RIVM logo, National Institute for Public Healthe and the Enviroment. Minsty of Health, Welfare and Sport

Application of three Forest-Soil-Atmosphere models to the Speuld experimental forest

Toepassing van drie geintegreerde modellen voor de kringloop van water, assimilaten en nutrienten op het Speulderbos

Synopsis

Large efforts have been dedicated to investigate effects of atmospheric deposition of sulphur and nitrogen on trees and soil at the forest stand level. For this purpose intensive monitoring programs and integrated models of the water, carbon and nutrient cycle have been developed. This report describes an application of the nutrient cycling and soil acidification model NuCSAM and the integrated water, carbon and nutrient cycling models SoilVeg and ForGro to the Speuld site, a Douglas fir stand on a Cambic podzol. This site was monitored between 1987 and 1991. The models were parameterized and calibrated for this site. Simulated soil water contents, soil solution chemistry, foliage biomass and nutrient status and stem growth between 1987 and 1991 were comparable with observations. However, the models showed large differences with respect to quantities that could not be measured, such as transpiration, leaching fluxes, root uptake fluxes and mineralization fluxes. The generality of the integrated models was further tested by an approximate simulation of a site irrigation and fertigation experiment at a nearby Douglas fir stand between 1987 and 1991. The direction and magnitude of simulated effects of irrigation and fertigation on stem growth, litter fall and needle nutrient status were generally right, but the observed enhanced nitrogen mineralization could not be simulated. Simulation of site response to three Dutch deposition scenarios between 1994 and 2050 showed large differences between the three models, particularly for nitrogen cycling and foliage nutrient status. Nevertheless, all models indicate a fast response of soil solution chemistry to changing deposition. Both SoilVeg and ForGro indicate that direct effects of elevated ozone and SOx concentrations in the atmosphere, and effects of pH and the Al concentration in the soil solution are subsidiary to effects of drought and nitrogen. Our understanding of effects of acid atmospheric deposition on forests, which is based on laboratory experiments, short monitoring studies and integrated simulation is inadequate to quantitatively predict the long-term impact of forests on a nationwide scale.
 

Home / Documents and publications / Application of three Forest-Soil-Atmosphere models to the Speuld experimental forest

RIVM Committed to health and sustainability
Menu