Development of prediction models for infections using social network parameters in middle-aged and older persons - The Maastricht Study –

S. Brinkhues1,2,3, S.M.J. van Kuijik4, C.J.P.A. Hoebe1,2,3, P.H.M. Savelkoul1,2,3, M.E.E. Kretzschmar5, M.W.J. Jansen6,7, N. de Vries8, S.J.S. Sep9,10, P.C. Dagnelie9,10,11, N.C. Schaper9,10, F.R.J. Verhey12, H. Bosma13,11, J. Maes14, M.T. Schram9,10, N.H.T.M. Dukers-Muijters1,2,3

Background

- The ability to predict upper respiratory infections (URI), lower-respiratory infections (LRI), and gastrointestinal tract infections (GI) in independently living older persons would greatly benefit population and individual health.
- Social network parameters have so far not been included in prediction models.
- The aim of the current study was to develop and internally validate prediction models for URI, LRI, and GI in a large group of middle-aged and older persons based on a range of variables including social network parameters.

Methods

- Data were obtained from The Maastricht Study, a population-based cohort study (N=3074, mean age (±SD) 59.8±8.3, 48.8% women).
- We used multivariable logistic regression analysis to develop prediction models for self-reported symptomatic URI, LRI, and GI (past 2 months).
- We determined the performance of the models by quantifying measures of discriminative ability and calibration.

Results

- Overall, 953 individuals (31.0%) reported URI, 349 (11.4%) LRI, and 380 (12.4%) GI.
- The area under the curve (AUC) was 64.7% (95% confidence interval [CI]: 62.6%–66.8%), for URI, 71.1% (95% CI: 68.4–73.8) for LRI, and 64.2% (95% CI: 61.3–67.1%) for GI.
- All models had good calibration (based on visual inspection of calibration plot, and Hosmer-Lemeshow goodness of fit test).
- Social network parameters were strong predictors for URI, LRI, and GI.

Conclusion

- Using social network parameters in prediction models for URI, LRI, and GI seems highly promising.
- Such parameters may be used as potential determinants that can be addressed in a practical intervention in older persons, or in a predictive tool to compute an individual’s probability of infections.

<table>
<thead>
<tr>
<th>Social network parameters that were considered useful to be reinforced in intervention programs</th>
<th>Upper respiratory tract infection</th>
<th>Lower respiratory tract infection</th>
<th>Gastrointestinal tract infection</th>
<th>Potential use in intervention programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close proximity¹</td>
<td>Beneficial association</td>
<td>Beneficial association*</td>
<td>Beneficial association*</td>
<td>Reinforce relation to close proximity network members</td>
</tr>
<tr>
<td>Proportion of same-age network members</td>
<td>Beneficial association</td>
<td>Beneficial association</td>
<td>Beneficial association</td>
<td>Reinforce relation to same-age network members</td>
</tr>
<tr>
<td>Practical support/ Informational support</td>
<td>Beneficial association</td>
<td>Beneficial association</td>
<td>Beneficial association</td>
<td>Reinforce practical and informational support from network members</td>
</tr>
<tr>
<td>Total friend contacts per half year</td>
<td>Beneficial association</td>
<td></td>
<td></td>
<td>Reinforce friend contacts</td>
</tr>
<tr>
<td>Density between friends and family</td>
<td>Beneficial association</td>
<td></td>
<td></td>
<td>Reinforce network density</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Social network parameters that were not considered useful for intervention programs</th>
<th>Social network size</th>
<th>Emotional support</th>
<th>Proportion of network members who are family members</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Detrimental association</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social network size</td>
<td></td>
<td>Detrimental association</td>
<td></td>
</tr>
<tr>
<td>Emotional support</td>
<td></td>
<td></td>
<td>Not considered useful to reinforce less emotional support</td>
</tr>
<tr>
<td>Proportion of network members who are family members</td>
<td>Beneficial association</td>
<td>Beneficial association*</td>
<td></td>
</tr>
</tbody>
</table>

1Combined Proportions of network members who are household members, Proportion of alters living within walking distance, Proportion of alters living less than ½ hour away by car
* In this model, the reference category showed a positive relationship

Author affiliations

1) Department of Medical Microbiology, Maastricht University Medical Centre (MUMC+)
2) Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service (GGD) South Limburg
3) CAPHRI Care and Public Health Research Institute, Maastricht University
4) Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Centre (MUMC+)
5) University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care
6) Department of Health Services Research, Care and Public Health Research Institute CAPHRI, Maastricht University
7) Academic Collaborative Centre for Public Health Limburg, Public Health Service South Limburg
8) Faculty of Health, Medicine and Life Sciences, Maastricht University
9) Department of Medicine, Maastricht University Medical Centre (MUMC+)
10) CARIM Cardiovascular Research Institute Maastricht, Maastricht University
11) Department of Epidemiology, Maastricht University
12) Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Maastricht University
13) Department of Social Medicine, Maastricht University
14) Huis voor de Zorg, Sittard, The Netherlands