RIVM logo, National Institute for Public Healthe and the Enviroment. Minsty of Health, Welfare and Sport

Scenarios for global emissions from air traffic. The development of regional and gridded (5 degrees x 5 degrees) emissions scenarios for aircraft and for surface sources, based on CPB scenarios and existing emission inventories for aircraft and surface sources

Scenario's voor mondiale emissies van vliegverkeer. De ontwikkeling van regionale en gegridde (5 graden x 5 graden) emissiescenario's voor luchtvaart en grondbronnen, gebaseerd op CPB scenario's en bestaande emissie-inventarsiaties voor vliegverkeer en grondbronnen

Synopsis

An estimate was made of present global emissions from air traffic using statistical information on fuel consumption, aircraft types and applying emission factors for various compounds. To generate scenarios for future emissions from air traffic, assumptions were used regarding the development of the volume of air traffic, of specific fuel consumption and of the emission factors. In addition, some policy alternatives were calculated in which a number of measures were implemented to reduce aircraft emissions. In co-operation with the UK Department of Trade and Industry (DTI) scenarios of the development of the volume of global air traffic have been constructed, using economic growth figures from three scenarios defined by the Dutch Central Planning Bureau (CPB), labelled 'European Renaissance' (ER), 'Global Shift' (GS) and 'Balanced Growth' (BG). Combined with assumptions on the development of specific fuel consumption and on the emission factors global emission scenarios for air traffic were constructed for the years 2003 en 2015. Current trends of global emissions of greenhouse gases from air traffic show for the period 1990-2015 a substantial autonomous growth of about 140-190% for NOx and between 180-250% for other compounds. Global totals appear to be rather insensible with regard to the economic scenarios used for the projections. Related to other energy-related emissions, the growth will be larger since air traffic is expected to grow faster than other energy consumption. Furthermore, indications are given of the maximum potential of policy measures to reduce aircraft emissions globally. Depending on the compound, emissions could be reduced substantially in 2015 (typically 25% compared with the reference scenarios), if strong technological measures would be implemented to a high degree (without retrofits of the current fleet). The cumulative effect of integrated (technical, operational or economic) control policies can be substantial, in particular with regard to NOx emissions. The results indicate that a substantial limitation - in some cases even a reduction in absolute figures - of the uncontrolled growth of emissions may be achieved, provided that the assumed strong technological development would indeed occur and were implemented to a high degree, and were combined with other (operational and economic) policy measures. The calculated future global emissions were spatially distributed in three dimensions using the 3D air traffic database of Warren Spring Laboratory (WSL) (now: AEA, Harwell) and emission factors defined by WSL and the Dutch National Aerospace Laboratory (NLR). The data from this database were aggregated and included as Version 1 of the Emissions Database for Global Atmospheric Research (EDGAR) of RIVM/TNO. Subsequently, the EDGAR functionality was used to generate 3-dimensional distributions of emissions for the years 2003 and 2015. Combined with time profiles, which were compiled from data provided by McDonnell-Douglas, these 3D emissions scenarios were used for atmospheric-chemical research. The cruising altitude per aircraft type and the seasonal variation were assumed to stay constant in time. This study combines the results of an air traffic projection model with a gridded air traffic emissions database to generate for future years three-dimensional spatial distributions of aircraft emissions using well recognized and documented reference scenarios, thus allowing a comprehensive assessment of the atmospheric impact of aircraft emissions relative to other sources. This complements the aggregated comparison of global emissions from aircraft and other sources, such as presented in this report, and provides pivotal information for environmental assessments of the impact of the emissions by atmospheric models.
 

Home / Documents and publications / Scenarios for global emissions from air traffic. The development of regional and gridded (5 degrees x 5 degrees) emissions scenarios for aircraft and for surface sources, based on CPB scenarios and existing emission inventories for aircraft and surface sources

RIVM Committed to health and sustainability
Menu