2762.3	2721.1	2908.0	3632.4	3464.6
Index policy alt. #1	1.00	1.28	1.55	1.52	1.63	2.03	1.94
Policy altern. 2 (50% retrofit)	1,785.5	1965.5	2370.4	2335.1	1833.3	2290.0	2184.4
Index policy alt. #2	1.00	1.10	1.33	1.31	1.03	1.28	1.22
Energy:	82,142.9	115821.4	105964.3	119928.6	147035.7	128142.9	155250.0
Index	1.00	1.41	1.29	1.46	1.79	1.56	1.89
% of energy sources							
Autonomous development	2.2	2.3	3.0	2.6	2.8	4.1	3.2
Policy altern. 1 (max. techn.)	2.2	2.0	2.6	2.3	2.0	2.8	2.2
Policy altern. 2 (50% retrofit)	2.2	1.7	2.2	1.9	1.2	1.8	1.4
SO2 (kton)	1990	2003			2015		
Air traffic		ERO	GS0	BG0	ERO	GS0	BG0
North America (o)	73.6	100.8	144.8	133.8	152.3	232.4	208.5
W. Europe (o)	30.6	52.5	45.7	57.0	80.8	65.6	90.6
Far East (o)	23.7	58.3	67.3	56.9	128.4	163.0	119.2
LDC+ (o)	25.3	42.3	50.6	55.5	74.8	88.8	105.2
Former CPE (u)	3.0	3.5	1.9	2.5	6.3	3.0	3.8
Total air traffic	156,3	257.3	310.3	305.7	442.6	552.9	527.4

1.00

156.3

1.00

156.3

1.00

1.00

0.1

0.1

0.1

130,000.0

1.65

207.1

1.33

182.1

1.17

1.41

0.1

0.1

0.1

183300.0

1.99

249.8

1.60

219.6

1.41

1.29

0.2

0.1

0.1

167700.0

1.96

246.1

1.57

216.3

1.38

1.46

0.2

0.1

0.1

189800.0

2.83

276.6

1.77

193.6

1.24

1.79

0.2

0.1

0.1

232700.0

3.54

345.5

2.21

241.9

1.55

1.56

0.3

0.2

0.1

202800.0

3.37

329.6

2.11

230.7

1.48

1.89

0.2

0.1

0.1

245700.0

Table 6.2.c: Aircraft and energy-related emissions of CO and VOC for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure). N.B. Policy alternatives are shown in *italics*.

CO (kton)	1990	2003			2015		
Air traffic		ERO	<u>GS0</u>	BG0	ERO	<u>GS0</u>	BG0
North America (o)	320.1	438.0	629.1	581.5	662.1	1010.0	905.9
W. Europe (o)	132.9	228.1	198.6	247.7	351.1	285.2	393.9
Far East (o)	103.1	253.3	292.7	247.3	558.0	708.4	518.2
LDC+ (o)	109.8	183.8	219.9	241.3	325.0	385.9	457.4
Former CPE (u)	13.2	15.0	8.4	10.8	27.3	13.1	16.4
Total air traffic	679.1	1,118.3	1,348.6	1,328.6	1,923.5	2,402.7	2,291.8
Index autonomous dev.	1.00	1.65	1.99	1.96	2.83	3.54	3.37
Policy altern. 1 (max. techn.)	679.1	972.9	1173.3	1155.8	1442.6	1802.0	1718.9
Index policy alt. #1	1.00	1.43	1.73	1.70	2.12	2.65	2.53
Policy altern. 2 (50% retrofit)	679.1	900.2	1085.7	1069.5	1202.2	1501.7	1432.4
Index policy alt. #2	1.00	1.33	1.60	1.57	1.77	2.21	2.11
Energy:	303,333.3	427700.0	391300.0	442866.7	542966.7	473200.0	573300.0
Index	1.00	1.41	1.29	1.46	1.79	1.56	1.89
% of energy sources							
Autonomous development	0.22	0.26	0.34	0.30	0.35	0.51	0.40
Policy altern. 1 (max. techn.)	0.22	0.23	0.30	0.26	0.27	0.38	0.30
Policy altern. 2 (50% retrofit)	0.22	0.21	0.28	0.24	0.22	0.32	0.25

VOC (kton)	1990	2003			2015		
Air traffic		ERO	<u>GS0</u>	BG0	<u>ERO</u>	GSO	BG0
North America (o)	191.5	262.1	376.4	347.9	396.1	604.3	542.0
W. Europe (o)	79.5	136.4	118.8	148.2	210.0	170.6	235.7
Far East (o)	61.7	151.6	175.1	148.0	333.8	423.9	310.0
LDC+ (o)	65.7	110.0	131.5	144.4	194.4	230.9	273.6
Former CPE (u)	7.9	9.0	5.0	6.5	16.4	7.8	9.8
Total air traffic	406.3	669.0	806.9	794.9	1,150.8	1,437.5	1,371.2
Index autonomous dev.	1.00	1.65	1.99	1.96	2.83	3.54	3.37
Policy altern. 1 (max. techn.)	406.3	582.1	702.0	691.5	863.1	1078.1	1028.4
Index policy alt. #1	1.00	1.43	1.73	1.70	2.12	2.65	2.53
Policy altern. 2 (50% retrofit)	406.3	<i>538.6</i>	649.5	639.9	719.2	898.4	857.0
Index policy alt. #2	1.00	1.33	1.60	1.57	1.77	2.21	2.11
Energy:	27,000.0	38070.0	34830.0	39420.0	48330.0	42120.0	51030.0
Index	1.00	1.41	1.29	1.46	1.79	1.56	1.89
% of energy sources							
Autonomous development	1.50	1.76	2.32	2.02	2.38	3.41	2.69
Policy altern. 1 (max. techn.)	1.50	1.53	2.02	1.75	1.79	2.56	2.02
Policy altern. 2 (50% retrofit)	1.50	1.41	1.86	1.62	1.49	2.13	1.68

Notes:

2. Policy alternatives are individual changes w.r.t. the variable of interest:
Alternative 1 assumes a strong technical development, with 50% penetration.
Alternative 2 assumes, on top of this, 100% penetration (by retrofit), except for CO2 where we assume 75% penetration (other part assumed to be aircraft related, not to the engine).

That is: for CO2 additional improvement of the SFC has been assumed; for other compounds only a change in the corresponding emission factor was assumed (no policy on change in the SFC).

In conclusion, CO2 emissions could decrease more, if one adds operational measures such as additional increase of the load factor, whereas other emissions may drop by assuming additionally the SFC effect as showed for CO2 emissions, plus an increase of the load factor. Also, an economic measure such as increasing air fares will have a volume effect, with an associated impact on emissions. This is not shown in the tables/figures.

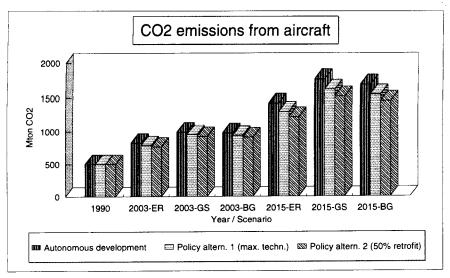
Technical improvements estimated to be feasible for new aircraft from 2000/2005, and retrofits for existing aircraft, assumed to be penetrated 50% in 2015 and 13/25 x 505 in 2003; for SO2 we also assumed 50% and 100%compliance, corresponding to 50 and 100% of refineries producing fuels with the requested decreased S-content.

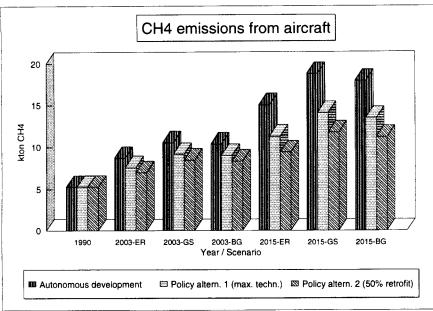
^{1.} Regional data are incomplete, notably for Former CPE, but scaled to 1990

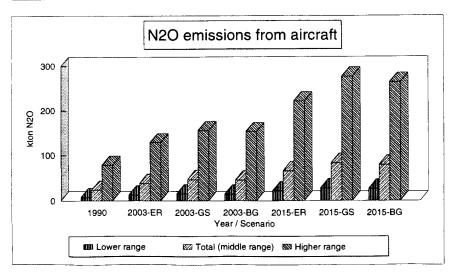
 ⁽o) = Overestimated, due to incomplete coverage of air traffic of CIS and scaling to global total fuel consumption.

⁽u) = Underestimated, due to incompete coverage of regional air traffic.

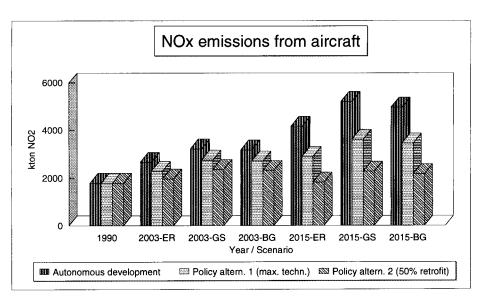
As mentioned in Chapter 5, these policy alternatives represent the maximum assumed to be technologically achievable within a few decades. Therefore, the practical potential for reducing emissions is likely to be smaller. On the other hand, a somewhat stronger emission reduction is possible by combining operational measures (LF) to further reduce CO₂ emissions and operational and/or technical measures (SFC) to further reduce the other emissions (see the notes at the end of Table 6.2.c.) Also cost measures, such as an increase in air fares, may reduce emissions by their direct negative effects on the volume of air traffic (and indirectly, when taxes are based on fuel consumption and/or emissions). These have not been evaluated here, since DTI has not performed scenario runs with different price assumptions (see Chapter 7 for an illustration of the impact of economic policy options). We recall, that for air fares an autonomous decrease of about 1% per year was assumed (Table 4.2).

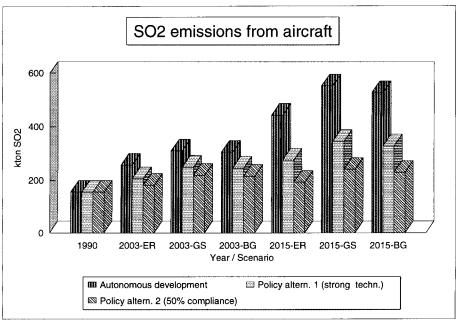

With this definition of the policy alternatives in mind, we show in Figures 6.3.a to 6.3.c the development of global aircraft emissions as presented in the tables, i.e. for the autonomous development case and for the policy alternative cases as described above. Note, as mentioned earlier in Chapter 5, that for the first case ('max techn.') we assumed 50% penetration in 2015 (and $13/25 \times 50\%$ in 2003) of the technical measures available per compound. from these figures the following conclusions can be drawn:

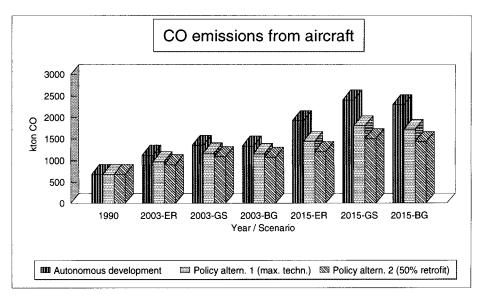

- * for aircraft emissions as such it can be tentatively concluded that the *autonomous growth* by 2015 of global air traffic emissions is somewhere between 140-190% for NO_x and between 180-250% for other compounds;
- * For most compounds the *growth* of emissions would be *restricted* to 20 to 120%, if the technical measures as described were to be implemented to the degree assumed;
- * The growth of NO_x and SO₂ emissions may be controlled technically most effectively (controlled growth 5/20-50%), whereas CO₂ emissions appear to be more difficult to control (the controlled growth of CO₂ is about 170%).


In addition, we see that there are differences between the three reference scenarios, with ER showing lowest emission levels in 2015, GS showing the highest levels, and BG falling somewhere in between. For comparison, the reference scenario for fuel consumption - i.e. CO_2 emissions - by aircraft in the USA as published by the US Energy Information Administration, corresponds well with the ER figure for North America (Table 6.2.a), provided we compare the growth figure for civil air traffic (see Appendix L) (EIA, 1994a,b).

6.3 Comparison of aircraft emissions with other sources


The development of the share of aircraft emissions relative to energy-related sources is presented in Figures 6.4.a-c for the three reference scenarios and the policy alternative per compound. This presentation of aircraft emissions as a *fraction* of energy-related emissions indicates that, except for CO₂ emissions, by 2015 the *autonomous* growth of the shares is somewhere between 30 and





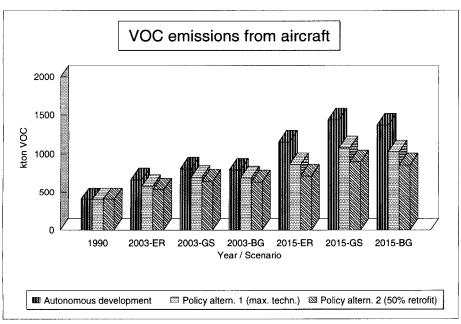

Figure 6.3.a: Global aircraft emissions of CO_2 , N_2O and CH_4 for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).

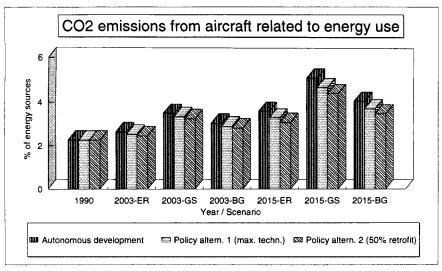
Figure 6.3.b: Global aircraft emissions of NO_x and SO_2 for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).

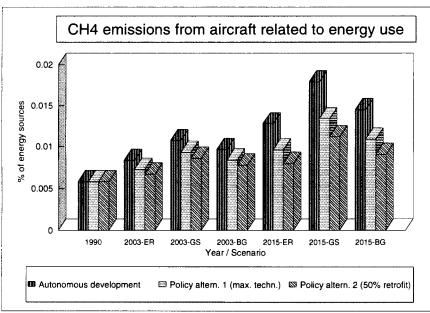
Figure 6.3c: Global aircraft emissions of CO and VOC for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).

200% (Table 6.3). If technical measures are implemented to the degree assumed (and assuming no change in other energy-related emissions), for most compounds the emissions shares would be more or less stabilized or even reduced in the case of NO_x and SO₂:

- * NO₂ and SO₂: controlled emissions share may be stabilized (GS), or reduced up to 40% (ER);
- * CO and VOC: controlled emissions share may be stabilized (ER), or growth limited up to 40% (GS);
- * CO₂, CH₄ and N₂O: controlled growth of the share limited to 40% (ER) to 90% (GS), except for N₂O in GS (130%).

The only exception is again the contribution to CO₂ emissions, which by its nature appears to be more difficult to control. (If we neglect the negligible emissions of methane, and disregard nitrous oxide emissions, for which only very little information exists, not to mention control options for this compound.)


With regard to the effect of the policy alternatives as defined above, remember that the alternatives presented here are the 'maximum' cases, which will only be realized when all conditions are met.


We recall that these conclusions will be modified, when more measures, including economic and operational measures, are combined instead of assuming only one measure per compound (see next chapter). This is also the case when the more stringent emission and SFC regulation measures would be introduced earlier, resulting in higher penetration rates in 2003 and 2015. However, as mentioned before, the practical potential for implementing emission controls will be only a part of the technical potential.

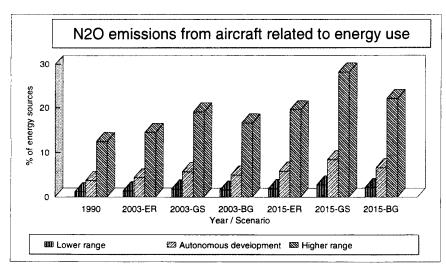
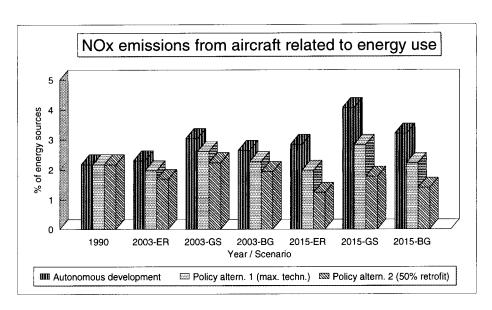
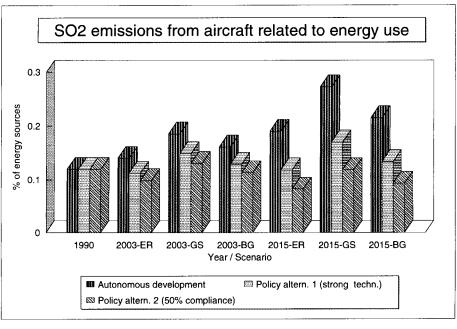
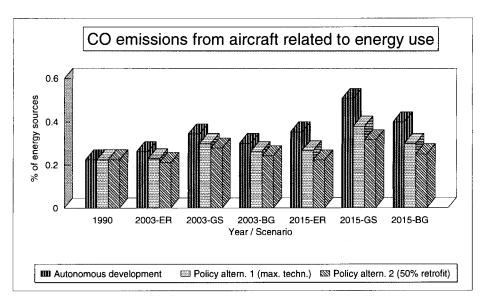

Finally we note the marked differences between the three reference scenarios, with ER showing lowest global emission share levels in 2015, GS showing the highest levels, and BG falling somewhere in between. These more pronounced differences in the fractions of energy-related emissions, rather than in the air traffic emissions themselves originate in the selected IPCC emission scenarios, which were 'related' to each of CPB scenarios, for which economic growth assumptions the development of air traffic was estimated.

Table 6.3: Index of aircraft emissions as fraction of energy-related emissions for reference scenarios and alternative policies.


Compound/policy	1990	2003			2015		
		ER0	GS0	BG0	ER0	GS0	BG0
CO2 - autonomous dev.	1.00	1.17	1.54	1.34	1.58	2.27	1.79
Policy altern. 1 (max. techn.)	1.00	1.12	1.48	1.28	1.45	2.07	1.63
Policy altern. 2 (50% retrofit)	1.00	1.09	1.43	1.25	1.36	1.94	1.53
CH4 -auton. dev.	1.00	1.43	1.84	1.66	2.20	3.08	2.50
Policy altern. 1 (max. techn.)	1.00	1.25	1.60	1.44	1.65	2.31	1.87
Policy altern. 2 (50% retrofit)	1.00	1.15	1.48	1.33	1.37	1.92	1.56
N2O - autonomous dev.	1.00	1.17	1.54	1.34	1.58	2.27	1.79
Lower range	1.00	1.17	1.54	1.34	1.58	2.27	1.79
Higher range	1.00	1.17	1.54	1.34	1.58	2.27	1.79
NOx - autonomous dev.	1.00	1.06	1.40	1.22	1.31	1.87	1.47
Policy altern. 1 (max. techn.)	1.00	0.91	1.20	1.04	0.91	1.30	1.03
Policy altern. 2 (50% retrofit)	1.00	0.78	1.03	0.90	0.57	0.82	0.65
SO2 - autonomous dev.	1.00	1.17	1.54	1.34	1.58	2.27	1.79
Policy altern. 1 (strong tech	1.00	0.94	1.24	1.08	0.99	1.42	1.12
Policy altern. 2 (50% compli	1.00	0.83	1.09	0.95	0.69	0.99	0.78
CO - autonomous dev.	1.00	1.17	1.54	1.34	1.58	2.27	1.79
Policy altern. 1 (max. techn.)	1.00	1.02	1.34	1.17	1.19	1.70	1.34
Policy altern. 2 (50% retrofit)	1.00	0.94	1.24	1.08	0.99	1.42	1.12
VOC - autonomous dev.	1.00	1.17	1.54	1.34	1.58	2.27	1.79
Policy altern. 1 (max. techn.)	1.00	1.02	1.34	1.17	1.19	1.70	1.34
Policy altern. 2 (50% retrofit)	1.00	0.94	1.24	1.08	0.99	1.42	1.12





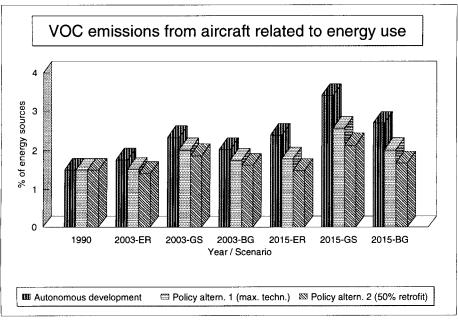

Figure 6.4.a: Global emissions of CO_2 N_2O and CH_4 from aircraft related to energy use for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).

Figure 6.4.b: Global emissions of NO, and SO₂ from aircraft related to energy use for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).

Figure 6.4.c: Global emissions of CO and VOC from aircraft related to energy use for 3 reference scenarios and 2 policy alternatives (50% and 75% implementation of technical measure).

7. INTEGRATED POLICIES FOR CO₂ AND NO₃ EMISSIONS

In the previous chapters the influence of isolated technical or operational measures on the emissions of air traffic was discussed. Clearly, policy alternatives in which a group a measures is combined will have a stronger effect on emissions. To illustrate how the combined effect of a port-folio of control measures on emissions may work out, we shall illustrate this for its effect on CO₂ and NO_x emissions. These gases were selected as according to recent assessments of the IPCC they are of most importance for their contribution to the enhanced greenhouse effect and they are assumed to have roughly the same impact when considering the increased global warming effect of these compounds as emitted by aircraft. Also, NO_x emissions by aircraft are of most importance in relation to the formation of tropospheric ozone (Beck *et al.*, 1992).

The measures taken into consideration are presented individually for CO_2 and NO_x in Tables 7.1 and 7.2. They are both of a technical, operational, and of a economic nature, to give a feeling of the potential of each of these type of control options. The first two types relate in general to the measures described before, but are now combined to analyze the cumulative effect.

Table 7.1: Factors affecting future CO₂ from aircraft and fleet average changes in 2015. N.B. Policy alternatives are shown in *italics*.

Factor	Change of factor	Impact on emissions
	in 2015 (see notes)	in 2015
Passenger-km (P-km) (autonomous, excluding load factor)	NA	+198% for ER (***)
1a. Load factor (fraction of seats occupied) (autonomous development)	+4% (to 69%) (*)	see below
1b. Passenger-km (P-km) (autonomous, incl. load factor)	-6.15%	-6.15%
2a. SFC of new aircraft (kg/P-km) [50% engine; 50% body] (autonomous)	-25% (*)	see below
2b. SFC of average fleet (kg/P-km) [50% engine; 50% body] (autonomous)	-12.5% (*)	-12.5%
3. Development of lowest SFC aircraft (engine and body)	-15% (**)	see below
3a. Development of lower SFC aircraft; moderate implementation	-2.5% (**)	-2.5%
3b. Development of low SFC aircraft; maximum implementation	-7.5% (**)	-7.5%
4. Ibidem; plus 50% retrofit of existing engines by 2015	-5% (**)	-5.0%
5. Additional load factor improvement	+6% (to 75%) (**)	-8.7%
6. Cost measures (increasing airfares)	+15% (**)	-7.5%

Notes:
(*) Relative to 1990. NA Not Applicable
(**) Relative to 2015 reference case. SFC Specific Fuel Consumption (kg fuel/P-km)

Table 7.2: Factors affecting future NO_x from aircraft and fleet average changes in 2015. N.B. Policy alternatives are shown in *italics*.

Factor	Change of factor	Impact on emissions
	in 2015 (see notes)	in 2015 (per factor)
Passenger-km (P-km) (autonomous, excluding load factor)	NA	+198% for ER (***)
Load factor (fraction of seats occupied) (autonomous development)	4% (to 69%) (*)	see below
1b. Passenger-km (P-km) (autonomous, incl. load factor)	-6.15%	-6.15%
2a. SFC of new aircraft (kg/P-km) [50% engine; 50% body] (autonomous)	-25% (*)	see below
2b. SFC of average fleet (kg/P-km) [50% engine; 50% body] (autonomous)	-17.5% (*)	-17.5%
3. Development of lowest NOx engines	-85% (*)	see below
3a. Development of lower NOx engines; moderate implementation	-25% (*)	-7.5%
3b. Development of lowest SFC aircraft; maximum implementation	-42.5% (*)	
3c. Lowest NOx engines and lowest SFC aircraft; maximum implement.	-46.8% (*)	
4a. Lowest NOx engines: 50% retrofit of existing engines by 2015	-63.8% (*)	
4b. Lowest NOx/SFC engines: 50% retrofit of existing engines by 2015	-68.4% (*)	
5. Additional load factor improvement	+6% (to 75%) (**)	
6. Cost measures (increasing airfares)	+15% (**)	-7.5%

Notes:

*) Relative to 1990.

Relative to 2015 reference case.

NA SEC Not Applicable Specific Fuel Consumption (kg fuel/P-km) In Tables 7.3 and 7.4 the cumulative effect of assumptions regarding the development of the Specific Fuel Consumption (SFC) and of the average emission factor for NO_x is summarized. Table 7.5 shows the combined effect on the development of the average emission factor for NO_x , including the SFC development. Presented are factors affecting the autonomous development and different types of policy options (the latter in italics) and their effect on new engines (bottom part) and on the fleet average (upper part).

Table 7.3: Assumptions on the development of Specific Fuel Consumption (kg fuel/P-km).

% of 1990	% diff. of 1990	Description
100%	0%	1990 average fleet
93.5%	-6.5%	2003 average fleet (13/25 of 2015 autonomous development)
87.5%	-12.5%	2015 average fleet (autonomous development)
85.0%		2015 average fleet with lower SFC aircraft (moderate implementation)
80%	-20%	2015 average fleet with 50% penetration of lowest SFC aircraft (maximum implementation)
75%	-25%	Ibidem, plus 50% retrofit of existing engines
75%	-25%	New aircraft (engines/bodies) in 2015 (autonomous development)
70%		New, lower NOx engines in 2015 (developed with 'extra' R&D)
60%	-40%	New, lowest SFC aircraft (engines/bodies) in 2015 (developed with maximum R&D)

Table 7.4: Assumptions on the development of average NO_x emission factor (g NO2/kg fuel).

% of 1990	% diff. of 1990	Description
100%	0%	1990 average fleet
90.9%	-9.1%	2003 average fleet (13/25 of 2015 autonomous development)
82.5%	-17.5%	2015 average fleet (autonomous development)
75.0%	-25.0%	2015 average fleet with lower SFC aircraft (moderate implementation)
57.5%	-42.5%	2015 average fleet with 50% penetration of lowest SFC aircraft (maximum implementation)
36.2%	-63.8%	Ibidem, plus 50% retrofit of existing engines
65%	-35%	New engines in 2015 (autonomous development)
50%	-50%	New, lower NOx engines in 2015 (developed with 'extra' R&D)
15%	-85%	New, lowest NOx engines in 2015 (developed with maximum R&D)

Table 7.5: Development of average NO_x emission index(gNO2/P-km), including SFC development.

% of 1990	% diff. of 1990	Description
100%		1990 average fleet
85.5%	-14.5%	2003 average fleet (13/25 of 2015 autonomous development)
72.2%	-27.8%	2015 average fleet (autonomous development)
65.6%	-34 4%	2015 average fleet with lower NOx aircraft (moderate implementation)
50.3%	-49.7%	2015 average fleet with 50% penetration of lowest NOx aircraft (maximum implementation)
31.8%	-68.2%	Ibidem, plus 50% retrofit of existing engines
46.0%	-54.0%	2015 average fleet with 50% penetration of low NOx engines and low SFC aircraft
27.2%	-72.8%	Ibidem, plus 50% retrofit of existing engines
49%	-51%	New engines in 2015 (autonomous development of emission factor and SFC)
35%	-65%	New, lower NOx engines in 2015 (developed with 'extra' R&D)
9%	-91%	New, lowest NOx/lowest SFC engines in 2015 (developed with maximum R&D)

Page 56 of 93 Report no. 773002003

Cost measures, such as an increase in air fares, are considered as they may reduce emissions through their direct negative effects on the volume of air traffic (and indirectly, when taxes are based on fuel consumption and/or emissions). With regard to price measures, a global ticket price increase of 15% was taken into consideration - having an effect on the volume of air traffic of about -7.5% (using an assumed elasticity of -0.5) (Olivier and Veldhuis, 1993; pers. comm.). This percentage was selected as it corresponds roughly to:

- * an increase of the fuel costs of 100%: ticket price +15%; or
- * introduction of VAT (15 to 20%) added to the ticket price: ticket price about +15%.

Also, the effect of an increase of the landing costs of 100%, leading to an increase of ticket prices of about 5%, can easily be derived from the case of a ticket price increase of 15% since it is just one third of it. We recall, that in the reference scenarios for air fares an autonomous decrease was assumed of about 1% per year (Table 4.2).

The results are presented for the years 2003 and 2015 in absolute figures and indexed relative to 1990 in Tables 7.6 and 7.7 and graphically in Figures 7.1 and 7.2 for CO_2 and NO_∞ respectively. The results of the ER0 scenario were used as the reference case. Shown is the cumulative impact of the port-folio of control options relative to the base line, applied in the order of their appearance in the tables/legends: technical options first, then load factor improvements, followed by cost measures. The effect of the technical and operational measures was again simply calculated by interpolation (for 2003 by taking 13/25 of the effect in 2015); the cost measure was assumed to be fully implemented in 2000.

It shows that the effect of autonomous development of both SFC and load factor is substantial and should not be neglected in comprehensive emissions assessments. Thus, emissions are rather strongly influenced by the assumptions made regarding these parameters. Our assumptions were based on Peper (1993b,c) and Newton (1993) and are in agreement with findings of Greene *et al.* (1992) and - for the USA, which accounts for over 40% of global jet fuel consumption - with results of the EIA scenario (see Appendix L), when compared with development in the ER0 reference case of CO_2 , thus fuel consumption, in North America. As mentioned in Chapter 5, the technical policy options represent the maximum assumed to be technologically achievable within a few decades. Therefore, the practical potential of this group for reducing emissions is probably be smaller. Having said this, we see that in this example the effects on CO_2 emissions of technical, operational and cost measures, respectively, are roughly of the same order.

Comparison of the results for the two gases shows that the potential for reduction of NO_x emissions is quite larger than of CO_2 emissions. In particular the impact of the technical measures - assuming they are fully implemented, also as partial retrofit of the existing fleet - is substantial. Being placed on top of these measures, the effect of additional load factor increase and cost measures on NO_x emissions does not show up very pronounced. This is, however, also due to the order of accumulation presented here and due to the large assumed effect of the technical measures.

Table 7.6: Emission scenarios for CO_2 from air traffic for different policy alternatives (Mton CO_2 and index). Shown here is the cumulative impact of control options applied in the order of their position in the table.

	1990	2003			2015		
CO2 emissions (Mton)	1990	2003-ER	2003-GS	2003-BG	2015-ER	2015-GS	2015-BG
Passenger-km (autonomous, excluding load factor)	498	906	1,093	1,077	1,718	2,146	2,047
1. Passenger-km (P-km) (autonomous, incl. load factor)	498	877	1,058	1,042	1,613	2,014	1,921
2. SFC of average fleet (kg/P-km) (autonomous)	498	820	989	975	1,411	1,763	1,681
3a. Development of lower SFC aircraft; moderate implementation	498	809	976	961	1,371	1,712	1,633
3b. Development of lowest SFC aircraft; maximum implementation	498	786	948	934	1,290	1,611	1,537
4. Ibidem; plus 50% retrofit of existing engines by 2015	498	763	921	907	1,209	1,511	1,441
5. Additional load factor improvement	498	<i>729</i>	879	866	1,104	1,379	1,316
6. Cost measures (increasing airfares, effective from 2000)	498	674	813	801	1.021	1,276	1.217
CO2 emissions (index relative to 1990)	1990	2003-ER	2003-GS	2003-BG	2015-ER	2015-GS	2015-BG
Passenger-km (autonomous, excluding load factor)	1	1.82	2.19	2.16	3.45	4.31	4.11
Passenger-km (P-km) (autonomous, incl. load factor)	1	1.76	2.12	2.09	3.24	4.04	3.86
2. SFC of average fleet (kg/P-km) (autonomous)	1	1.65	1.99	1.96	2.83	3.54	3.37
3a. Development of lower SFC aircraft; moderate implementation	1	1.62	1.96	1.93	2.75	3.44	3.28
3b. Development of lowest SFC aircraft; maximum implementation	1	1.58	1.90	1.87	2.59	3.23	3.09
4. Ibidem; plus 50% retrofit of existing engines by 2015	1	1.53	1.85	1.82	2.43	3.03	2.89
5. Additional load factor improvement	1	1.46	1.76	1.74	2.22	2.77	2.64
6. Cost measures (increasing airfares, effective from 2000)	1 .1	1.35	1.63	1.61	2.05	2.56	2.44

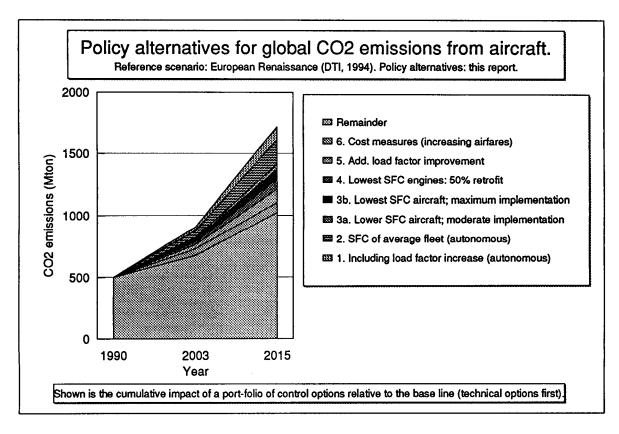


Figure 7.1: Policy alternatives for global emissions of CO₂ from air traffic. Shown is the cumulative impact of a port-folio of control options relative to the base line scenario, applied in the order of their number.

Table 7.7: Emission scenarios for NO, from air traffic for different policy alternatives (kton NO, and index). Shown here is the cumulative impact of control options applied in the order of their position in the table.

	1990	2003			2015		
NOx emissions (kton)	1990	2003-ER	2003-GS	2003-BG	2015-ER	2015-GS	2015-BG
Passenger-km (autonomous, excluding load factor)	1,786	2,953	3,561	3,508	5,081	6,347	6,054
Passenger-km (P-km) (autonomous, incl. load factor)	1,786	2,858	3,447	3,396	4,768	5,956	5,681
2. SFC of average fleet (kg/P-km) (autonomous)	1,786	2,673	3,223	3,175	4,172	5,212	4,971
3a. Development of lower NOx engines; moderate implementation	1,786	2,558	3,085	3,039	3,793	4,738	4,519
3b. Development of lowest SFC aircraft; maximum implementation	1,786	2,290	2,762	2,721	2,908	3,632	3,465
3c. Lowest NOx engines and lowest SFC aircraft; maximum implement.	1,786	2,195	2,305	2,270	2,742	3,425	3,267
4a. Lowest NOx engines: 50% retrofit of existing engines by 2015	1,786	1,966	2,370	2,335	1,833	2,290	2,184
4b. Lowest NOx/SFC engines: 50% retrofit of existing engines by 2015	1,786	1,829	2,206	2,173	1,571	1,963	1,872
5. Additional load factor improvement	1,786	1,746	2,106	2,075	1,435	1,792	1,709
6. Cost measures (increasing airfares, effective from 2000)	1,786	1.615	1.948	1.919	1.327	1.658	1.581
NOx emissions (index relative to 1990)	1990	2003-ER	2003-GS	2003-BG	2015-ER	2015-GS	2015-BG
Passenger-km (autonomous, excluding load factor)	1	1.65	1.99	1.96	2.85	3.55	3.39
Passenger-km (P-km) (autonomous, incl. load factor)	1	1.60	1.93	1.90	2.67	3.34	3.18
2. SFC of average fleet (kg/P-km) (autonomous)	1	1.50	1.81	1.78	2.34	2.92	2.78
3a. Development of lower NOx engines; moderate implementation	1	1.43	1.73	1.70	2.12	2.65	2.53
3b. Development of lowest SFC aircraft; maximum implementation	1	1.28	1.55	1.52	1.63	2.03	1.94
3c. Lowest NOx engines and lowest SFC aircraft; maximum implement.	1	1.23	1.29	1.27	1.54	1.92	1.83
4a. Lowest NOx engines: 50% retrofit of existing engines by 2015	1	1.10	1.33	1.31	1.03	1.28	1.22
4b. Lowest NOx/SFC engines: 50% retrofit of existing engines by 2015	1	1.02	1.24	1.22	0.88	1.10	1.05
F. Astrikian of the state of th	4	0.98	1.18	1.16	0.80	1.00	0.96
5. Additional load factor improvement	'	0.00	1.70		0.00		

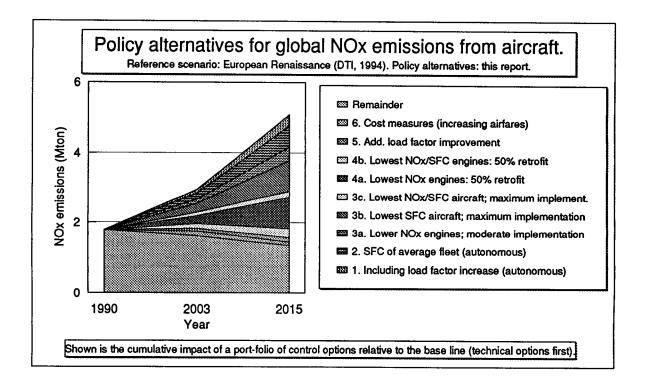


Figure 7.2: Policy alternatives for global emissions of NO_x from air traffic. Shown is the cumulative impact of a port-folio of control options relative to the base line scenario, applied in the order of their number.

By and large, we can conclude that - assuming it will be possible to develop new aircraft with both improved SFC and lower emission factors for NO_x - there will be a synergy in NO_x reducing options. Realizing that improvement of the Specific Fuel Consumption is not only a matter of improving the combustion efficiency of the engine, but also reducing the aerodynamic drag of the aircraft itself, this assumption may be a sensible one. Taking into account that with regard to the greenhouse effect of aircraft emissions the impact of CO_2 and NO_x emissions are roughly of the same order, the cases presented here suggest that it is unlikely that the CO_2 equivalent emissions from air traffic will decrease in the near future. The effects of individual policy options, either being technical, or operational or economic, are limited (Figure 7.1 and 7.2). However, through the combined impact of these different types of measures, a substantial reduction of the foreseen continued growth of emissions as illustrated by the reference scenarios may be quite possible.

8. CONCLUSIONS

We have studied the development of global emissions of various gases by air traffic in relation to the emission by other sources. Using GNP assumptions of three CPB scenarios "ER", "GS" and "BG", together with some other specific assumptions regarding air traffic and with the assistance of DTI, it was possible to generate three reference aircraft emissions scenarios. By simply relating one of the IPCC IS92 scenarios to each of the CPB scenarios, we compared estimates of future global aircraft emissions with global surface source emissions (Table 6.2). From our scenario studies we tentatively conclude that there will likely be a substantial growth of global aircraft emissions in the base case of autonomous development (varying from 140-190% for NO_x to 180-250% for other compounds), also including the substantial effects of the assumed autonomous improvement of the fleet average Specific Fuel Consumption and load factor (Table 6.3). The contribution of North America to total aircraft emissions will remain high, but by 2015 the share of the Far East has increased almost to a similar level (Figure I.1). If the environmental impact of emissions is rather dependent on the spatial distribution, this factor should be included carefully.

Emissions of methane can be neglected as they are extremely small, also compared to other sources (Table 6.2). Emissions of nitrous oxide on the other hand are rather uncertain, but total energy related N_2O emissions are only a minor anthropogenic source (Tables 6.2 and 4.6).

Strong technological measures may reduce emissions substantially, when implementation to a high degree is realized. In this respect we can distinguish three groups of compounds with rather similar effects on the share in energy-related emissions (assuming no change in other energy-related emissions) (Table 6.3):

- * NO_x and SO₂: controlled emissions share may be stabilized (GS), or reduced up to 40% (ER);
- * CO and VOC: controlled emissions share may be stabilized (ER), or growth limited up to 40% (GS):
- * CO₂, CH₄ and N₂O: controlled growth of the share limited to 40% (ER) to 90% (GS), except for N₂O in GS (130%).

These percentages are only meant to give an indication of what could be achieved 'at maximum' by technical control options; the practical potential is a fraction of this. However, we conclude that the growth of NO_x and SO_2 emissions may be controlled technically most effectively, whereas CO_2 emissions are most difficult to control. It was illustrated that the cumulative effect of different control options - either being technical, or operational or economic - can be substantial, in particular with regard to NO_x emissions (Table 7.7; Figure 7.2).

With respect to CO_2 emissions the selected examples showed that the effect of each type of control option can be of a similar size (Table 7.6; Figure 7.1) and that the combined effect on CO_2 and NO_x emissions could result in a substantial limitation, or even a reduction in absolute figures, of the uncontrolled growth of emissions - if the assumed strong technological development is indeed taking place and is implemented to a high degree.

With the available gridded emission inventories for air traffic and for surface sources (including

temporal information), through the process of aggregating the air traffic and surface source emission scenarios and coupling to the aggregated inventories, we were able to generate 3D emission fields related to the regional emission scenarios as input for atmospheric modellers. Regarding the temporal distribution of air traffic, it was shown that in particular flights between North America and (Western) Europe show a very strong seasonality effect, as is the case for flights within Europe. This is an important factor since the height of the tropopause does also vary per season.

This study appeared to be unique in that it combined the results of an air traffic projection model with a gridded air traffic emissions database to generate for future years three dimensional spatial distributions of aircraft emissions using well recognized and documented reference scenarios, thus allowing a comprehensive assessment of the atmospheric impact of aircraft emissions relative to other sources (e.g. by Veenstra *et al.*, 1995).

REFERENCES

- Ahuja, D.R.(1990). Estimating regional anthropogenic emissions of greenhouse gases. Report to the US-EPA, Office of Policy Analysis. September 1990. EPA report no. 20P-2006.
- Arnold, F., J. Scheid, T. Stilp, H. Schlager and M.E. Reinhardt (1992). Measurements of jet aircraft emissions at cruise altitude-I The odd-nitrogen gases NO, NO₂, HNO₂ and HNO₃. *Geophysical Research Letters*, **19:24**, 2421-2424.
- Beck, J., C. Reeves, F.d. Leeuw and S. Penkett (1992). The effect of aircraft emissions on tropospheric ozone in the Northern Hemisphere. *Atmospheric Environment*, **26A:1**, 17-29.
- CRU/ERL (1992). Development of a framework for the evaluation of policy options to deal with the greenhouse effect. A scientific description of the ESCAPE model: Version 1.1. CEC/DG XI, Brussels, May 1992.
- CPB (1992). Scanning the future. A long-term scenario study of the world economy 1990-2015. Central Planning Bureau (CPB), The Hague, April 1992.
- DTI (1993). Potential world market demand for passenger aircraft 1991-2015. A discussion note by the Department of Trade and Industry. DTI, London, May 1993.
- ECAC/ANCAT Working Group (1994). A global inventory of aircraft NOx emissions for the EC AERONOX research project. Report produced by ECAC/ANCAT and EC Working Group Second draft, November 1994.
- EDGAR (1994). Data retrieved from EDGAR (Emission Database for Global Atmospheric Research), V1.0. RIVM/TNO, Bilthoven.
- EDGAR (1995). Data retrieved from EDGAR (Emission Database for Global Atmospheric Research), V2.0. RIVM/TNO, Bilthoven.
- EIA (1994a). Annual Energy Outlook 1994. With projections to 2010. Energy Information Administration (EIA), US DOE, Washington. DOE/EIA-0383(94)
- EIA (1994b). Supplement to the Annual Energy Outlook 1994. Energy Information Administration (EIA)/DOE, Washington, DC. DOE/EIA-0554(94)
- Garvin, R.V. (1991). Aircraft Engines and the Environment Cleaner and Quieter Is the Promise of the Nineties. *Air Transport Law and Policy*, 53-60.
- Greene, D.L. (1992). Energy-efficiency improvement potential of commercial aircraft. *Ann. Rev. Energy Environm.* 17, 537-573.
- Hoffmann, D. (1991). Aircraft sulphur emissions. Nature, 349:659.
- Houghton, J., B. Callander & S. Varkey (1992). Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment. Cambridge: Cambridge University Press.
- ICAO (1989). *The economic situation in air transport: review and outlook 1978 to the year 2000.* ICAO, Montreal. Circular 222-AT/90.
- IEA (1994). World Energy Statistics and Balances. Data on diskette. IEA/OECD, Paris.
- IPCC (1995). Greenhouse Gas Inventory Reference Manual. IPCC Guidelines for National Greenhouse Gas Inventories. Volume 3. UNEP/OECD/IEA/IPCC, Bracknell, UK.
- Johnson, C., J. Henshaw & G. McInnes (1992). Impact of aircraft and surface emissions of nitrogen oxides on troposheric ozone and global warming. *Nature*, **355:6355**, 69-71.
- Johnston, H. (1992). Atmospheric ozone. Ann. Rev. Phys. Chem., 43:1-32.
- Katzman, H. & W. Libby (1975). Hydrocarbon emissions from jet engines operated at simulated high-altitude supersonic flight conditions. *Atm. Env.*, **9:**839-842.
- McInnes, G. and Walker, C.T. (1992). *The global distribution of aircraft air pollutant emissions*. Warren Spring Laboratory (WSL), Stevenage, June 1992. Report no. L2 872 (AP). ISBN 0

- 85624 731 6.
- Mortlock, A.K. [McDonnell Douglas] (1994). Personal communication d.d. 4/7-3-1994.
- Müller, J.-F. (1992). Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases, *J. Geophys. Res.*, **97**, 3787-3804.
- NASA (1993/1994). NASA/HSRP global aircraft emissions and fuel consumption inventory. Files received through FTP from NASA.
- Newton, P.J. [DTI] (1993). Personal communication d.d. 2-8-1993.
- Olivier, J.G.J., Bouwman, A.F., Van der Maas, C.W.M. and Berdowski, J.J.M. (1994), Emission Database for Global Atmospheric Research (EDGAR), *Environmental Monitoring and Assessment* 31, 93-106. Also published in: Van Ham, J., Janssen, L.J.H.M. and Swart, R.J. (eds.), Non-CO₂ Greenhouse Gases: Why and how to control?, Proceedings of an International Symposium, Maastricht (NL), 13-15 December 1993, pp. 93-106. Kluwer Academic Publishers, Dordrecht.
- Olivier, J.G.J. [RIVM] and Veldhuis, J. [RLD] (1993). Personal communication d.d. 22-11-1993. Olivier, J.G.J., (1994). RIVM, Bilthoven. Report no. 736 301 008.
- Peper, J.A. [NLR] (1993a). Personal communication d.d. 3-11-1993 on technological developments.
- Peper, J.A.. [NLR] (1993b). Personal communication d.d. 6-12-1993 on CO emission factors.
- Peper, J.A. (1993c). *Brandstofverbruik en emissies door vliegtuiggasturbinemotoren* (in Dutch). NLR, Amsterdam. Report no. NLR CR 93399 L.
- Pepper, W., J. Leggett, R. Swart, J. Wasson, J. Edmonds and I. Mintzer (1992). *Emission scenarios for the IPCC; an update. Assumptions, methodology, and results.* IPCC WG 1, Prepared for IPCC WG 1.
- Pischinger, R. and G. Sammer (1992). *Measures to reduce greenhouse gas emissions in the transport sector*. IIASA, Laxenburg: IPCC/EIS-IIASA International workshop on Energy-related Greengouse gases reduction and removal..
- Sage, K. [NASA] (1994). Personal communication d.d. 27-5-1994.
- Schipper, L., R. Steiner, P. Duerr, F. An and S. Strom (1992). Energy use in passenger transport in OECD countries: changes since 1970. *Transportation*, 19:25-42...
- Spicer, C., M. Holdren, D. Smith, D. Hughes and M. Smith (1992). Chemical composition of exhaust from aircraft turbine engines. *J. Eng. Gas Turbines Power*, **114:**111-117.
- UN (1992). 1990 Energy Statistics Yearbook. UN, New York. ISBN 92-1-061148-9. UN sales no. E./F.92.XVII.3.
- Veldhuis, J. (1993). Pers. communication.
- Veenstra, D.L., Beck, J.P., The, T.H.P. and Olivier, J.G.J. (1995). The impact of aircraft exhaust emissions on the atmosphere; scenario studies with a three-dimensional model. RIVM, Bilthoven. April 1995. Report no. 722201003.
- Walker, C.T. [WSL] (1993). Personal communication d.d. 21-9-1993 and 23-12-1993.
- Wiesen, P., Kleffmann, J., Kurtenbach, R., and Becker, K.H., 1994: Nitrous oxide and methane emissions from aero engines. *Geophys. Res. Lett.* 21:18, 2027-2030.
- WMO (1994). Scientific assessment of ozone depletion: 1994. WMO. In the press.
- WSL, 1993. WSL global aircraft emissions inventory. Files received from Walker (1993).
- Wuebbles, D.J., Baughcum, S.L., Gerstle, J.H., Edmonds, J., Kinnison, D.E., Krull, N., Metwally, M., Mortlock, A., and Prather, M. (1992). Designing a methodology for future air travel scenarios.
 In: Prather, M.J., Wesoky, H.L., Miake-Leye, R.C., Douglass, A.R., Turco, R.P., Wuebbles, D.J., Ko, M.K., and Schmeltekopf, A.L., principal authors, *The Atmospheric effects of stratospheric aircraft: a first program report*. NASA, Washington DC, NASA Reference Publication 1271. January 1992.

APPENDIX A: Decision points for scenarios for global environmental assessments of air traffic.

1 Definition of areas:

For calculation of global emissions from air traffic and other emission sources we may use aggregated world regions such as the four world regions distinguished by the IPCC in its greenhouse gas scenarios:

- OECD.
- (former) Centrally Planned Europe (Eastern Europe and the former USSR),
- China and other Asian Centrally Planned Economies,
- Rest of the World.

For more detailed emission calculations about ten regions could be used, such as: the CPB regions, the IMAGE/EDGAR regions, the ABC regions (also used in the WSL air traffic database, and the regions used in the DTI scheduled air traffic projection model (IATA regions).

2 Time horizon:

Base year: 1990

Reference year: 2000, 2003, 2015 [comply with the PMMS assessment].

3 Level of detail of air traffic:

Civil air traffic (sum of civil aviation, scheduled and charter flights); military air traffic For global emission assessments rather large categories will do; for effects calculations (e.g. tropospheric and stratospheric ozone) more detail is required amongst others with respect to the altitude resolution which is demanded by the atmospheric modellers groups.

4 Compounds:

 NO_x , CO, VOC, SO_2 , CO_2 , CH_4 ; N_2O and aerosols (when possible); plus H_2O and soot. [N.B. It is acknowledged that emission calculations for N_2O and aerosols have a very large uncertainty.]

5 Environmental themes for emissions and effect evaluation:

Ozone (tropospheric; stratospheric), acidification and climate. For <u>calculation</u> of effects on ozone (tropospheric) by RIVM/LLO and KNMI information on the spatial distribution of emissions of NO_x, CO, CH₄ and VOC is required (3D grid of 5x5 degree x 0,5 km altitude). [Evaluation of the effects on stratospheric ozone and climate is only possible by analysis and <u>literature</u> study.]

6 Relate emissions to:

Comparison of air traffic emissions with other emissions, e.g. from total transportation, total energy use, total anthropogenic emissions (per compound and by environmental theme)

7 Baseline scenario:

Air traffic:

- * Basic-1: without large SST fleet in 2015;
- * Basic-2: with SST fleet in 2015 cf. HSRP-scenario of NASA;

activities for both scenarios from CPB studies for 'Scanning the Future', extrapolated from 2015 to 2025; emissions factors from IPCC reports and from NLR study, and from NASA scenarios for SST, respectively.

Other sources: a Business as Usual scenario of IPCC.

Preferably, both should have the same assumptions on key variables, e.g. regional development of GNP.

8 Policy alternatives: sets of policy measures:

Type of measures: (a) technical (e.g. emissions standards), (b) operational (e.g. taxiing), and (c) volume/price (economic measures).

APPENDIX B: Overview of models to generate emissions scenarios for air traffic.

	Charles leiter	Dogs 1000	Doforonco voer	Kov veriablee	Output	Concluding remarks	Reference
Model (owner)	Spatial coverage	Dase year	-1	ı		Alat full consiste	Voldhije 1003
RLD (IEE)	Schiphol 1990	1990	2003, 2015	network conc.,	ments,	- Not fully covering	Veloticis, 1995
				prices,	. કા	the Netherlands,	
				transportprod.,		 Includes substit. 	
				envir. policy	movem.,	by High Speed Trains	
				measures		- No fuel and emissions as	
						output (off-line calculation)	
ICAO	World	1990	2000, 2010	location-km,		- No charters	ICAO, 1989
2	excluding China		•	load factor.	international and	 No China, former USSR 	
	former USSR			SFC.	domestic,	- No military	
-	excl. military			fleet mix,	regional		
	`			costs,	-	- No emissions	
				internat, trade			
DTI	World	1990	1991 2015	GNP, prices,	seat-km offered,	- No China, former USSR (yet)	Newton, 1993
=	excluding China	! !		other costs,	per size band/range,		
	former LISSR			fleet mix.	per region	- 10 world regions	
	excl. military			policy measures,		- No emissions	
-				aircraft types/ranges	Se		
Boeing	Sub-sonic.	1987	2000, 2015	٤	fuel consumption,	- No freight	Wuebbles, 1992
ב ב	world		•	fleet mix.	emissions (3 *)	- No charters	
	world,			load factor	per altitude and	- No military	
	scheduled offily			מבן ומכונו.	latitude zone	- No China former USSR. E. Eur.	
				omission factors	מווסס דסוופ	Based on 29 000 city pairs	
		,		ellission lactors		D M	
McDonnel Douglas Sub-sonic,	Sub-sonic, world excluding	~ .	>-	.		- r.wi.	
Booing	Supersonic		2015	625 HSCTs,	fuel consumption,	- 235 city pairs	Wuebbles, 1992
Sill BOO			,	Mach 2.4	emissions (3 *)	- cruising altitude 18 km	
				load factor 0.65	per altitude and		
				<i>د</i>	latitude zone		
McDonnel Douglas Supersonic	Supersonic	•		x HSCTs,	fuel consumption,	- 10 city pairs	Wuebbles, 1992
	between 10 regions	SU		Mach 3.2	emissions (3 *)	- cruising altitude 18-24 km	
				load factor +- 0.70	per altitude and		
				٠.	latitude zone		
EAA/ATC	2	2	خ	٤	ن	- P.M.	
IMAGE	World.	1990	until 2100	p-km, t-km,	fuel consumption,	- No military	CRU/ERL, 1992
(FSCAPF version)				SFC,	emissions (6 **),	 Distinction in 2 aircraft types 	
(RIVM)				load factor,	fuel costs,	 Includes China and former USSR 	m
(i				fuel price elasticity,	/, per regions		
				emission factors			
ad	World 12 regions	1990	2015	GNP, interreg. trade?	de?	Aggregated calculation of air traffic Veldhuis, 1993	c Veldhuis, 1993
	1108017, 1510gion	İ					
Notes:	NOx, CO and VOC.						
	** * * * * * * * * * * * * * * * * * *	ALC COC. CO.	A NOO CO NOV	Ş			

NOx, CO and VOC.
 All greenhouse gases: CO2, CH4, N2O, CO, NOx, VOC

APPENDIX C: Emissions and fuel consumption in the NASA/HSRP global total air traffic inventory.

Table C 1. NASA/HSBP base year data on aircraft activi	se vear data on air	rcraft a	ctivities (1990).									[A 1010do	
	End consumption	إ	Emissions						Emission ractors	actors.			
Altitude		5			S		ප		Š	ပ 8	ဥ		
Kin km)					}		10030 modec (Tolve)		(a/ka)	(a/ka)	(a/ka)	up to	
no to	K10^9 kg) (PJ/y	(PJ/vr)	10^30 molec.(0/Yr)		ЭĦ.			6	161	ĺ	12	K	0/1-12
21.0	15.1	673.2		0.18%	/80.0	3	7.1.1.4	1 6	;	•			
	67	217.8	9.092	0.058	319.1	90.0	20.00	3	9.6			-	
7-1	ď	1747	6969	0.063	307.2	0.00	699.5	0.033	13.0			-	,
wy ·	7	107.4	1818	0.062	282.3	900.0	653.6	0.030	6.4		7.7	N	
→	4.0		866 6	1500	280.8	900.0	624.2	0.020	14.0			0.	0
10	9 (3.5	9	204.7	9000	638.2	0.030	13.9		2.4	.7	•
•	3.4	Š	- 1		3 6	8 8	1028.4	000	111		1.9 10.8	80	_
_	**************************************	196	64 0.7	0.0	1./18	8 3	1.00	3	9 0				
- 0	97	218.8	678.7	0.052	4 26.2	0.011	A://	0 0	2 ;			<u> </u>	-
•		4	636.3	0.049	2122	0015	10507	000	=		21. 21.	Y 9	
> (i c	7637	1350.7	0.103	855.7	0.023	2187.2	0.102	10.1			5	101
101	7.0.4	3	10CK 7	0200	2845 2	9/00	5210.3	0.242	7.0			6.7	27 Cruise
11 cruise	6.5	90	4000.7	9700	2016.0	2700	3815.0	0.177	11.3	_		5.8	12
12 /	306	1362.4	777				2005	800	7		9.8	18.9	13 /
£	3.2	141.9	328.5	0.00	1.07.	3 6	5.000	45	. 0	•		14.8	-
7	1.0	45.1	128.0	0.010	120.5	2100	322.1	0.0			77		Ę
- 1	0	10.2		0.00	381.0	0.010	27.0	0.0	o o	•		7 7	2 4
<u>o</u> (. C	902	0.002	4.76	0.00	9.92	000	8.2		13.6		٠.
5	0.5	1 (9.01	0000	20.20	0.003	6.1			0.89	1/
17	0.038	- 6	9 6		154	0000	77.4	00.0	0.9			72.3	<u>~</u>
	0.080	7.7	, i	8 8	7		8	0000	5.9		8.5	74.9	19
9	0.014	0.6					5 450EG	-	100		63 8.44	44 Hotel	
Tote:	133.76	5964.3		9	13234./		0 10343	8	70 01				
enter(e)(e)(e)	<13 km; 132.22	5896.0	18981.0	.	12266.2	25.0	- 0000	3 6	200	•	•	72 42 km	
	_	683	173.0	0.0	968.5	0.03	/81./	Š	0.0				
SOURCE: NASA, HSRP (1993); analyzed by EDGARARIM+ (RIVM, 19	nalyzed by EDGARAII	Kt+(FIIV	1										
	and lead from			Hude rar	,des.								
Table C.2: Summary table of none just consumption	TOO IGN! JUST 10 6		TO NOW TO NOW	NON O	₹ of VOC	<u>00</u> 0 ₽1	00 P	Tg CG	3	4		COFIIGht	EF COFIIGht mode/attrude
Filight mode/attitude	- C-	K (;		9	.1	900	16.9	0.19	12.08				sum of LTO (< 1)
sum of LTO (< 1):		5	2 6	2 5	21.0	000	28.4	0.32	12.50		2.21	•	sum of climb_approach
sum of climb_approach:		7.0		7 6	į 9	8	10	0.58	10.14		2.45 6.	6.97 sum of c	sum of arulse (8-13)
sum of cruise (9-13):	83.4 3718.4	62.3	9./c	8 6	ġr	3 6	0	0		_		23.73 sum of SST (?)	ST (?)
aum of 13 km up:	1.5 68.3	=	Ì	10.0	5.	3 6	100	1 13					
Total.	133.8 5964.3	100.0	100.0	345	100.0	0.35	100.0	2					
Source: NASA, HSRP (1993); analyzed by EDGAR/RIM+ (RIVM, 1	nalyzed by EDGAR/RI	IM+ (FIIV	N, 1994)										
N B 1 6247 calls for LTO activities (< 1km)	activities (< 1 km)		•										
	26225 cells (= maximum) in 11-12 km bend	밑											
NB 2 15-	7.4536 kg												
- ToE	6.022*10*23												
05=	46 9												
1 mol CO =													
1 mol VOC =		8 00 -	(all VOC expressed as CH4)										
	•												

APPENDIX C: Continued.

Table C.3: Altitude distribution of fuel consumption and emissions per hemisphere.

Northern He	misphere			
Altitude	Fuel cons.	NOx	VOC	CO
(up to km)	10^6 kg	10^6 kg	10^6 kg	10^6 kg
<1	14230.0	172.4	42.7	176.1
1-2	4550.0	53.8	7.4	43.4
3	3619.0	49.2	7.2	29.6
4	3930.0	58.1	6.9	28.0
5	3390.0	47.4	6.9	26.7
6	3190.0	44.2	7.2	27.3
7	4094.0	45.8	7.5	42.4
8	4658.0	48.7	10.3	51.5
9	4156.0	45.8	13.8	46.7
10	9719.0	97.4	21.8	99.3
11	37480.0	349.2	73.0	234.5
12	28340.0	318.9	69.7	166.3
13	3044.0	24.2	28.0	56.3
14	978.2	9.6	10.9	13.6
15	228.3	1.2	10.1	10.5
16	190.9	1.6	2.6	3.6
17	37.6	0.2	0.3	2.6
18	49.8	0.3	0.4	3.6
19	14.3	0.1	0.1	1.1
Total NH:	125899.1	1368.0	326.6	1063.1

Southern He	misphere			
	uel cons.	NOx	VOC	
up to km)	10^6 kg	10^6 kg	10^6 kg	10^6 kg
<1	885.3	10.0	4.2	15.1
1-2	339.3	4.3	1.1	4.0
3	302.1	4.0	1.0	2.9
4	275.9	4.4	0.9	2.4
5	240.9	3.5	0.8	2.3
6	228.6	3.4	0.9	2.4
7	321.2	3.2	0.9	5.4
8	254.3	3.2	1.0	3.3
9	217.2	2.8	0.9	2.1
10	457.8	5.8	0.9	2.4
11	2035.0	22.5	2.6	7.7
12	2239.0	26.9	5.1	11.1
13	142.4	0.9	3.3	3.7
14	33.6	0.2	1.4	1.4
15	0.5	0.0	0.0	0.0
16	0.0	0.0	0.0	0.0
17	0.0	0.0	0.0	0.0
18	0.0	0.0	0.0	0.0
19	0.0	0.0	0.0	0.0
Total SH:	7973.0	95.1	25.1	66.2

Table C.4: Distribution of fuel consumption and emissions over the hemispheres.

Altitude	Fuel cons.	NOx	VOC	CO
Hemisphere	10^6 kg/%	10^6 kg/%	10^6 kg/%	10^6 kg/%
NH + SH:	133872.1	1463.1	351.6	1129.3
% NH	94.0	93.5	92.9	94.1
% SH	6.0	6.5	7.1	5.9

Table C.5: Altitude distribution of fuel consumption and emissions over the hemispheres.

	Fuel consump	tion	NOx emission	
Altitude	NH	SH	NH	SH
(up to km)	%	%	%	%
<1	94.1	5.9	94.5	5.5
1-2	93.1	6.9	92.5	7.5
3	92.3	7.7	92.4	7.6
4	93.4	6.6	93.0	7.0
5	93.4	6.6	93.0	7.0
6	93.3	6.7	92.9	7.1
7	92.7	7.3	93.6	6.4
8	94.8	5.2	93.9	6.1
9	95.0	5.0	94.2	5.8
10	95.5	4.5	94.3	5.7
11	94.9	5.1	94.0	6.0
12	92.7	7.3	92.2	7.8
13	95.5	4.5		3.7
14	96.7	3.3	98.1	1.9
15	99.8	0.2	99.9	0.1
16	100.0	0.0	100.0	0.0
17	100.0	0.0	100.0	0.0
18	100.0	0.0	100.0	0.0
19	100.0	0.0	100.0	0.0
Global total:	94.0	6.0	93.5	6.5

Table D.1: Emission factors for NOx and CO, TIM's and flight altitudes of WSL aircraft types

APPENDIX D: Emission factors for NO_x and CO used in the WSL civil air traffic inventory.

7	n ×										6	ĕ									6	زاخ اخ	4	2 6	5 6	2 0	10.0	5.5		e è	6	34.5	83	9.2	68.3	2 6		ē	ŏ	3.4	40.2	27.9	0	19.6	9 0	3	ĵ,	š	2 6	0, 7,	12.7	18.0	10.6
EF (d/kg	NO.									ž	EF (9/kg	CO NOX									EF (g/kg)	3						_		EF (9/kg)	2	io	8	13	0 [4.	,	FF (n/k	CO	22	-	12	45	ი ;	7 5	2	EF (g/kg)	8	<u>,</u>		‡ £	-	. 5
oay - High		, ac	Take-off	Climb start	Cruise	Climbo	C coint	7 8 7	Popralian Cilling	ody - Low			ax	Take-off	Climb start	Cruise	Climb 2	Cruise 2	Appr./anding				: :	lake-off	Chilips start	Sign of the sign o	Carisa 2	Appr./landing			, and	rake-off	Climb start	Cruise	limb 2	Cruise 2 47	NO.	į		Taxi	Take-off	Climb start	Cruise	Climb 2	Cruise 2 71	NOX			Se .	lake-on	Allino stati	Climb 2	C oake
narrow	(1000 ft)	_	ï	O	C) (٠,	₹ .	narrow		(1000 ft)	۳	-	0	0	O	O	1	pod À	;	(1000 L)	- 1	- (<i>,</i> (, (<i>.</i>	•	pody	() ()	ľ				5.	<i>J</i> L	de. Link	ry - ye	(1000 ff)	ľ		8			0.	wo I - Vi		(¥)			3 %		_
Short/medium range - narrow body - High NOX N A	.) Alfflude:	L	Climb end	Cruise alt.	Chrise alt 2					Short/medium range - narrow body - Low	N.A.	(min.) Altitude: (10	Climb start	Climb end	Chuise all	Cruise alt. 2	_			Longe range - narrow body		- [Climb start	Climb end	Cruise all.				Medium range - wide body	>3000 nm (3859 nm)	+	1.7 Climb end	16.5 Cruise alt.	19	g 6 Descend end		your what white have not how	Cang range - wide box	(min.) Altitude: (10	±	2.2 Climb end	18.2 Cruise alt.	ຂ			I and range - wide body - t ow NOx	>3000 nm (4173 nm)	٦	18 Climb start	2.5 Cilmbend	39.1 Cruise all.	_	-
Rance:	J. MIL	Taylin/ord	Take-off	Climb	Dascand	Arrer Janding	i i i		,	Type 2:	Range:	TIM's:	Taxi in/out	Take-off	Ē	Descend	Appr./anding	:		Type 3:	Range		Taxi invout	Take-off	Descend	Appr. Appoing	Appropriate Rail		Type 4:	Range:	Taxi in/out	Take-off	Çimb	Descend	Appr./anding			Dance.	TIM's:	Taxi in/out	Take-off	Climb	Descend	Appr.//anding		TVD.	Range:	:. M.	Taxi invour	ake-on		Appr Aanding	
NOX EF (n/kg)	NO.	5 34	0 2.8	1 22.4	17			,	0.7	ŏ	FF (g/kg)	SON OO									EF (g/kg)	NOX	23	13.1	0.0	ņ Ā	,	5.5		EF (g/kg)	12 30	0 34.5	2 26.4	27 9.2	;	- 9	2	E (20/22)	NOX NOX	21 3.4	1 40.2	9 26.4	6		113	0.0	EF (g/kg)	CO NOX	3.5	37.5	26.1		;
body - High		Tavé	Take-off	Climb start	Siles	Climb 2	7	Descend	Appr //anding	/ body - Low I	_	•	Taxi	Take-off	Climb start	Cruise	Climb 2	Cruise 2	Appr.//anding				Taxi	Take-off	Climb star.	Simb of	Descend	Appr./landing			No.	Take-off	Climb start	Cruise	Climb 2	Descend	Appr.//anding	NOX L		Taxi	Take-off	Climb start			Descend	Appl./lariging			ax	Take-off	Climb start	Climb	7
e - nairtow	1000	2	32	35		ų	j			e - narrov		(1000 ft)					_			w body		1000					_		e body	(mu)	4	37	37	•	1.5		111	. (au	(1000 #)	1.5	33	88	•	5.		o . Abou	gui)				37		j
Short/medium range - narrow body - High NOX 1500-2000 pm /1770 pm)	(min) Attinde: (1000 ff)	14 Climb clart	2 Climb end	19.2 Chrisp alt	20 Chise alt 2	a Doored of	in Descent of			Short/medium range - narrow body - Low NOX	ď	min.) Althude:	Climb start	Climb and	Cuite all	Chilse all 2	Descend en			Longe range - narrow body		- 1	Climb start	Climb end	Cruise alf.	Crusse all: 2	Descend end		Medium range - wide body	1500-3000 nm (1974 nm)	18 Climb etart	1.5 Climb end	16.2 Cruise aft.	19.7 Cruise alt. 2	6 Descend en		1	ang range - Wide body - High NOX	min) Althrefe: (1000 ft)	18 Climb start	2 Climb end	18,3 Cruise alt.	21.7 Cruise alt. 2	6 Descend en		VON wo I - whole holds - some range	1500-3000 nm (2136 nm)	in.) Afftude:	18 Climb start	1.9 Climb end	30.3 Chilse all.	6 Decount on	DESCRIPTION OF
Type 1: Sh		1	Take-off		2	Appr. Jonding	Similarida				Range: N.		2	Take-off	Cimb	Descend	Appr./anding			Type 3: Lo	_	-	Taxi in/out	Take-off	Cimp	Descend	Appr./landing		Type 4: Me		Town in/ore			덛	Appr./landing			lype 5:		3	Take-off	GEID	Descend	Appr./landing		Type 6			5	-	Gilling	٩	Silvaria
NOX EF (2/kg)		2	0 22.4	168	2 4	;		20	1 7.5	ě	EF (a/kg)	XON OO	14 2.5	0 174			, '	15	3 6.4		EF (g/kg)	CO NOX	2.3	13.1	10.0	27.55		5.5		EF (g/kg)	10 20		2 25.9			- 5	0 10	11.60	O O O	21 3.4	1 40.2	8 26.1	14 8.4		132	8.8	EF (g/kg)	CO NOX	35	1 37.5	3 25.5	0	,
ody - High _		Tool	Take-off	Climb start	o di in	olulo Clark	701	Descend	Appr.//anding	ody - Low I			Taxi	Take off	Climb ctart	9	Climb 2	Descend	Appr./landing				ax	Take-off	Climb start	SEL S	Cilmb 2	Appr./landing			Se	ke-off	Climb start	Cruise	Climb 2	Descend	Appr //anding	Š		axi	Take-off	Climb start	Cruise	Climb 2	Descend	Appr/landing			Taxi	Take-off	Climb start	Ciase	CILLID
narrowb	(HE)		37 Ta			5 6		<u>*</u>	₹	- narrow b	_	(1000 ft)	ľ		3 8		20	_	- 1		_	(1000 #)	Ë	ř	5 6	5 6	3 2	₹			15	39			1.5 D	Δ.	₹ .	ay - High	(1000 #)	r		38		1.5 C	Δ.	A	,	ŀ		e e		, 4	
Short/medium range - narrow body - High NOx	UV-1500 nm (614 nm)	10 Climb start	14 Climbend	1.8 Chicagh	21 Chies alt 2	Donated and	o Descenti entr			Short/medium range - narrow body - Low NOx	500-1500 nm (702 nm)	(min.) Afritude: (1)		1 6 Climb and	16.3 Caries at	16.6 Chiles alt 2	6 Descend end			Longe range - narrow body	500-1500 nm (702 nm)	min.) Altitude: (1	Climb start	Climb end	Cruise alt.	Cruise air. 2	Descend end		Medium range - wide body	500-1500 nm (866 nm)	10 Climb start	1.4 Climbend	16.3 Cruise alt.	20.7 Cruise alt. 2	6 Descend end		1	Lang range - wide body - High NOX	mm (oz./	18 Climb start	1.9 Climb end	15.3 Cruise alt.	21.7 Cruise alt. 2	6 Descend end		Appl.	500-1500 nm (924 nm)	- 1	18 Climb start	1.7 Climb end	27.4 Cruise alt.	6 Decomposed	o Descella ella
	Hange: 0	1			2	Anna Annahan	Application in				Rande: 5		Jno,			2	ding					٦	Taxi in/out	Take-off	Q III	Descend	Appr./landing		Type 4:			_		2	Appr./landing			Type 5:	_	Ļ			Descend	ging		Time 6:			5	ŧ	Cimb	į	
Ŏ.	(6) (6) (6) (6) (6) (7) (7) (7)	200	2, 2, 2, 2, 2, 4, 5, 5	18.5	- +	9.	•		1 7.5	č	EF (a/kg)	CONOX	14 2.5	-		7 4	; -	12	3 6.4		EF (g/kg)	XON OC	2.3	13.1	10.0	10.5	, "	5.5		EF (g/kg)	NO.	34.5		3 10.5	,	6	0	T. (m.0.m)	(g) (g)	21 3.4		5 26.7			4.	80.00	EF (g/kg)	CO NOX	3.5	1 37.5	2 29.7		
body - High N	- (,01	Take-off	Climb etart	Online State	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20110	Descend	Appr.//anding	body - Low Nt	_		Tax	Take off	Climb etar	Chrise start	Climb 2	Descend	Appr./anding		_		Taxi	Take-off	Climb start	Cruise	Climb 2	Appr./landing				laxi Take-off	Climb start	Cruise	Climb 2	Descend	Appr./landing			Tax	Take-off	Climb start	Cruise	Climb 2	Descend	Appr./anding	5		Taxi	Take-off		Simple Simple	
- narrow	(4000	-1	2 8	8	3		ú			- narrow		(1000 ft)	-		3 8					v body		1000 ft)				•			poq		1	. g	8 6		5.		1	- KE	(# 0001)	1.5	58	53	•	1.5		1		(1000 ft)	7.	8 8	83	, 4	ů.
Short/medium range - narrow body - High NOx		(min.) Allitone:	17 Climb and	0.7 Chise all	17 Chileo off 2	2 Classes and C	o Descenti ent			Short/medium range - narrow body - Low NOx	< 500 nm (258 nm)		L	1.5 Climb and	to cain C act	14.2 Chilea alt 2	6 Descend and			Longe range - narrow body	< 500 nm (258 nm)	_	Climb start	Climb end	Cruise alt.	Cruise air. 2	Descend end		Medium range - wide body	< 500 nm (300 nm)	min.) Anmude:	18 Climb start	10.1 Cruise alt.	16.1 Cruise alt. 2	6 Descend end			Lang range - Wide body - High NOX	_	-	1.9 Climbend	8.5 Cruise alt.	16.6 Cruise alt. 2	6 Descend end		Appr./anding	< 500 nm (258 nm)	.	18 Climb start	1.9 Climb end	14.1 Cruise alt.	6 Decord and	o Descenti enti
	Hange: <			limb.	Doctord	Second Second	Appraisating			Type 2: SI			5			2	i di			Lype 3:			Faxi in/out	Take-off	o diago	Descend	Appr.//amding		Type 4: N		٦	laxi iryour Faka-off	Climb	Descend	Appr./anding				range: .	5	Take-off	Climb	Descend	Appr./amding		Line 6.			Faxi in/out	_ake-off	Cilmb	Descend	ppr/landing

Source: Walker, 1993

APPENDIX E: Characterization of CPB scenarios ER, GS and BG.

Box E.1: Key characteristics of Global Shift

Dominant Perspective:	o Free-Market
Regional Developments	
- USA	o strong recovery
- Western Europe	o new Euro-sclerosis
ŕ	break-through after 2000-2005
- Japan and DAE	o continual rise
- Rest of Asia	o start of Asian Era
- Latin America	o sustained growth
- Africa	o delinking
- NMEs	o economic reconstruction fails
	o backlash in CIS (former USSR)
Trends	
- Technology	o strong dynamism
- Demography	o rapidly declining fertility in Asia
	o migration from East and South to Western Europe and USA
- Cooperation	o only to free market forces
000000000000000000000000000000000000000	o leadership of USA goes unchallenged
- Environment/Energy	o economic development top priority
	o no global cooperation; no global feedbacks
	o large local problems
	o shift to nuclear energy after 2000
- World Food	o Africa continent of hunger
- Internationalization	o rapid globalization
- and Market Structures	o very competitite

source: CPB, 1992.

Box E.2: Key characteristics of European Renaissance

* Dominant Perspective:	o Coordination
* Regional Developments	
- USA	o economic decline until 2000-2005
	o fortress America
	o loss of leadership
- Latin America	o another decade of crisis
- Western Europe	o favourable development
-	o policy-led integration process
	o EC expands to include EFTA and Central Europe
- CIS	o break-through at end of nineties
- Africa	o benefits from European development
- Asia	o rise restrained
* Trends	
- Technology	o economies of scale dominant
- Cooperation	o multipolar world
	o strong regional cooperation
	o strained relations with USA
- Environment/Energy	o no global approach; no global feedback
}	o mounting local problems
	o exception: Europe including Central Europe and
1	European republics of CIS
	o European Energy Community: shift to gas
- World Food	o 'pockets' of hunger
- Internationalization	o trade blocs
- and Market Structures	o strategic-trade/industrial policies
L	o evolves in less competitive direction

source: CPB, 1992.

Box E.3: Key characteristics of Balanced Growth

Dominant Perspective:	o equilibrium
Regional Developments	
- World	o transition to sustainable growth
	o growth also multipolar, including Africa
- Japan	o socio-cultural catching up to the West
- Western Europe	o integration based on market forces
Trends	
- Technology	o strong dynamism
- Demography	o rapidly declining fertility
- Cooperation	o to free market forces;
•	o to respond to global changes
- Environment/Energy	o leadership role of DCs
•	o global cooperation
	o introduction of global CO2 tax; LDCs compensated through aid
	o 50% reduction in energy intensity
	o start transition to renewmable energy
- World Food	o breaking paradox of hunger amidst plenty
- Internationalization	o unhampered
- and Market Structures	o very competitite
	o break-through in GATT

source: CPB, 1992.

APPENDIX F: Example of ticket price assumptions related to CPB scenarios.

Assumptions in conjunction with the GDP growth figures for CPB scenarios ER, BG and GS.

The figures mentioned here were not used in this study (see Table 4.2).

Some assumptions reflect price changes for travellers only (while not affecting net yield of airlines), other changes affect both.

These assumptions coincide with the assumptions made for application of the CPB scenarios to RLD's IEE model in scenario runs made specifically for projections of Schiphol Airport (for IMER).

Table F.1: Ticket price index in Balanced Growth scenario (RG)

DTI region	1990	1992	1995	2000	2003	2005	2010	2015
ALL REGIONS	1.00	1.00	0.95	0.88	0.83	0.85	0.86	0.86
Note:	BG assumes	a global libe	ralization of	air traffic a	nd introducti	on of an end	aray tay on	

BG assumes a global liberalization of air traffic and introduction of an energy tax on oil products:

- Liberalization will enhance competition and thus result in lower fares;

An energy tax on oil products (\$20/bbl in 2005 and \$33/bbl in 2015) will partially compensate this price effect.

N.B. Disregard the impact of the energy tax within this price index on the yield of the airlines, since:

a. the tax factor incl. in the index cannot be separated well; b. it is the impact on the demand that matters here.

Table F.2.a: Ticket price index in Global Shift scenario (GS)

DTI region	1990	1992	1995	2000	2003	2005	2010	2015
ALL REGIONS	1.00	1.00	1.01	1.03	1.04	1.04	1.03	1.02

Table F.2.b: Ticket price index in European Renaissance scenario (ER)

							\ 	
DTI region	1990	1992	1995	2000	2003	2005	2010	2015
		TOOL	1000		2000	2000	2010	20131
WITHIN EUROPE	1.00	1.00	0.96	0.88	0.84	0.05	0.00	0.00
	1.00	1.00	0.90	0.00	U.04	0.85	0.88	0.90
IOTHERS	1.00	1.00	0.96	0.88	0.04	0.00	0.00	00-
OTTILLIO	1.00	1.00	0.90	0.00	0.84	0.86	0.90	0.95

Note:

ER assumes in Europe a liberalization of air traffic and introduction of an energy tax on oil products. Liberalization will enhance competition and thus result in lower fares, whereas the energy tax

has the opposite effect (see also footnote of Table 1.b).

Table F.2.c: Ticket price index in scenario European Renaissance/Global Price Increase (ER-GPI)

OTHERS	1.00	1.00	0.96 0.96	0.95 0.95	0.94 0.94	0.98 0.99	1.01 1.04	1.04 1.09
WITHIN EUROPE	1.00	1.00	0.96	0.95	0.94	0.98	1.01	1 04
DTI region	<u> 1990</u>	<u> 1992</u>	1995	2000	2003	2005	2010	2015

Note:

ER assumes in Europe a liberalization of air traffic and introduction of an energy tax on oil products.

In this scenario alternative ER-GPI we additionally assume a GLOBAL increase of ticket prices of 15% in 2005:

Globally: linear increase of ticket prices from 1995 to 2005 (to 15%) and constant thereafter.

The net yield for the airlines is assumed to be equal to the prices without the additional increase (as in Table 3.b).

Table F 2 d-Ticket price index in scenario European Renaissance/European Price Increase (ER-EPI)

						*10001100	LUIVDUG	II FIICE III
DTI region	<u>1990</u>	<u> 1992</u>	1995	2000	2003	2005	2010	2015
WITHIN EUROPE	1.00	1.00	0.96	0.95	0.94	0.98	1.01	1.04
OTHERS	1.00	1.00	0.96	0.88	0.84	0.86	0.90	0.95

Note:

ER assumes in Europe (only) a liberalization of air traffic and introduction of an energy tax on oil products.

In this scenario alternative ER-GPI we additionally assume an increase of ticket prices of 15% in 2005:

For Europe only: additional linear increase from 1995 to 2005 to 15% and constant thereafter.

The net yield for the airlines is assumed to be equal to the prices without the additional increase (as in Table 3.b).

Note to all tables: Bold figures are specified in documentation of IEE runs by RLD; other figures are interpolated values.

Table F.3: rease from 1995 to 2005

	THOU ING.	V CALABIC	billeur in	ı ınınoqu	ction of t	an additic	onai 15%	Drice in	cre
	1990	1992	1995	2000	2003	2005	2010	2015	
Price index:	1.00	1.00	1.00	1.08	1 12		1 15		
TICO IIIUGA.	1.00	1.00	1.00	1.08	1.12	1 15	1 15		1 15

Note:

This index table is used to create Tables F2..c and F.2.d from Table F.2.b:

values in Table F.2.b are multiplied by the factor specified in Table F.3 (both lines and upper line, respectively)

Note 2:

The figure of 15% has been chosen since it corresponds roughly with *:

a) a doubling of the fuel costs (about 15%)

b) a doubling of the airport taxes for landings (about 5%)

c) the introduction of VAT on air tickets (about 15 to 20%).

* See memorandum of Olivier/Veldhuis no. 93.105 d.d. 22-11-93.

APPENDIX G: Regional subdivisions of CPB, DTI, ABC/WSL and IATA.

Table G.1: CPB model regions

	Region	Entities	Associated DTI region
NAM	North America	- USA, Canada, also including Australia, New Zealand, and South Africa	USA, Canada, Oceania
WEU	Western Europe	- Western, Northern and Southern Europe, including the former Yugoslavia, Israel and Turkey, but not including Albania	Europe
JAP	Japan	- Japan	Japan
CE	Central Europe	- new market economies in central Europe: Poland, Czechoslovakia, Hungary, Bulgaria, Romania, and Albania	(Eastern Europe) 1)
CIS	Commonwealth of Ind. St.	- Commonwealth of Independent States (former USSR)	(Former USSR) 1)
DAE	Dynamic Asian Economies	- Hong Kong, Singapore, Taiwan, South Korea, Malaysia, Philippines, Indonesia and Thailand	Asia SE
CHI	China	- China	China
ME	Middle East	- North Africa, the Arabian Pensinsula, Iran, Iraq, Jordan Lebanon and Syria, not including Israel	Middle East
rASIA	Rest of Asia	- This region also includes Melanesia, Micronesia and Polynesia	Indian sub-continent
AFR	Africa	- Sub-saharan Africa: East, Central and Southern Africa, not including South Africa	Africa
LAT	Latin America	- South America, Central America, and the Carribbean	Central & Latin America

1) Not (yet) in DTI model.

Table G.2: DTI model regions

	Region	Entitles .	Associated LULU region
1	USA 1)	- USA	North America (+ link to Eur.)
2	Canada 1)	- Canada	North America (+ link to Eur.)
3	Central & Latin America	- Mexico southwards (including Carribbean)	LDC+
4	Europe 1) 2)	Western Europe (including Scandinavia, former Yugoslavia and Turkey, excluding former communist block states)	Europe (+link to North Am.)
5	Africa	- Continental Africa (upto Egypt, includes: Madagascar & Seychelles)	LDC+
6	Middle East	- Lebanon, Israel, Syria, Jordan, Arabian peninsular, Iran, Iraq	LDC+
7	China	- PRC and Mongolia	Far East
8	Indian sub-continent	- Afghanistan, Pakistan, India, Sri Lanka, Bangladesh, Burma, Nepal, Maldives	Far East
9	Asia SE	- Thailand, Malaysia, Indonesia, Korea, Taiwan, Cambodia, Laos, Vietnam, Philippines etc	Far East
10	Japan	- Japan	Far East
11	Oceania	- Australia, New Zealand, Papua New guinea and Pacific Islands	LDC+
12	Eastern Europe 3)	- Poland, Czechoslovakia, Hungar, Bulgaria, Romania, Albania	Former CPE
13	Former USSR 3)	- Former USSR	Former CPE

- Divided into the link North America to (Western) Europe and vice versa and other traffic from these regions.
 Divided into scheduled flight and charter flights.
 Not (yet) in DTI model.

Table G.3: WSL (ABC) regions

	ABC/WSL region	Entities	Associated LULU region
1	USA	USA	North America (+ link to Eur.)
2	Canada	Canada	North America (+ link to Eur.)
3	Latin America	Central and South America, including the Carribbean	LDC+
4	Europe	Western Europe, including Yugoslavia and Turkey	Europe (+link to North Am.)
5	Eastern Europe	Poland, Czechoslovakia, Hungary, Bulgaria, Romania, and Albania	
6	Middle East	Lebanon, Israel, Syria, Jordan, Arabian peninsular, Iran, Iraq	LDC+
7	Africa	Africa, (upto Egypt, includes Madagascar and Seychelles)	LDC+
8	USSR	Former USSR	Former CPE
9	China	China	Far East
10	Indian sub-continent	Afghanistan, Pakistan, India, Sri Lanka, Bangladesh, Myanmar, Nep	Far East
4.4	l	Bhutan, Maldives	<u>_</u>
11	Asia	Rest of Asia (excluding China, Papua new Guinea)	Far East
12	Japan	Japan	Far East
13	Oceania	Australia, New Zealand, Papua New Guinea, Pacific Islands	LDC+

APPENDIX G: Continued.

Table G.4 IATA regions

Traffic Conf. Area	Region	Entities
TC1	North America	Canada, United States (Including Alaska and Hawaii, but exluding Puerto Rico and Virgin Islands).
	Central America	Anguilla, Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize, Bermuda, British Virgin Islands, Cayman Islands, Costa Rica, Cuba, Dominica, Dominican Republic, El Salvador, Grenada, Guadaloupe, Guatemala, Haiti, Honduras, Jamaica, Martinique, Mexico, Netherlands Antilles, Nicaragua, Panama, Puerto Rico, St. Chrisopher- Nevis, Saint Lucia, Saint Vincent and the Grenadines, Virgin Islands of the United States.
	South America	Argentina, Bolivia, Brazil, Chile, Colombia (including San ANdres Islands), Ecuador, French Guiana, Guyana, Paraguay, Peru, Surinam, Uruguay, Venezuela.
TC2	Northern Europe	Austria, Belgium, Bulgaria, Commonwealth of Indepent States(West of the Urals), Czech Republic, Denmark, Estonia, Faroe Islands, Finland, France, Germany, Greenland, Hungary, Iceland, Ireland, Latvia, Liechtenstein, Lithuania, Luxembourg, Netherlands, Norway, Poland, Romania, Slovakia, Sweden, Switzerland, United Kingdom.
	Southern Europe	Albania, Algeria, Andorra, Azores, Canary Islands, Croatia, Gibraltar, Greece, Italy, Madeira, Malta, Monaco, Morocco, Portugal, San Marino, Slovenia, Spain, Turkey (in Europe and Asia), Yugoslavia.
	Middle East	Bahrain, Cyprus, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Sudan, Syrian Arab Republic, United Arab Emirates, Yemen (Republic).
	Eastern Africa	Burundi, Comoros, Djibouti, Ethiopia, Kenya, Libyan Arab Jamahiriya, Madagascar, Mauritius, Reunion, Rwanda, Seychelles, Somalia, Tanzania (United Republic ot), Uganda.
	Western Africa	Angola, Benin, Burkino Faso, Cameroon (Republic ot), Cape Verde, Central African Republic, Chad, Congo, Cote d'Ivoire, Equatorial Guinea, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, St. Helena, Sao Tome and Principe, Senegal, Sierra Leone, Togo, Western Sahara, Zaire.
	Southern Africa	Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, Swaziland, Zambia, Zimbabwe.
TC3	Far East	Afghanistan, Bangladesh, Bhutan, Brunei Darussalam, Burma, China, Commonwealth of Indepent States (East of the Urals), Hong Kong, India, Indonesia, Japan, Kampuchea (Democratic), Korea (Democratic People's Republic ot), Korea (Republic ot), Lao People's Democratic Republic, Macau, Malaysia, Maldives, Mongolia, Nepal, Pakistan, Philippines, Singapore, Sri Lanka, Taiwan (Province of China), Thailand, VietNam.
	Southwest Pacific	Australia, New Zealand, Papua New Guinea, and all othr islands of the Pacific including Amreican Samoa, Christmas Island, Cocos (Keeling) Islands, Cook Islands, Fiji, French Polynesia, Guam, Kiribati, Marshall Islands, Micronesia, Nauru, New Caladonia, Niue, Norfolk Island, Northern Mariana Islands, Palau, Pitcairn, Samoa, Solomon Islands, Tokelau, Tonga, Tuvalu, United States Minor Outlying Islands, Vanuatu, Wallis and Fortuna Islands.

APPENDIX H: Aircraft types and distance ranges of DTI (seat bands/ranges) and WSL (types/ranges).

Table H.1: DTI seat band classes

	Seat band	Examples of aircraft types in seat band
Α	80-99	F100, BAe 146, DC-9, F-28, MD-95
В	100-124	B737-500, MD-87, F100, B737-200, A319, DC-9
С	125-159	B737-300/400, MD-80, A320, B727-200, MD-90
l D	160-199	B757, A321
E	200-249	B767, A310, DC-10, L1011
l F	250-314	A300, B767, MD-11, L-1011, A340
G	315-399	B777, A330, B747-200, MD-11
i H	400-499	B747-400, MD-12?
1	500-624	B747-500, MD-12?, A350
J	625-799	UHCA (Ultra-High Civil Air transport; not yet in existance)

Table H.2: WSL aircraft type description

	Range 1)	Types	Examples of aircraft types
1	SR/MR	Narrow-bodied high NOx	DC9, MD80, B737, B727, A320, BAC1-11, Trident
2	SR/MR	Narrow-bodied low NOx	F28, F100, BAe146
3	LR	Narrow-bodied	DC8, B707
4	MR	Wide-bodied	B757, B767, A300, A310
5	l LR	Wide-bodied low NOx	DC10, L1011
6	l LR	Wide-bodied high NOx	B747
7-10	VSR	General aviation aircraft	•

¹⁾ SR = Short Range; MR = Medium Range; LR = Long Range; VSR = Very Short Range

Table H.3.a: Relation between DTI, WSL and LULU aircraft types

DTI	WSL	LULU
В	1 1	T1
A	2	
С	3	T2
D+1/2E+1/2F	4	
1/2E+1/2F	5	T3
G+H+I+J	6	
*)	7-10	T4

^{*)} Not in DTI model (general aviation aircraft (propellor): 2/3 prop. engine commuter; light propellor; 2 prop. engine; 4 prop. engine;); has been set equal to total regional index.

Table H.3.b: Relation between DTI, WSL and LULU range definitions

WSL		DTI		LULU
1	< 500 Nm			
2	500-1500 Nm	SH	<2900 Nm	SH
3	1500-3000 Nm			
4	>3000 Nm	LH	>2900 Nm	LH

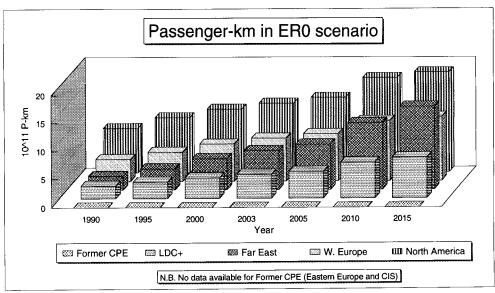
Note:

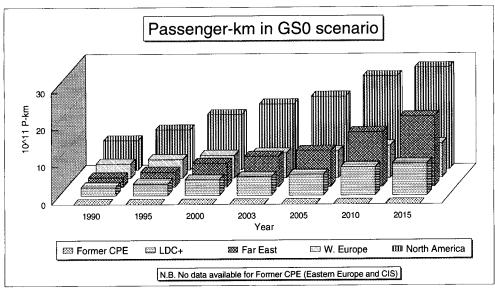
1 Nm = 1609 m

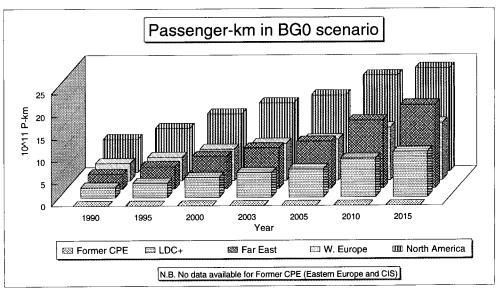
APPENDIX I: Example of DTI scenario results and aggregation to LULU regions, links and aircraft/distance types.

Pun Numb														
Dan March														
		ORLD S	SUMM.	AARY F				-L 480						
Comment				a - Fran		n Duto : Reseir			•					
COMMISSION	. ги	· m 300		o - Cur	-			•						
Economic	scena	rio grov	rth re	60 : C	entral	ı								
P factor			Mid											
Replacem				: 1.00										
Frustrated Number of				not set		•								
Number of				: 7										
Number of					3									
								•						
ERO Aggregatec	LULI	J region	l: rand :	unare 1		h Ameri Kilomet		ا اعدسال	e Fi	/100	-	oo)		
Size Bend	.,,,,	1990		1995		2000		2006	,,	2006		2010		2015
T1-AL		1671		1763		1860		1956		2107		2790		3522
T2-SH		8008		7814		8648		9226		9774		11005 753		13759 840
T2-L1 T2-LH		989 382		716 379		726 377		731 375		736		478		586
T3-8H		1219		1936		2512		2688		3220		4522		5820
T3-L1		848		918		1133		1299		1434		2008		2561
T3-LH T4-AL *	NA	1100	NA	1487	NA	1846	MA	2050	NA	2206	NA.	2941	NA.	3004
TTAL			-		-		•		•		•		•	
Total		12276		15013		17102		18609		19980		25091		30768
ER0	1100	J region			Euro	~~								
EMU Aggregates				Aceta:		Kilomet	ree C	Mored I	y FL	eet (100	mill.	on)		
Size Band	-,,	1990		1995		2000		2003		2005		2010		2015
T1-AL		703		859 2532		714		779		841 3742		1022		1228 5397
T2-8H T2-L2		1926		2532		3116 379		3477 359		3742		353		394
T2-LH		336		381		412		494		445		402		579
T3-SH		532		975		1462		1812		2008		2660		3606
T3-L2		939		1388		1908		2270 2366		2526 2506		3310 3255		4180 3973
T3-LH T4-AL *	NA	1249	NA	1000	NA	2000	NA	2.540	NA	2300	NA	0630	NA	
			-							40555		48000		
Total		8074		7920		10019		11400		12588		15808		19444
ERO	LULI	J region	n;			East								
Aggregates	d types	& solo	cted	yeers:	Seet	Kilomet	144 C	Mored I	by Fk	est (100	mill	on)		
Size Bend T1-AL		1990 164		1995		2000 108		2008 102		2005 98		2019 105		2015 139
T2-SH		770		994		1071		1171		1236		1475		1926
T2-LI	NA		NA	•••	NA		NA		NA		NA		NA	
T2-LH		215		212		185		140		126		84		50
T3-8H T3-LI	NA	954	NA	1718	NA	2792		3570		4223	NA	8394		9000
									NA.					
		1735		2771		4262	NA	5402	NA	0346	100	9541	NA	13991
T3-LH T4-AL *	NA	1735	NA	2771	NA NA	4242		5402	NA NA	6346	NA NA	9541	NA NA	13991
		1735 3836		2771 5758	NA	42 6 2 8 3 71		5402 10394		6346 12061		9541 17527	NA NA	13991 25147
T4-AL *	NA.	3836	NA.		NA.	8371							NA NA	
T4-AL* Total ER0	NA LULI	3836 J region	NA n:	5753	NA LDC	8871	NA.	10394	NA.	12001	NA.	17527	NA NA	
T4-AL * Total ER0 Aggregates	NA LULI	3836 J region	NA n:	5753	NA LDC	8871	NA res C	10394	NA.	12081 est (100	NA.	17527	NA NA	
T4-AL* Total ER0	NA LULI	3838 J region & sele 1990 421	NA n:	5758 years:	NA LDC	8871 Histornet 2000 324	NA res C	10394 Mored I 2009 346	NA.	12081 eet (100 2006 367	NA.	17527 cm) 2010 465	NA NA	25147 2015 579
T4-AL * Total ER0 Aggregate Size Band T1-AL T2-SH	LULI d types	3836 J region & sele 1990	NA n: cted	5753 years: 1	NA LDC Seet	8871 + Glomet 2000	NA ree C	10394 Hered I 2008	NA by Fl	12081 est (100	NA mil	17527 on) 2010	NA NA	25147
T4-AL * Total ER0 Aggregates Size Band T1-AL T2-SH T2-LI	NA LULI	3836 J region & sele 1990 421 1221	NA n:	5758 years: 1995 348 1546	NA LDC	8871 Kilomet 2000 324 1856	NA res C	10894 Mored I 2008 346 2088	NA.	12081 eet (100 2006 367	NA.	17527 cm) 2010 463 2861	NA NA	25147 2015 579
T4-AL * Total ER0 Aggregate Size Band T1-AL T2-SH	LULI d types	3838 J region & sele 1990 421	NA n: cted	5758 years: 1995 348	NA LDC Seet	8871 Histornet 2000 324	NA ree C	10394 Mored I 2009 346	NA by Fl	12081 2006 367 2267	NA mil	17527 cm) 2010 465	NA NA	25147 2015 579 3676
Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T3-LH	LULI d types	3836 J region & sele 1990 421 1221 326 540	NA n: cted	5758 years: 1995 348 1546 395 898	LDC Beet	8871 Hillomet 2000 324 1858 1316	NA NA	10394 Hered I 2008 346 2083 358 1809	NA by Fl	12081 est (100 2008 367 2267 368 1857	NA mil	17527 on) 2010 463 2861 442 2832	**	25147 2015 579 3676 540 3661
Total ERO Aggregate Size Band T1-AL T2-SH T2-LI T2-LH T3-SH T3-LH T3-LH T3-LH	LULI d types NA	3836 J region 8 sele 1990 421 1221 326	NA Cted	5758 years: 1996 348 1546 395	LDC Seet	8871 Kilomet 2000 324 1858	NA NA	10394 Hered I 2009 346 2083	NA by Fli NA NA	12081 net (100 2006 367 2267	NA NA	17527 on) 2010 463 2861 442	NA	25147 2015 579 3678 540
Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T3-LH	LULI types	3836 J region & sele 1990 421 1221 326 540	NA n: cted	5758 years: 1995 348 1546 395 898	LDC Beet	8871 Hillomet 2000 324 1858 1316	NA NA	10394 Hered I 2008 346 2083 358 1809	NA by Fi	12081 est (100 2008 367 2267 368 1857	NA mil	17527 on) 2010 463 2861 442 2832	NA NA NA	25147 2015 579 3676 540 3661
Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-SH T3-LI T3-LI T3-LI T4-AL	LULI d types NA	3836 J region & sele 1990 421 1221 326 540	NA Cted	5758 years: 1995 348 1546 395 898	NA LDC Beat NA NA	8871 Hillomet 2000 324 1858 1316	NA NA NA	10394 Hered I 2008 346 2083 358 1809	NA Py Fil NA NA	12081 est (100 2008 367 2267 368 1857	NA NA	17527 on) 2010 463 2861 442 2832	NA	25147 2015 579 3676 540 3661
Total FRO Aggregate Size Band T1-AL T2-SH T2-LH T3-SH T3-SH T3-LH T3-LH T4-AL T4-AL	NA LULI S types NA NA NA	3836 U region & sele 1990 421 1221 326 540 928	NA NA NA	5753 1996 348 1548 395 598	NA LDC Seet	8971 Kilomet 2000 324 1856 336 1316 1608	NA NA NA	10394 Hered I 2009 346 2088 366 1809 1948	NA By Fli NA NA	12081 set (100 2006 387 2287 389 1857 2187	NA NA	17527 (on) 2010 463 2861 442 2862	NA	25147 2015 579 3676 540 3661 5979
T4AL* Total ERO Appropriet Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T3-LH T3-LH T3-LH T4-AL T4-AL Total	NA LULI types NA NA NA	3636 U region 5 a sele 1990 421 1221 326 540 928 3435	NA NA NA	5758 years: 1995 348 1546 335 898 1279	NA LDC Seet NA NA	8871 Kilomet 2000 324 1856 336 1316 1898 5589	NA NA NA	10994 2008 346 2083 356 1809 1946 6342	NA Dy Fli NA NA	12081 set (100 2008 367 2267 366 1867 2187 7048	NA NA NA	17527 (on) 2010 463 2861 442 2832 2970	NA	25147 2015 579 3676 540 3661 5979
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LIH T3-SH T3-SH T3-LIH T3	NA LULI d types NA NA NA LULI LULi	3836 U region & sele 1990 421 1221 326 540 928 3435 U region & sele 1990	NA REcted !	5758 years: 1995 348 1546 335 898 1279	NA LDC Beat NA NA NA	8871 Kilomet 2000 324 1856 336 1316 1898 5589	NA NA NA NA	10994 2008 346 2083 356 1809 1946 6342	NA NA NA NA NA	12081 set (100 2008 367 2267 366 1867 2187 7048	NA NA NA NA	17527 (on) 2010 463 2861 442 2832 2970	NA NA	25147 2015 579 3676 540 3661 5979
T4AL* Total ERO Aggregates Size Band T1-AL T2-SH T2-SH T3-SH T3-SH T3-LH T3-LH T4-AL* Total ERO Aggregate	NA LULI d types NA NA NA LULI d types	3836 U region & sele 1990 421 1221 326 540 928 3435 U region & sele 1990	NA REcted !	5753 years: 1996 348 1546 335 898 1279 4408 years:	NA LDC Seat NA NA NA	8871 Kilomet 2000 324 1856 338 1316 1888 5589	NA NA NA NA NA NA	10394 2008 346 2083 356 1809 1948 6342 stem E	NA NA NA NA NA	12081 net (100 2008 387 2287 389 1857 7048 e)	NA NA NA	17527 con) 2010 483 2061 442 2092 2970	NA	25147 2015 579 3676 540 3661 5979
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T3-LI T3-LI T3-LI T3-LI T3-LI T4-AL * Total ERO Aggregate Size Band T1-AL	NA LULI NA NA NA NA NA NA NA NA	3836 U region & sele 1990 421 1221 326 540 928 3435 U region & sele 1990	NA NA NA NA NA NA	5753 years: 1996 348 1546 335 898 1279 4408 years:	NA LDC Beet NA	8871 Kilomet 2000 324 1856 338 1316 1888 5589	NA NA NA NA NA NA NA NA	10394 2008 346 2083 356 1809 1948 6342 stem E	NA NA NA NA NA NA	12081 net (100 2008 387 2287 389 1857 7048 e)	NA NA NA NA NA	17527 con) 2010 483 2061 442 2092 2970	NA NA NA	25147 2015 579 3676 540 3661 5979
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LI T2-LI T3-SH T3-LI T3-LI T3-LI T3-LI T4-AL T-Total ERO Aggregate Size Band	NA LULI d types NA NA NA LULI LULi	3836 U region & sele 1990 421 1221 326 540 928 3435 U region & sele 1990	NA REcted !	5753 years: 1996 348 1546 335 898 1279 4408 years:	NA LDC Beat NA NA NA	8871 Kilomet 2000 324 1856 338 1316 1888 5589	NA NA NA NA	10394 2008 346 2083 356 1809 1948 6342 stem E	NA NA NA NA NA	12081 net (100 2008 387 2287 389 1857 7048 n)	NA NA NA NA	17527 con) 2010 483 2061 442 2092 2970	NA NA	25147 2015 579 3676 540 3661 5979
T4-AL Total ERO Aggregates Size Band T1-AL T2-SH T3-LH T3-SH T3-LH T3-LH T4-AL Total ERO Aggregates Size Band T1-AL T2-SH T2-SH T1-SH T2-SH T3-SH	NA NA NA NA NA NA NA NA	3836 U region & sele 1990 421 1221 326 540 928 3435 U region & sele 1990	NA NA NA NA NA NA	5753 years: 1996 348 1546 335 898 1279 4408 years:	NA N	8871 Kilomet 2000 324 1856 338 1316 1888 5589	NA N	10394 2008 346 2083 356 1809 1948 6342 stem E	NA NA NA NA NA NA NA NA NA	12081 net (100 2008 387 2287 389 1857 7048 n)	NA N	17527 con) 2010 483 2061 442 2092 2970	* * * * *****	25147 2015 579 3676 540 3661 5979
T4-AL * Total ERO Appropries Size Band T1-AL T2-SH T2-LH T3-LH T3-LH T3-LH T3-LH T3-LH T4-AL Total ERO Appropries Size Band T1-AL T2-SH T1-AL T2-SH T1-AL T2-SH T1-AL T2-SH T3-SH T3-LH T3-LH	NA	3836 U region & sele 1990 421 1221 326 540 928 3435 U region & sele 1990	NA NA NA NA NA NA NA	5753 years: 1996 348 1546 335 898 1279 4408 years:	NA	8871 Kilomet 2000 324 1856 338 1316 1888 5589	NA N	10394 2008 346 2083 356 1809 1948 6342 stem E	NA N	12081 net (100 2008 387 2287 389 1857 7048 n)	N N N N N N N N N N N N N N N N N N N	17527 con) 2010 483 2061 442 2092 2970	* * * * ******	25147 2015 579 3676 540 3661 5979
T4AL Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T3-LH T4-AL Total ERO Aggregate Size Band T1-AL T2-SH T2-SH T2-SH T3-SH T3-SH T3-SH	NA	3836 U region & sele 1990 421 1221 326 540 928 3435 U region & sele 1990	NA	5753 years: 1996 348 1546 335 898 1279 4408 years:	NA N	8871 Kilomet 2000 324 1856 338 1316 1888 5589	NA N	10394 2008 346 2083 356 1809 1948 6342 stem E	NA NA NA NA NA NA NA NA NA	12081 net (100 2008 387 2287 389 1857 7048 n)	NA N	17527 con) 2010 483 2061 442 2092 2970	* * * * *****	25147 2015 579 3676 540 3661 5979
T4AL* Total ERO Aggregates Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T3-LH T3-LH T3-LH T3-LH T3-LH T3-LH T4-LL T2-SH T3-LH T3-LH T4-LL T2-SH T3-LH T4-LL	NA N	3836 U region & sele 1990 421 1221 326 540 928 3435 U region & sele 1990	NA N	5753 years: 1996 348 1546 335 898 1279 4408 years:	NA	8871 Kilomet 2000 324 1856 338 1316 1888 5589	NA N	10394 2008 346 2083 356 1809 1948 6342 stem E	NA NA NA NANANANANANANANANANANANANANANA	12081 net (100 2008 387 2287 389 1857 7048 n)	* * * * * * * * * * * * * * * * * * * *	17527 con) 2010 483 2061 442 2092 2970	* * * * * * * * * * * * * * * * * * * *	25147 2015 579 3676 540 3661 5979
T4AL Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T3-LH T4-AL Total ERO Aggregate Size Band T1-AL T2-SH T2-SH T2-SH T3-SH T3-SH T3-SH	NA	3836 U region & sele 1990 421 1221 326 540 928 3435 U region & sele 1990	NA	5753 years: 1996 348 1546 335 898 1279 4408 years:	NA LDC Beat NA	8871 Kilomet 2000 324 1856 338 1316 1888 5589	NA N	10394 2008 346 2083 356 1809 1948 6342 stem E	NA NA NA NANANA	12081 net (100 2008 387 2287 389 1857 7048 n)		17527 con) 2010 483 2061 442 2092 2970	* * * * * *****	25147 2015 579 3676 540 3661 5979
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-LH T3-LH T3-LH T3-LH T3-LH T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T2-SH T2-LH T2-LH T3-LH T5-LH	NA N	3638 J region 2 sele 1990 421 1221 326 540 926 3436 U region 2 sele 1990	NA N	5753 1996 348 1546 395 898 1279 4400 years:	NA N	8971 Niometa 2000 324 1956 1956 1968 1968 1968 1968 1978 1978 1978 1978 1978 1978 1978 197	NA N	10994 Mored I 2008 346 2008 358 1809 1948 6842 stem E Misred I 2009	NA N	12081 set (100 2005 387 2287 2187 7048	NA N	17527 2010 2010 445 2881 442 2832 2970 9888	* * * * * * * * * * * * * * * * * * * *	25147 2015 579 3676 540 3661 5979
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-L1 T2-L1 T3-SH T3-L1 T2-L1 T3-SH T3-L1 T3-	NA N	3638 J regions & selection 1990 421 1221 326 540 926 3436 1990 U regions & selection 1990	NA N	5758 years: 11006 348 1548 305 1279 4408	NA N	8971 Pi Victorial State Pi V	NA N	10994 Mered I 2006 346 2083 368 1809 1946 6942 Storm E S Mered I	NA N	12081 2005 367 2287 2187 2187 7046 2005	NA N	17527 000) 2010 445 2881 442 2892 2970 9486 2010	* * * * * * * * * * * * * * * * * * * *	25147 2015 579 3676 540 3661 3970 12215
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T4-AL T2-SH T3-SH T3-LH T3-	NA N	3638 J region & selection 1990 421 1221 326 540 928 3436 1990 J region & selection 1990	NA N	5758 1996 11996 348 1548 335 568 1279 4408 years: 1996	NA N	8971	NA N	10994 Mored I 2008 346 2083 368 1809 1946 6342 2008	NA N	12081 set (100 2005 367 2287 2187 7048 set (100 2005	NA N	17527 2010 445 2861 442 2862 2970 9866 2010 2010	* * * * * * * * * * * * * * * * * * * *	25147 2015 579 3676 540 3681 3679 12315 2015
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-L1 T2-L1 T3-SH T3-L1 T2-L1 T2-L1 T2-L1 T3-SH T3-L1 T3-	NA N	3636 J region & sele 1990 421 1221 326 540 926 3436 U region 8 & sele 1990 U region 8 & sele	NA N	5753 years: 1996 348 1548 395 699 1279 4400 years: 1996	NA N	8971 Pi P	NA N	10894 Mered 1 2008 346 2008 1809 1946 8342 2008 Reved 1 2009	NA N	12081 2005 2005 387 2287 2887 7048 9) set (100 2005	NA N	17527 2010 443 2881 442 2892 2970 9888 2010	* * * * * * * * * * * * * * * * * * * *	25147 2015 579 3678 540 3661 3670 12315 2015
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-LH T3-LH T3-LH T4-AL * Total ERO Aggregate Size Band T1-AL T2-LH T2-LH T3-LH T4-AL * Total ERO Aggregate T3-LH T3-SH T3-LH T3-LH T3-SH T3-LH T3-LH T4-AL	NA N	3638 J region & selection 1990 421 1221 326 540 928 3436 1990 J region & selection 1990	NA N	5758 1996 11996 348 1548 335 568 1279 4408 years: 1996	LDC Seat NA	8971	NA N	10894 Mered 1 2008 346 2088 369 1909 1948 8242 2008 Wered 1 2008 3184 15688 3184 15688	NA N	12081 set (100 2005 367 2287 2187 7048 set (100 2005	NA N	17527 2010 445 2861 442 2862 2970 9866 2010 2010	* * * * * * * * * * * * * * * * * * * *	25147 2015 579 3676 540 3681 3679 12315 2015
T4-AL * Total ERO Aggregates Size Band T1-AL T2-SH T2-L1 T2-L1 T3-SH T3-L1 T2-L1 T2-L1 T2-L1 T3-L1 T3	NA N	3636 J region & selection of the selecti	NA N	5753 1996 348 348 1546 335 588 1279 4408 1279 1995 11995	LDC Seat NA	8871 PKIometer 2000 324 1856 1316 1868 1316 1608 5569 PKIOmeter 2000 2000 1108 3001 14600 1108	NA N	10894 Misrod I 2008 348 2008 358 1809 1948 6942 2008 187 Per I 2008	NA N	12061 net (100 2006 367 2287 366 1857 7046 net (100 2005 8418 17021 1066	NA N	17527 2010 463 2861 442 2892 2970 9388 ion) 2010 2010 2010 20458 1108	* * * * * * * * * * * * * * * * * * * *	25147 2015 579 3676 540 3661 3670 12315 2015 5462 24757 1234
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-LH T3-LH T3-LH T3-LH T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T2-LH T3-LH T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T3-LH	NA N	3836 J region 2 2 selection 1980 1221 1221 328 540 928 3435 J region 2 2 selection 1990 1990 1990 10924 1058 1240	NA N	99878: 1996 348 1548 395 598 1279 4409 4409 1996 2009 201114 1306	NA N	8871 Kilomate 2000 324 1856 1316 1866 1516 1606 1607 1607 1607 1607 1607 1607 16	NA N	10894 Misred I 2008 346 2008 359 1809 1946 8242 2009 Misred I 2009 3184 15688 3184 15688 3184 15688 3184 3184 3184 3184 3184 3184 3184 31	NA N	12081 set (100 2005 367 2287 2087 389 1857 7048 N set (100 2005 17021 17021 17021 17021	NA N	17527 2010 2010 445 2861 442 2662 2670 9866 2010 1001 1011 1011 1016	* * * * * * * * * * * * * * * * * * * *	2015 579 3676 540 3681 3679 12315 2015 540 2015 1785 24757 1234 1785
T4AL* Total ERO Aggregates Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T4-AL T2-SH T3-SH T3-LH	NA N	3636 J region & selection of the selecti	NA N	5753 1996 348 348 1546 335 588 1279 4408 1279 1995 11995	NA N	8871 PKIometer 2000 324 1856 1316 1868 1316 1608 5569 PKIOmeter 2000 2000 1108 3001 14600 1108	NA N	10894 Misrod I 2008 348 2008 358 1809 1948 6942 2008 187 Per I 2008	NA N	12061 net (100 2006 367 2287 366 1857 7046 net (100 2005 8418 17021 1066	NA N	17527 2010 463 2861 442 2892 2970 9388 ion) 2010 2010 2010 20458 1108	* * * * * * * * * * * * * * * * * * * *	2015 579 3676 540 3661 3670 12315 2015 2015
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LI T2-LI T3-SH T3-LI T3-SH T3-LI T3-LI T3-SH T3-LI T3-SH T3-LI T3-SH T3-LI T3-LI T3-SH T3-LI T3-	NA N	3636 J region & selection 1990 421 1221 326 540 928 3435 J region & selection 1990 1990 10524 10524 10524 10524 10524	NA N	99ears: 1996 348 1548 4408 1279 4408 1996 12098 11996 12098 11148 1996 12098 11996 12098 11996 12098 11996 12098 11996 120988 12098	NA N	8871 PKlometer 2000 324 1856 1316 1868 1516 1868 2000 1000 1100 3001 14690 1110 3001	NA N	10394 Milered 2008 348 2083 358 1809 1948 8542 2009 2009 1948 1508 1508 1508 1508 1508 1508 1508 150	NA N	12081 20081 367 2287 388 1857 7048 est (100 2005 3413 17021 1088 3413 17021 11341	NA N	17927 2010 463 2861 442 2892 2970 9988 1000 2010 2010 2010 1108 1108 1108 11	* * * * * * * * * * * * * * * * * * * *	2015 579 3676 540 3661 3679 12315 2015 2015
T4AL* Total ERO Aggregates Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T4-AL T2-SH T3-SH T3-LH	NA N	3636 J region 2 & sele 1990 421 1221 326 540 926 3436 1990 J region 1990 J region 1990 1990 1990 1990 1990 1990 1990 199	NA N	99881: 1996 348 1548 395 698 1279 4408 99881: 1996 2889 1114 1308 5529 2288	NA N	8871 Historian 2000 324 1886 3386 1316 1668 55699 Historian 2000 3001 14690 1101 3085	NA N	10894 Milered I 2008 348 2008 358 1809 1948 6342 2008 1809 2008 1990 1990 1990 1990 1990 1990 1990 1	NA N	12081 set (100 2008 387 2287 598 1857 7046 set (100 2006 3413 17021 11364 33682	NA N	17527 2010 463 2861 442 2982 2970 9866 2010 2010 4800 1106 5313 1636 5313 1636 1636 1636 1636 163	* * * * * * * * * * * * * * * * * * * *	2015 579 3676 540 3661 3679 12315 2015 5402 2015 5402 731 1284 731 1766 6731
T4-AL * Total ERO Aggregate Size Band T1-AL T2-SH T2-LH T3-SH T3-LH T4-AL Total ERO T1-AL T3-LH T4-ALL	NA N	3636 J region & selection of the selecti	NA N	5753 1996 1996 348 1548 395 698 1279 4408 4408 1996 1996 1996 1996 1114 1308 1308 1339 1409 1409 1409 1409 1409 1409 1409 140	NA N	8871 Pi (Riomate 2000) 324 1856 338 1316 1609 5509 Pi (Riomate 2000) 3001 1000 3001 1100 1100 1100 1100 1100	NA N	10394 Milered 2009 346 2008 356 1809 1948 6342 2008 2008 2008 115689 1090 11778 0 46764	NA NA NA NA NA NA NA NA NA GIODY FI	12081 set (100 2008 367 2287 388 1857 2187 7046 set (100 2006 3413 17021 11364 11364 11364 11364 11364 151628	NA N	17527 2010 463 2881 442 2892 2970 9388 2010 4300 2010 4300 1108 1108 1108 1108 1108 1108 7513 11070 0 67812	5 5 5555555 5	2015 579 3676 540 3661 3670 12315 2015 5-462 24757 1224 6731 0

"Index for I4-ALI has been est equal to the total regional index. For L1 ar and 2) the same sesurption mae made for T1-AL. In addition, for L1 and L2 (Link 1 and 2) and for Former CPE (FIS) the indic T2-SH and T2-LH were assumed to be equal; the same assumption was it T3-SH and T3-LH.


** Assumptions for specific aircraft types in the Former CPE are rough ass


	i menn	ology groups	: 3					
				h America				
Acomosto	d bened	A selected :	mara Saist I	Glomatnas O	flered by Fle	at findax: 19	90 = 1.00)	
Size Bend	,p	1990	1995	2000	2008	2006	2010	2015
TI-AL		1.00	1.08	1.11	1.17	1.26	1.67	2.11
T2-SH		1.00	1.18	1.31	1.40	1.48	1.76	2.08
T2-L1		1.00	1.07	1.09	1.09	1.10	1.13	1.26
T2-LH		1.00	1.05	1.04	1.08	1.10	1.32	1.62
T3-6H		1.00	1.59	2.08	2.37	2.65	3.71	4.78
T3-L1		1.00	1.42	1.75	2.00	2.21	3.09	3.94
T3-LH		1.00	1.35	1.66	1.87	2.08	2.67	3.35
T4-AL*	NA	NA	NA	NA	NA	NA	NA	
Total		1.00	1.22	1.39	1.51	1.63	2.04	2.51
EA0	ıııı	J region:	Euro	pe				
Aggregate Size Band	d types	& selected	years: Seat I	Kilometres C	flored by Flo	et (index: 16	1.00 = 1.00	
Size Band		1990	1995	2000	2008	2006	2010	2015
T1-AL		1.00	0.94	1.02	1.11	1.20	1.45	1.75
T2-8H		1.00	1.31	1.62	1.81	1.94 0.90	2.33	2.80 1.01
T2-L2		1.00	1.02	0.97	0.92		0.91	
T2-LH		1.00	1.13	1.22	1.28	1.32 3.93	1.46 5.42	1.71 6.95
T3-8H		1.00	1.83	2.75	3.41		3.53	
T3-L2		1.00	1.46	2.08	2.42	2.69	3.58 2.61	4.45
T3-LH T4-AL*	NA	1.00 NA	1.29 NA	1.03 NA	1.90 NA	2.06 NA	2.61 NA	3.18
I 4-AL	NA.		NA.				nea.	
Total		1.00	1.30	1.65	1.89	2.07	2.60	3.20
ER0	LULI	J region:	Feri					
Aggregate	d types	& selected	years: Seat i		ffered by Fle	et (index: 19		
Size Band		1990	1995	2000	2008	2006	2010	2015
T1-AL		1.00	0.78	0.65	0.62	0.00	0.84	0.81
T2-8H		1.00	1.21	1.39	1.52	1.81	1.92	2.50
T2-U	NA	NA	NA.	NA	NA	NA.	NA.	
T2-LH		1.00	0.99	0.86	0.69	0.59	0.39	0.26
T3-8H		1.00	1.80	2.89	3.74	4.48	6.63	9.48
T3-U	NA	NA	NA	NA	NA	NA	NA	
T3-LH		1.00	1.80	2.48	3.11	3.66	5.50	8.07
T4-AL*	NA	NA	NA	NA	NA	NA	NA	
Total		1.00	1.50-	2.18	2.71	3.14	4.57	6.56
500		l analani	100					
ERO	LUU	J region:	LDC	-				
Aggregate	LULI d types	& selected	years: Seat	+ Glometres C	flored by Fic	et (Index: 19	90 = 1.00)	
Aggregate Size Band	LULI d typed	& selected :	yeers: Seat 1995	+ Glometres C 2000	flored by Fle	et (Index: 19 2005	90 = 1.00) 2010	2015
Aggregate Size Band T1-AL	LULI d types	8 selected ; 1990 1.00	years: Sest 1995 0.85	+ Glometres C 2000 0.77	Hered by Fie 2008 0.88	et (Index: 16 2005 0.87	190 = 1.00) 2010 1.10	2015 1.36
Aggregate Size Band T1-AL T2-8H	d type:	8 selected ; 1990 1.00 1.00	years: Sest 1995 0.85 1.00	+ Qiornatres 0 2000 0.77 1.00	Hered by Fie 2008 0.83 1.00	et (Index: 19 2005 0.87 1.00	90 = 1.00) 2010 1.10 1.00	2015
Aggregate Size Band T1-AL T2-BH T2-LI	LULI d typed	8 selected; 1990 1.00 1.00 NA	rears; Seat 1995 0.85 1.00 NA	+ Kilometres 0 2000 0.77 1.00	Hered by Fie 2008 0.85 1.00 NA	et (Index: 19 2005 0.87 1.00	100 = 1.00) 2010 1.10 1.00	2015 1.36 1.00
Aggregate Size Bend T1-AL T2-BH T2-LH T2-LH	d type:	8 selected; 1990 1.00 1.00 NA 1.00	years: Seat 1995 0.83 1.00 NA 1.09	+ Kilometres C 2000 0.77 1.00 NA	Mored by Fig 2008 0.85 1.00 NA 1.09	et (Index: 19 2005 0.67 1.00 NA 1.13	1.00) 2010 1.10 1.00 NA	2015 1.36 1.00
Aggregate Size Bend T1-AL T2-SH T2-LH T2-LH T3-SH	d types	1890 1.00 1.00 NA 1.00 1.00	years: Seet 1995 0.83 1.00 NA 1.09 1.66	4 (diametres 0 2000 0.77 1.00 NA 1.04 2.44	Mored by Fig 2008 0.83 1.00 NA 1.09 2.98	et (index: 19 2005 0.87 1.00 NA 1.13 3.44	1.00 = 1.00) 2010 1.10 1.00 NA 1.36 4.87	2015 1.36 1.00
Aggregate Size Bend T1-AL T2-BH T2-LH T2-LH T3-BH T3-LI	d type:	1990 1.00 1.00 1.00 NA 1.00 1.00	years: Seet 1995 0.83 1.00 NA 1.09 1.66	+ Kilometres C 2000 0,77 1.00 NA 1.04 2.44	1.09 2.98 0.83 1.00 NA 1.09 2.98	et (Index: 16 2005 0.87 1.00 NA 1.13 3.44	1.00) 2010 1.10 1.00 NA 1.38 4.87	2015 1.36 1.00 1.66 8.58
Aggregate Size Bend T1-AL T2-SH T2-LH T2-LH T3-SH T3-LH T3-LH	NA NA	1990 1.00 1.00 1.00 NA 1.00 1.00 NA 1.00	1995 0.85 1.00 NA 1.09 1.68 NA 1.36	+ (Siometres C 2000 0.77 1.00 MA 1.04 2.44 NA	1008 0.83 1.00 NA 1.09 2.96 NA 2.10	et (Index: 19 2005 0.67 1.00 NA 1.13 3.44 NA 2.36	1.00) 2010 1.10 1.00 NA 1.36 4.87 NA 3.20	2015 1.36 1.00
Aggregate Size Bend T1-AL T2-BH T2-LH T2-LH T3-BH T3-LI	d types	1900 1.00 1.00 1.00 NA 1.00 NA 1.00 NA	years: Seet 1995 0.83 1.00 NA 1.09 1.66	+ Kilometres C 2000 0,77 1.00 NA 1.04 2.44	1.09 2.98 0.83 1.00 NA 1.09 2.98	et (Index: 16 2005 0.87 1.00 NA 1.13 3.44	1.00) 2010 1.10 1.00 NA 1.38 4.87	2015 1.36 1.00 1.66 8.58
Aggregate Size Bend T1-AL T2-SH T2-LH T2-LH T3-SH T3-LH T3-LH	NA NA	1990 1.00 1.00 1.00 NA 1.00 1.00 NA 1.00	1995 0.85 1.00 NA 1.09 1.68 NA 1.36	+ (Siometres C 2000 0.77 1.00 MA 1.04 2.44 NA	1008 0.83 1.00 NA 1.09 2.96 NA 2.10	et (Index: 19 2005 0.67 1.00 NA 1.13 3.44 NA 2.36	1.00) 2010 1.10 1.00 NA 1.36 4.87 NA 3.20	2015 1.36 1.00 1.66 8.58
Aggregate Size Band T1-AL T2-BH T2-LH T2-LH T3-BH T3-LH T3-LH T3-LH T4-AL *	NA NA NA	1990 1.00 1.00 1.00 1.00 NA 1.00 NA 1.00 NA	1995 0.85 1.00 NA 1.09 1.98 NA 1.36 NA	1.83 NA 1.61	100 NA 1.09 2.98 NA 1.09 2.98 NA 2.10 NA 1.85	et (Index: 15 2005 0.87 1.00 NA 1.13 3.44 NA 2.36 NA	1.00 = 1.00) 2010 1.10 1.00 NA 1.36 4.87 NA 3.20 NA	2015 1.36 1.00 1.66 8.56 4.26
Aggregate Size Bend T1-AL T2-BH T2-LH T2-LH T3-BH T3-LH T3-LH T4-AL* Total	NA NA NA	1990 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 NA	1995 0.83 1.00 NA 1.09 1.09 NA 1.36 NA 1.28	(Signatures C) 2000 0.77 1.00 NA 1.04 2.44 NA 1.83 NA 1.81	100 NA 1.09 2.98 NA 2.10 NA 1.85	est (index; 15 2008 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.06	1.00) = 1.00) 2010 1.10 1.00 NA 1.38 4.87 NA 3.20 NA 2.73	2015 1.36 1.00 1.66 8.56 4.28
Aggregate Size Band T1-AL T2-UH T2-UH T3-UH T3-UH T3-UH T3-UH T4-AL* Total ERO Aggregate Size Band	NA NA NA LULI	8 & selected 1990 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 U region: 8 & selected	1995 0.83 1.00 NA 1.09 1.99 NA 1.36 NA 1.28	Historian C 2000 0.77 1.00 NA 1.04 2.44 NA 1.83 NA 1.81 ner CPE (Ea (Elimentres C 2000)	2008 0.83 1.00 NA 1.09 2.98 NA 2.10 NA 1.85 stern Europe Harred by Fie 2008	et (Index: 16 2008 0.87 1.00 NA 1.13 3.44 NA 2.38 NA 2.06	1.00 2010 1.10 1.00 1.38 4.87 NA 2.73	2015 1.36 1.00 1.66 8.56 4.28
Aggregate Size Band 11-AL 12-BH 12-LH 12-LH 13-LH 13-LH 13-LH 14-AL Total ERO Aggregate Size Band 11-AL	NA N	1990 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 U region:	1995 0.83 1.00 NA 1.09 1.09 NA 1.36 NA 1.28	Homeires C 2000 0.77 1.00 NA 1.04 NA 1.81 NA	Wered by Fig. 2008 0.88 1.00 NA 1.09 NA 2.10 NA 1.85 stern Europe Wered by Fig. 2008 NA	est (Index: 16 2005 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.05	1.00) 2010 1.10 1.00 NA 1.38 4.87 NA 3.20 NA 2.73	2015 1.36 1.00 1.66 8.56 4.28
Aggregate Size Band 11-AL 12-SH 12-LI 12-LI 13-LH 13-LH 14-AL 1-Cotal ERIO Aggregate Size Band 11-AL 12-SH 12-SH	NA N	1990 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 U region:	1995 0.83 1.00 NA 1.09 1.09 NA 1.36 NA 1.28	Histories C 2000 NA	Hered by Fie 2008 0.89 1.00 NA 1.09 2.98 NA 2.10 NA 1.85 stem Europe Hered by Fie 2008 NA NA	et (index: 15 2005 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.05 NA	1.00 = 1.00) 2010 1.10 1.00 1.38 4.87 NA 2.73 200 = 1.00) 2010	2015 1.36 1.00 1.66 8.56 4.26
Aggregate Size Band T1-AL T2-SH T2-LH T3-LH T3-LH T3-LL T2-SH T2-LL	NA N	1990 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 U region:	1995 0.83 1.00 NA 1.09 1.09 NA 1.36 NA 1.28	Historian C 2000 0.77 1.00 NA 1.04 2.44 NA 1.83 NA 1.81 ner CPE (Ea (Elimentres C 2000)	1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.05 NA 2.10 NA 1.85 Stern Europe Wared by Fig. 2008 NA NA NA	et (index: 16 2005 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.05	1.00) 2010 1.10 1.00 NA 1.38 4.87 NA 3.20 NA 2.73	2015 1.36 1.00 1.66 6.56 4.28 3.59
Aggregate Size Band 11-AL 12-BH 12-LH 13-SH 13-LU 13-SH 13-LU 13-LH 13-LH 13-LH 13-LH 13-SH 11-AL 12-SH 11-AL 12-SH 12-LH 12-LH	NA N	1990 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 U region:	1995 0.83 1.00 NA 1.09 1.09 NA 1.36 NA 1.28	+ Kilometres C 2000 0.77 1.00 NA 1.04 NA 1.85 NA 1.81 NA 1.81 NA NA NA NA NA NA NA	Wered by Fle 2008 0.89 1.00 NA 1.09 2.96 NA 2.10 NA 1.85 stem Europe Wered by Fle 2008 NA NA NA 1.25 NA	et (index: 16 2005 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.05 NA	90 = 1.00) 2010 1.10 1.00 NA 1.38 4.87 NA 2.73	2015 1.36 1.00 1.66 8.56 4.28
Aggregate Size Band T2-Li T2-SH T3-Li T3-L	NA N	8 infected 1990 1.000 1.000 1.000 NA 1.000 NA 1.000 U region: 8 selected 1990 NA NA NA	1995 0.83 1.00 NA 1.09 1.09 NA 1.36 NA 1.28	+ (Glometres C) 2000 - (77 - 1.00 - NA 1.04 - 1.85 - NA 1.61 - 1.61 - (2000 - NA	1.25 NA 1.25 NA 1.26 NA 1.27 NA 1.28 NA 1.28 NA 1.28 NA 1.28 NA 1.28 NA	et (index: 16 2005 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.05 NA	1.00 = 1.00) 2010 1.10 1.10 1.36 4.87 NA 3.20 NA 2.73	2015 1.36 1.00 1.66 6.56 4.28 3.59
Aggregate Size Band 11-AL 12-8H 12-LH 13-LH 13-LH 13-LH 14-AL Total ER0 Aggregate Size Band 11-AL 12-LH 12-LH 12-LH 12-LH 12-LH 13-LH	NA NA NA NA NA NA NA	s & milected 1990 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 Uregion: 9 & selected 1990 NA NA NA NA	1995 0.83 1.00 NA 1.09 1.09 NA 1.36 NA 1.28	+ Kilometres C 2000 0.77 1.00 NA 1.04 NA 1.85 NA 1.81 NA 1.81 NA NA NA NA NA NA NA	1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.05 NA 1.85 NA 1.85 NA 1.25 NA NA NA NA	ust (index: 16 2006 2006 7 1.00 NA 1.13 3.44 NA 2.36 NA 2.06 NA	90 = 1.00) 2010 1.10 1.00 NA 1.38 4.87 NA 2.73	2015 1.36 1.00 1.66 6.56 4.26 3.59 2015
Aggregate Size Band 11-AL 12-8H 12-LH 13-SH 13-LH 14-AL 12-8H 12-LH 13-LH 14-AL 12-8H 12-LH 13-SH 13-LH 13-SH 13-LH 13-SH 13-LH 13-L	NA NA NA NA NA NA NA	s & milected 1990 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 Uregion: 9 & selected 1990 NA NA NA NA	1995 0.83 1.00 NA 1.09 1.09 NA 1.36 NA 1.28	+ (Glometres C) 2000 - (O.77 - 1.00 - NA - 1.84 - NA - 1.85 - NA - 1.81 - (Glometres C) 2000 - NA -	1.85 NA NA NA 2.00 NA 2.00	ust (index: 16 2006 2006 7 1.00 NA 1.13 3.44 NA 2.36 NA 2.06 NA	1.00 = 1.00) 2010 1.10 1.00 NA 1.36 4.87 NA 3.20 NA 2.73	2015 1.36 1.00 1.66 6.56 4.28 3.59
Aggregate Size Band T1-AL T2-SH T2-LH T3-LH	NA N	s & sinceded; 1990 1.00 1.00 1.00 NA	Pears: Seat 1 1995 0.85 1.00 NA 1.08 NA 1.28 Form NA	+ (Siometres C) 2000 0.77 1.00 1.04 2.44 NA 1.85 NA 1.81 1.81 1.81 NA NA	1.09 NA 1.09 NA 1.09 NA 1.09 NA 1.09 NA 1.09 NA 1.210 NA 1.85 2.000 NA NA 1.25 NA 2.00 NA NA 2.00 NA NA	2005 NA	1.00 = 1.00) 2010 1.10 1.10 1.00 NA 1.36 4.87 NA 2.73 200 = 1.00) 2010 NA NA NA NA	2015 1.36 1.06 1.66 6.58 4.28 3.59 2015 1.50 3.50
Aggregate Size Band 11-AL 12-BH 12-LH 13-LH 13-L	NA HA NA HA NA NA NA NA NA	s & miscaed; 1990 1.00 1.00 NA 1.00	1995 0.83 1.00 NA 1.36 NA 1.26 Fom NA	+ 100 HA NA NA NA NA NA	1.00 NA 1.05 NA 1.00 NA 1.09 NA 2.10 NA 1.85 NA 1.85 NA 1.25 NA 1.25 NA 1.25 NA	at (index: 16 2006 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.06 NA	1.00 = 1.00) 2010 1.10 1.10 1.00 NA 1.36 4.87 NA 2.73 200 = 1.00) 2010 NA NA NA NA	2015 1.36 1.00 1.66 6.56 4.26 3.59 2015
Aggregate Size Band 11-AL 12-BH 12-LH 13-LH 13-L	NA HA NA HA NA NA NA NA NA	s & miscaed; 1990 1.00 1.00 NA 1.00	1995 0.83 1.00 NA 1.36 NA 1.26 Fom NA	+ 100 HA NA NA NA NA NA	1.00 NA 1.05 NA 1.00 NA 1.09 NA 2.10 NA 1.85 NA 1.85 NA 1.25 NA 1.25 NA 1.25 NA	at (index: 16 2006 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.06 NA	1.00 = 1.00) 2010 1.10 1.10 1.00 NA 1.36 4.87 NA 2.73 200 = 1.00) 2010 NA NA NA NA	2015 1.36 1.00 1.66 6.58 4.28 3.59 2015 1.50
Aggregate Size Band 11-AL 12-BH 12-LH 13-LH 13-L	NA HA NA HA NA NA NA NA NA	s & miscaed; 1990 1.00 1.00 NA 1.00	1995 0.83 1.00 NA 1.36 NA 1.26 Fom NA	+ 100 HA NA NA NA NA NA	1.00 NA 1.05 NA 1.00 NA 1.09 NA 2.10 NA 1.85 NA 1.85 NA 1.25 NA 1.25 NA 1.25 NA	at (index: 16 2006 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.06 NA	1.00 = 1.00) 2010 1.10 1.10 1.00 NA 1.36 4.87 NA 2.73 200 = 1.00) 2010 NA NA NA NA	2015 1.36 1.00 1.86 6.58 4.28 3.59 2015 1.50 2.50
Aggregate Size Band T1-AL T2-SH T2-SH T3-LH T3-SH T3-LH T3-SH T3-LH T3-SH T3-LH T3-SH T3-LH T4-LL Stage ERO Aggregate Stage Band Stage Sta	NA HA NA HA NA NA NA NA NA	8 infected 8 infected 1990 1.00 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 NA NA NA NA NA NA NA	Pears: Seat 1995 NA 1.28 NA 1.28 Form NA	+ Kilometres C 2000 NA NA NA NA NA NA 1.00 RLD SUMMA	1.09 NA 1.09 NA 1.09 NA 1.09 NA 1.09 NA 1.09 NA 1.210 NA 1.25 NA	at (index: 16 2006 0.87 1.00 NA 1.13 3.44 NA 2.06 NA	1.00 = 1.00) 2010 1.10 1.10 1.00 NA 1.38 4.87 NA 2.73 2010 NA NA NA NA NA NA	2015 1.36 1.00 1.86 6.56 4.28 3.59 2015 1.50 2.50
Aggregate Size Band Ti-AL T2-BH T2-U T2-U T2-UH T3-UH	NA HA NA HA NA NA NA NA NA	5 & miscaled 1890 1990 1	1995 0.83 1.00 NA 1.08 NA 1.26 Fom years: Seat 1995 NA	+ Glometres C 2000	1.00 NA 1.85 NA NA 1.25 NA NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA 1.25 NA	et (index: 16 2005 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.05 NA	1.00 = 1.00) 2010 1.10 1.00 NA 1.36 4.87 NA 3.20 NA 2.73 2.73 3.20 NA 2.73 3.20 NA 2.73	2015 1.36 1.00 1.66 6.56 4.28 3.59 2015 1.50 2.50 2.50
Aggregate Size Band T1-AL T2-SH T2-LH T3-LH	NA HA NA HA NA NA NA NA NA	s & sincated 1890 1.00 1	Peers: Seet 1995 0.88 1.00 NA 1.38 NA 1.28 Form NA	+ Kilometree C 2000 2000 0.77 1.00 1.04 1.83 NA 1.81 NA 1.81 NA NA NA NA NA NA NA N	1.00 NA 1.05 NA 1.05 NA 1.05 NA 1.05 NA 1.05 NA 1.05 NA 1.25 NA 1.25 NA 1.25 NA 1.25 NA 1.26 NA 1.27 NA 1.28 N	out (inclose: 16 2006 2006 1.00 1.13 3.44 1.42 3.84 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.62	1.00 = 1.00) 2010 1.10 1.10 1.00 1.36 4.87 NA 2.73 200 = 1.00) 2010 NA NA NA NA 2.00 2010 1.48 1.94	2015 1.36 1.00 1.86 6.56 4.28 3.59 2015 1.50 2.50 2.50
Aggregate Stoe Band T1-AL T2-SH T2-LH T3-LH T3-L	NA HA NA HA NA NA NA NA NA	3 & mineted 1990 19	Peers: Seat 1 1995 1995 1995 1995 1995 1995 1995 1	1.83 NA 1.81 NA 1.80 NA NA NA 1.00 NA NA NA 1.00 NA N	1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.05 NA 1.85 NA 1.25 NA 1.25 NA NA 1.25 NA NA 1.25 NA 1.25 NA NA 1.25 NA 1.25 NA 1.25 NA NA 1.25 NA 1	et (index: 16 2006 0.87 1.00 NA 1.13 3.44 NA 2.36 NA 2.05 NA	1.00 = 1.00) 2010 1.10 1.00 NA 1.36 4.87 NA 3.20 NA 2.73 2010 = 1.00) 2010 1.46 1.94 1.94	2015 1.36 1.00 1.86 6.56 4.26 3.59 2015 1.50 2.50 2.50
Aggregate Size Band TI-AL T2-SH T2-UI T2-LIH T3-LIH	NA HA NA HA NA NA NA NA NA	s & selected 1990 1.00 1	Peers: Seat 1995 0.83 1.00 NA 1.36 NA 1.26 Form NA	1.83 NA 1.81 NA 1.80 NA NA NA 1.00 NA NA NA 1.00 NA N	1.00 NA 1.25 NA NA NA NA NA 1.25 NA NA NA NA NA NA NA 1.25 NA NA NA NA NA NA NA NA 1.25 NA NA NA NA NA NA 1.25 NA NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA NA 1.25 NA	at (index: 16 2006 0.87 1.00 NA 1.13 3.44 NA 2.06 NA	1.00 = 1.00) 2010 1.10 1.00 1.38 4.87 NA 2.73 200 = 1.00) 2010 NA NA NA NA NA NA 1.00 1.46 1.94 1.94 1.94 1.94 1.94	2015 1.36 1.00 1.86 6.58 4.28 3.59 2015 1.50 2.50 2.50
Aggregate Size Band T1-AL T2-SH T2-SH T3-LH T3-SH T3-LH	NA HA NA HA NA NA NA NA NA	3 & sincleded 1990 1.00 1.00 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 NA NA NA NA NA NA NA	Pears: Seat 1 1995 0.85 1.00 NA 1.38 NA 1.28 Form NA	+ Kilometres C 2000 0.77 1.00 NA 1.04 1.85 NA 1.81 NA 1.81 NA	1.09 NA 1.25 N	at (index: 16 2005 0.87 1.00 NA 1.13 3.44 NA 2.05 NA	1.00 = 1.00) 2010 1.10 1.00 1.38 4.87 NA 1.38 3.20 NA 2.73 2010 NA NA NA NA NA 1.00 1.46 1.94 1.95 1.21 1.05 1.21	2015 1.36 1.00 1.86 6.56 4.28 3.59 2015 1.50 2.50 2.50
Aggregate Size Band Ti-AL T2-BH T2-UH T3-UH T3-U	NA HA NA HA NA NA NA NA NA	3 & selected 1990 1990 1990 1,000 1,	Peers: Seat 1995 0.83 1.00 NA 1.36 NA 1.26 Form NA	1.81 NA	Hered by Fle 2008 1.00 NA 1.09 NA 2.10 NA 1.85 steen Europe Mend by Fle 2008 NA 1.25 NA NA 1.25 NA NA NA 1.25 NA NA 1.25 NA NA 1.25 NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA NA 1.25 NA NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA 1.25 NA NA NA NA NA 1.25 NA N	at (index: 16 2006	1.00 = 1.00) 2010 1.10 1.10 1.00 1.38 4.87 NA 2.73 2.73 000 = 1.00) 2010 NA	2015 1.36 1.00 1.86 6.58 4.28 3.59 2015 1.50 2.50 2.50
Aggregate Size Band T1-AL T2-SH T2-SH T3-LH T3-SH T3-LH	NA HA NA HA NA NA NA NA NA	3 & sincleded 1990 1.00 1.00 1.00 1.00 1.00 NA 1.00 NA 1.00 NA 1.00 NA 1.00 NA NA NA NA NA NA NA	Pears: Seat 1 1995 0.85 1.00 NA 1.38 NA 1.28 Form NA	+ Kilometres C 2000 0.77 1.00 NA 1.04 1.85 NA 1.81 NA 1.81 NA	1.09 NA 1.25 N	at (index: 16 2005 0.87 1.00 NA 1.13 3.44 NA 2.05 NA	1.00 = 1.00) 2010 1.10 1.00 1.38 4.87 NA 1.38 3.20 NA 2.73 2010 NA NA NA NA NA 1.00 1.46 1.94 1.95 1.21 1.05 1.21	2015 1.36 1.00 1.86 6.56 4.28 3.59 2015 1.50 2.50 2.50


NOTE:

APPENDIX I: Continued

Figure I.1: Development of Passenger-km in scenarios ER0, GS0 and BG0.

APPENDIX I: Continued

Table I.1: Development of Passenger-km in scenarios ER0, GS0 and BG0.

Scenario ER0: 10^9 P-km/yr

Region	1990	1995	2000	2003	2005	2010	2015
Former CPE	NA						
LDC+	223	290	368	425	475	640	727
Far East	249	379	558	697	811	1195	1484
W. Europe	395	521	667	771	848	1078	1147
North America	798	988	1139	1243	1345	1711	1815

Scenario GS0: 10^9 P-km/yr

Region	1990	1995	2000	2003	2005	2010	2015
Former CPE	NA						
LDC+	220	308	424	500	563	750	848
Far East	251	399	630	810	968	1470	1895
W. Europe	394	502	612	670	720	872	930
North America	796	1080	1498	1781	1981	2528	2762

Scenario BG0: 10^9 P-km/yr

Region	1990	1995	2000	2003	2005	2010	2015
Former CPE	NA						
LDC+	224	323	458	560	640	876	1025
Far East	250	375	548	683	792	1132	1382
W. Europe	393	529	706	835	926	1183	1282
North America	797	1052	1395	1648	1829	2310	2481

Notes:

For Former CPE no data are available.

A uniform load factor and load factor development has been assumed in converting SKO to P-km.

APPENDIX J: Documentation provided with the EDGAR/LULU air traffic results for the ER0 scenario (1990, 2003 and 2015).

The partial distribution of aircraft activity and related emissions has been of 70-03W. The spatial distribution of aircraft activity and related emissions has been of 70-03W based on the information contained in the WEL database, supplemented with a calculation for CO emissions. Methane emissions are not calculated, since account research indicates that emission factors during cruises flight are zero AISEROCC present and account accounts the factors are sero and account accounts the factors are sero and account accounts the factors are sero and accounts the factors are sero a	
	LI-03NOX.00LI-03NOX.15 WE-03NOX.00WE-03NOX.15 OT-03NOX.00OT-03NOX.15 AL-03NOX.00AL-03NOX.15
_	A15ER0CO.ZIP LI-15CO.00LI-15CO.15 WE-15CO.00FE-15CO.15 OT-15CO.00OT-15CO.15 AI-15CO.00AI-15CO.15
	A15ER0FU.ZIP LI-15.00LI-15.15 WE-15.00WE-15.15 AI-15.00AI-15.15 AL-15.00AI-15.15
region and source category with an index based on growth indices as calculated A15ERONO.IIP D 71. We greatly acknowledge the assistance of the DTI staff to perform these LI-15NOX.00 LI-15NOX.00 In the proper format to be handled within the EDGAR database system. AL-15NOX.00 PTIES	LI_1SRONO_ZIP LI_1SNOX_00EI_1SNOX_15 WE_1SNOX_00WE_1SNOX_15 AL_1SNOX_00OT_1SNOX_15 AL_1SNOX_00AL_1SNOX_15
data sources	FILE CODES, FORMATS AND UNITS Pile names "ayyssec" of ZIP files correspond with: Pile names "ayyssec" of ZIP files correspond with: yy = year, last 2 digits only (90=1990, 03=2003, 15=2015) yy = year, last 2 digits only (90=1990, 03=2003, 15=2015) cc = compound (no = NOX, co = CO, fu = fuel consumption)
NOx emissions for LI, WE, OT and AL in 2003 OC emissions for LI, WE, OT and AL in 2003 Fust consumption for LI, WE, OT and AL in 2003 NOx emissions for LI, WE, OT and AL in 2015 OC emissions for LI, WE, OT and AL in 2015 Fust consumption for LI, WE, OT and AL in 2015 Sust consumption for LI, WE, OT and AL in 2015 esasonality of 3 different regions/links	•
contents of ZIP-files: A9DEROCO.ZIP LI-90CO.00LI-90CO.15 MR-99COC.00MR-90CO.15	19 1990 1990 1990 1991 1991 1991 1991 1
OT-90CO. 00 OT-90CO. 15 AL-90CO. 00 AL-90CO. 15 A90ER0PU. ZIP A90.00 LI-90. 15	co = consumption fu = fuel consumption fu = index of altitude band: 00 = 00-01 km 01 = 01-02 km
WE-90.00. WE-90.15 OT-90.00. OT-90.15 AL-90.00. AL-90.15	07 = 07-08 km 08 = 8.0-8.5 km 09 = 8.5-9.0 km
A9DERONO. 21F 11-90NOX. 00. 11-90NOX. 15 WE-90NOX. 000T-90NOX. 15 OT-90NOX. 000T-90NOX. 15	15 = 11.5-12.0 km $^{\circ}$ For specific sources of methane see par. on scenario definition
	Units on files: Tg of NOX-NO2/cell/month Tg of CO/cell/month ton of fuel/cell/month
WE-0300.00. WE-0300.15 Data at AC-0300.00. AC-0300.15 AL-0300.00. AC-0300.15 AL-0300.00. AC-0300.15 AL-0300.00. AC-0300.15 AL-0300.00. AC-0300.15	Data are write in a block in the following order: -180,80 -175,80100,80 -175,80100,80
1-03.15 1-03.15 1-03.15	TIME PROFILES

APPENDIX J: Continued

annual average fraction substantially, i.e. more than +- 10 to 15%:

- Kinghts within W. Europa.

- Flights within W. Europa.

- This to the account of the seasonal variation of sircraft emissions we divided global sircraft entivities in three parts, for which we defined monthly fractions (one month being defined as 1/12 of a year):

- Lit the link M. --> WE

- Lit the link M. --> WE

- UT: The Emanding part:

- OT: the remaining part:

- OT: the remaining part:

- For "OT(HER)" we simply assume a uniform distribution in time, which can be presented in the file "a_timepr.mon". For future years we assumed the same time print as for 1990.

For more information we refer to research note to DGM (ref. 94.049 d.d. 8 June 1994).

INPUT FOR DIT AIRCRAFT MODEL TO GENERATE SEAT-KH OFFERED: * RECIONAL ECONOMIC GROWTH: see CPB, Scanning the future * TICKET PRICES (in %/s)

DEFINITION SCENARIO ERO

1990-1995 1995-2015

-1.500

Europe -1.50 • LOAD PACTOR (index 1990 = 1): 1990: 1.00

The corresponds to an increase from 65% in 1990 to 69% in 2015.

* AUTONOMOUS DEVELOPMENT OF SPC AND EMISSION PACTORS

ADDITIONAL ASSUMPTIONS TO CALCULATE EMISSIONS:

In Date are now split over 3 regions/links to allow application of different monthly time profiles. In Date are now split over 3 regions/links to allow application of different monthly time profiles. Date for 1990 and 2015 now include the scaling up to the UN figure for total jettual consumption in 1990 (multiplication factor of 1.863). Global total NOX emissons for 1990 are slightly different from the previous dataset (Desides the scaling). Lobal total Co emissons for 1990 are slightly different from the previous dataset (Desides the scaling). Lobal total is now 358.4 instead of 365.2 Gg and differences mainly occur in band global total is now 358.4 instead of 365.2 Gg and differences mainly occur in band of the 10-10.5 km, 11-11.5 km. After a double check of the data it was concluded that the current data are correct add that the data of februar include a minor error, notably for these altitude bands and that the data of februar include a minor error, notably for these altitude bands of consumption pattern for this inhomogenous group was available. However, since the fuel consumption pattern for this group indicate filight levels alwayse belon 6 km, this was not onsidered a problem for the field of application for JULO. Compared to other Surface sources – as well as other aircraft? – this category can probably be For each of these regions/links for 6 type/range combinations individual growth factors are applied (see ANNEX D to P). In EDGAR-LUDU the separate activity levels are multiplied by these growth factors, and then aggregated to the requested aggregation level of global emissions: For more details we refer to research note to DGM (ref. 94.049 d.d. 8 June 1994). Scenario definition: regional economic growth by CPB; Scenario definition: regional economic growth by CPB; Scenario definition: regional economic growth by CPB; price developments and load factors by DTI; growth of seat-bm by region, type/range calculated by DTI; SPC and emission factors by RIVM and MIR SPC and emission factors by RIVM and NIR Integrated emissions scenario: EDGAR Integrated emissions scenario: EDGAR Name: a_90_15. doc Dete: 94.06.17 Region/link codes for temporal distribution of global emissions: LI - Links (Western Burope - North America, N.A. -> Western Burope) WE - Western Burope (includes only type/range TiA, T2S, T3S, T4A; OT - All Other regions/links not in WE or LI - Summartion of the three region groups Altitude bands: 0-1 km, 1-2 km .., 7-8 km, 8-8.5 km, 8.5-9 km .., 11.5-12 km. REMARKS/DIPPERENCES WITH FILES OF PEBRUARY 1994 Dec 30 1994 14 38 45 DATA SOURCES Page

insight with the second of the consumption by aircraft is missing in the WEL database, since about 50% of fuel consumption by aircraft is missing in the WEL database, since about 50% of fuel consumption by aircraft is missing in the WEL database, since about 50% and in China are heavily undervalued. A more realistic adjustment former USSR and in China are heavily undervalued. A more realistic adjustment would have been acaling up for these regions differatly. Nower, since database acting this was not feasible. This underlines the relative unprecision of the spatial distribution of sircraft emissions based upon the WEL database. For our purposes, however, no better one was available. Slight differences of aggregated total figures with figures presented up the note to DRM first, 34,049 d.d. 9 June 1994 are caused by a more detailed calculation of activity growth within regional/links, then was done for the summary assessment as presented in that note. (Aircraft with higher/lower emission factors may growth seemario run). Ġ NA (North America: USA and Canada, excluding traffic to Western Europe)
NA->MEU (North America to Mestern Europe)
NA->MEU (Mestern Europe, excluding traffic to North America)
WEU (Mestern Europe, excluding traffic to North America)
WEU->NA (Mestern Entope to North America) indian elubontinent, Asia)
OTH (Others: Latin America, Africa, Middle East, Oceania [= Australia & NZ])
CPE (former Centrally Planned Europe: Eastern Europe and CIS [= former USSR]) * In 2003 13/25 \times 50% = 26% penetration was assumed. Put another way: change is about half of the figures mentioned here for 2015. Results of DTI runs are compressed to LULU regions/types-ranges: N.B. i NOT IN SCENARIO "ERO" !
Technical measures:
Variable Change in 2015 (50% penetration assumed *)
Variable — 42.5 %
EF-NOX: — 42.5 %
EF-SOV VC: — 25.5 %
EF-SOV VC: — 25.6 %
EF-NOX VC: — 25.6 % ADDITIONAL ASSUMPTIONS FOR ALTERNATIVE POLICIES +6 % (to 75% total in 2015) (-9 % fuel consumption) Operational measures: Load Factor +6 % (1 AGGRECATIONS

APPENDIX K: Documentation provided with the EDGAR/LULU surface sources results for the ER0 scenario (1990, 2003 and 2015).

	•	for the ER(scen	ario (19:	90, 200	3 and	2015).			
Dec 30 1894 14 3845 8, 90, 15 doc Pepe 2	ccc = compound * * number of month (e.g. 01 = January) * For specific sources of methans see par. on scenario definition Units on files: Tg of CH4, NO2, CO and SO2/cell/month Data are write in a block in the following order: -180,85 -175,85 -180,80 -175,80 (longitude,latitude of lower left corner of 5x5 cell)	TIME PROFILES ====================================	DEFINITION SCENARIO ERO CH4 Sources Index	ANT 1.00 1.19 1.37 BIO * 1.00 1.07 1.13 CAT * 1.00 1.25 1.48 NOX SOUPCES	ANT 1.00 1.31 1.60 BIO 1.00 1.08 1.16 SOIL 1.00 1.00 1.00	ANT 1.00 1.14 1.26 BIO 1.00 1.07 1.13 BIO 1.00 1.00 1.00 SER 1.00 1.00 1.00	Sum of en Sum of en (for each Ruminante	For details we refer to the research note to DGM (ref. 94.049 d.d. 8 June 1994). DATA SOURCES MARIE MARIE MARIE AND THE MARIE		REMARKS/DIFFERENCES WITH FILES OF PEBRUARY 1994/DIFFERENCES WITH IPCC ESTIMATE FOR 1990 1. In the previous dateset for 1990 constructed in Pebruary 1994, emissions by runinants of CH4 contained an error way global total emissions in 1990 are 391.21 Tg (instead of 412.11). Runinant (catlls) emissions now total 78.52 Tg (instead of 99.48). 2. For Nox and CO the data for 1990 are identical. 3. In addition to total monthly CH4 emission files, we include files for the 4 categories to allow for adjusting sectoral data, if required by atmosheric models.
Dec 20 1994 14:38:45 s. 90, 15:doc	ND CH4 FROM SURFA-F- Muller: month 5x5 grid cells cells dt to 5x5 grid cells cells multipoly. The multipoly grid cells determition of constructed by gland index based on	PILES	acustosci.zip ma. co., co., co., co., co., co., co., co.	contents of ZIP-files: STRSOERO, ZIP (MOX, CO, CH4, SO2 emissions per month in 1990) NULSOCO. L. MULISSC2. 12 NULSOCO. O1. MULISSC2. 12 NULSOCO. O1. MULISSC2. 12 NULSOCO. O1. MULISOCO. 12	<pre>gunjace.com.uc.mulace.com.com.com.com.com.com.com.com.com.com</pre>	SURISERO.ZIP (NOX, CO, CH4 emissions per month in 2015) NULLSEOX.01NULLSEOX.12 NULLSCO.01NULLSCO.12 NULLSCH4.01NULLSCH4.12	SOUGOERO.ZIP (CH4 emissions by source in 1990) ANT9CCH4.01.ANT9CCH4.12 BLOSOCH4.01.ENC9CCH4.12 CAT9CCH4.01.CAT9CCH4.12 RIC9CCH4.01.RIC9CCH4.12	SOUGJERG.ZIP (CH4 emissions by sources per month in 2003) ANTOICH4.01ANTOJCH4.12 BNOGCH4.01ENGOTH4.12 CATOJCH4.01CATOJCH4.12 RICOJCH4.01RICOJCH4.12	SOUISERO.ZIP (CH4 emissions by source in 2015) ANTISCH4.01ANTISCH4.12 BIOISCH4.01BIOISCH4.12 CATISCH4.01CATISCH4.12 RICISCH4.01RICISCH4.12	FILE CODES, FORMATS AND UNITS File names "nnnyyses" of ZIP files correspond with: File names "nnnyyses" of ZIP files correspond with: nnn = source name (sur = all surface sources; sou = CH4 sources only) Ny = year, last 2 digite only (90-1990, 01-2003, 15-2015) Ny = year, last 2 digite only (90-1990, 01-2003, 15-2015) Sea = source category (mul = all surface sources ") Ny = year, last 2 digite only (90-1990, 03-2003, 15-2015)

APPENDIX K: Continued

R BASE YEAR 1990	6 CH4	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
BASE	CH4	8884412268	,
FOR	CH4 Bio ton CH4	6.79 6.79 6.79 6.67 6.67 6.67 6.67 6.67	26 8
أبد نصا	CH4 Rice ton CH4	3.319 3.299 4.544 6.161 8.485 11.314 12.105 12.02 11.46 8.607	88
.00 S	CH4 Cat ton CH4	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	NNN ·
45.74 16 0F CH4	CH4 Anthr. ton CH4	11.75 11.691 10.309 10.051 10.051 9.511 9.511	10.932 11.472 125.90
12 MISSION Frees of	1990	4484844 448484	277
	Year: Compound: Unit:	January Pebruary March April May June July August September	November Becember
77 (.0 76.1 10 11	UN 145.74 1671.00 514 UD EMISSION OF CH4 SOURCES BY Sources of Methane	SUM 145.74 1671.00 514. SUM 145.74 1671.00 514. AGGREGATED EMISSION OF CH4 SOURCES BY Surface Sources of Methane Compound: 1990 CH4 CH4 CC Anthr. Cat F	SUM 145.74 1671.00 514. AGGREGATED EMISSION OF CH4 SOURCES BY Surface Sources of Methane Year: Compound: Dirt: Compound: Comp

4. Por aggregated moni 5. Estimations for 20. A. AGGREGATED EMISSIO A. AGGREGATED EMISSIO Surface Sources Year: January 1 Rebruary 2 August 8 September 9 October 10 November 11 December 12 Surface Sources Scanario: Europea Year: Unit: Muly 7 August 8 Superario: Europea Year: Unit: Muly 7 August 10 Surface Sources September 2003 Compound: Unit: Unit: Mult factor: 1 January 1 February 2 March 3 April 4 March 3 April 4 August 8 September 10 October 10 Surface Sources September 12 Surface Sources Surface Sources Surface Sources Scenario: Europe Surface Sources Surface Sources Scenario: Europe Year: October 10 November 11 December 12 Surface Sources Scenario: Europe Year: Unit: full factor: 1 Dult: full factor: 1 Mult factor: 1 Mult factor: 1
--

APPENDIX L: Fuel consumption by air traffic in USA in EIA scenario.

Table L.1: Fuel consumption by aircraft in USA 1990-2015 in reference scenario of EIA.

Fuel consumption: in 10^12	2 Btu		······································	
Туре	1990	2000	2005	2010
Commercial - Jet fuel	2334.5	3147.5	3509.5	3856.3
Commercial - Avgas	45.4	42.6	43.3	42.1
Military - jet fuel	795.0	570.1	573.7	582.5
Total	3174.9	3760.2	4126.5	4480.9
Fuel consumption: index (1	990 = 1)			
Туре	1990	2000	2005	2010
Commercial - Jet fuel	1.00	1.35	1.50	1.65
Commercial - Avgas	1.00	0.94	0.95	0.93
Military - jet fuel	1.00	0.72	0.72	0.73
Total	1.00	1.18	1.30	1.41

Source: EIA, 1994a,b.

It shows that total US jet fuel use by aircraft will grow by about 41% in 20 years. This is a composite of 65% growth in civil air traffic and a 27% decrease in military air traffic, shifting the share of civil US air traffic from 75% in 1990 to 87% in 2010.

APPENDIX M: Global jet fuel consumption: regional distribution and annual growth.

Table M.1: Global consumption of jet fuel for transportation in 1990.

	EDGAR Region	PJ	Mton	%	Index 1990 (1971 = 1)
E1	Canada	179	4.0	2	1.8
E2	USA	3,162	70.9	42	1.6
E5	OECD EUROPE	1,289	28.9	17	1.9
	- of which: EU-12 *	1,135	25.4	14.9	1.9
	- of which: Netherlands	70	1.6	0.9	2.0
E6	EASTERN EUROPE	59	1.3	1	1.7
E7	Former USSR (CIS)	945	21.2	12	1.0
E3	LATIN AMERICA	339	7.6	4	2.2
E4	AFRICA	195	4.4	3	2.3
E8	MIDDLE EAST	398	8.9	5	4.5
E9	INDIA REGION	107	2.4	1	1.9
E10	CHINA REGION	178	4.0	2	1.6
E11	EAST ASIA	311	7.0	4	4.7
E12	OCEANIA	137	3.1	2	2.2
E13	Japan	315	7.1	4	2.9
	Global total:	7,613	170.7	100	1.7

Source: EDGAR, 1995; based on IEA country statistics (IEA, 1994).

Table M.2: Consumption within the European Union of jet fuel for transportation in 1990.

ISO	EU Country	PJ	Mton	%	Index 1990 (1971= 1)
BEL	Belgium	41	0.9	4	2.4
DNK	Denmark	31	0.7	3	1.1
DEU	Germany *	236	5.3	21	2.3
FRA	France	167	3.7	15	2.5
GRC	Greece	55	1.2	5	2.0
IRL	Ireland	16	0.4	1	1.0
ITA	Italy	88	2.0	8	1.1
LUX	Luxembourg	6	0.1	1	3.6
NLD	Netherlands	70	1.6	6	2.0
PRT	Portugal	25	0.6	2	1.3
ESP	Spain	107	2.4	9	2.1
GBR	United Kingdom	294	6.6	26	1.8
	EU-12 *	1,126	25.3	100	1.8

Source: EDGAR, 1995; based on IEA country statistics (IEA, 1994).

Table M.3: Annual global jet fuel consumption for transportation 1989-1992.

ſ	Year	Consumption	1	Annual growth (%)
١		(EJ)	(Mton)	
ſ	1989	7579.7	170.0	-
l	1990	7606.6	170.6	0.4
l	1991	7382.2	165.6	-3.0
İ	1992	7426.1	166.5	0.6

Source: EDGAR, 1995; based on IEA country statistics (IEA, 1994).

^{*} Including former DDR

^{*} Including former DDR