

Datasheet Tetramisole-d₅ hydrochloride

Reference number: CEC/MAT: 32

Date of preparation: 1995.06.07

date : 2001.01.03

source : CSL

"Bank of Reference Standards"

The Bank of Reference Standards was financially supported by the European Commission

Directorate General "Science, Research and Development DG XII"

Contract MAT 1 - CT92 - 0020

Contract number : MAT-CT92-0020[388710]

Reference number : CEC/MAT 32

 $d_0 < 1 \%$

Figure 1. Molecular structure of tetramisole-d₅ hydrochloride

Name : DL-2,3,5,6-tetrahydro-6-phenyl-d₅-imidazo[2,1-b]thiazole hydrochloride

Synonym : tetramisole-d₅ hydrochloride

Molecular formula : $C_{11}H_8D_5N_2SCl$ Molecular weight : 245.782

Long term stability tested on 1997.10.22 : $98.9 \pm 0.0\%$ (storage 4 °C, analysis HPLC-UV, 6 tests on 2 ampoules)

Methods of Characterization:

I UV spectroscopy
 II IR spectroscopy
 III Mass spectroscopy
 IV 'H-NMR spectroscopy

I UV Spectroscopy

Instrument: Hitachi U 3000

Method: Dissolved in ethanol (20mg/l)

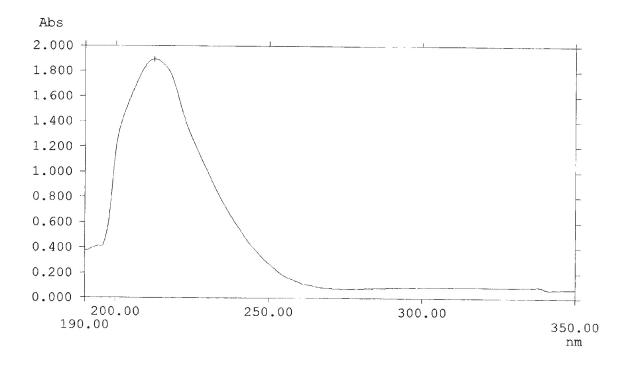


Figure 2. The UV spectrum of tetramisole-d₅ hydrochloride

Peak no.	wavelength (nm)	absorbance
1	212.50	1.8966

II IR-Spectroscopy

Instrument: Perkin Elmer STIR 1720X

Sampling technique: nujol mull

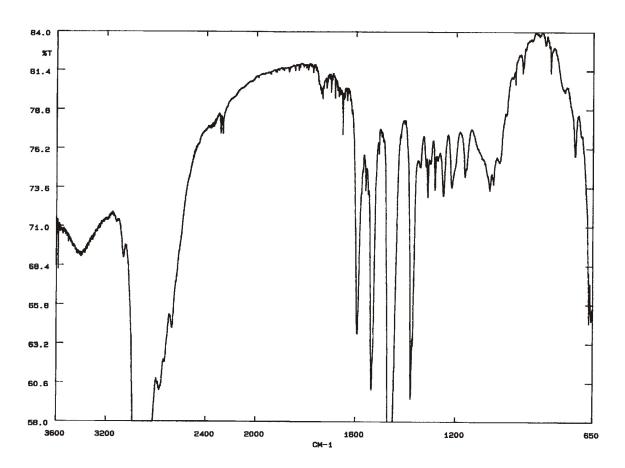


Figure 3. The IR spectrum of tetramisole-d₅ hydrochloride

Wavelength (cm-1)	designation		
3402	N-H stretch?		
1592	C=C stretch in aromatic compounds		
1534	C=C stretch in aromatic compounds		
1312	•		
1283			
1249			
1215			
1163			
1064			
821	C-H out of plane deformation		
722	1		
666			

III Mass Spectroscopy

Instrument: Kratos MS 25

Sampling technique: Direct probe, 70 ev electron impact

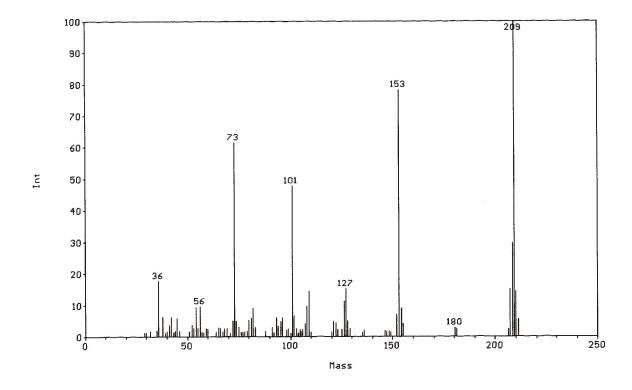


Figure 4. The mass spectrum of tetramisole-d₅ hydrochloride

m/u	percentage	designation
210	14	M - Cl
209	100M - H	HC1
208	30	M - (HCl + H)
207	15	$M - (HCl + H_2)$
153	78	$Ph(d_s)C(S)N^+CH$
127	15	$Ph(d_5)C(S)N^+CH - (N+C)$
109	14	
101	48	
73	61	Probably not DMF or at least not much (MS for
		compound before ampouling showed this peak at 58 %)
36	18	

III ¹H-NMR Spectroscopy

Instrument: Bruker AC250

Solvent: CD_3OD with TMS (d = 0.0) as internal standard.

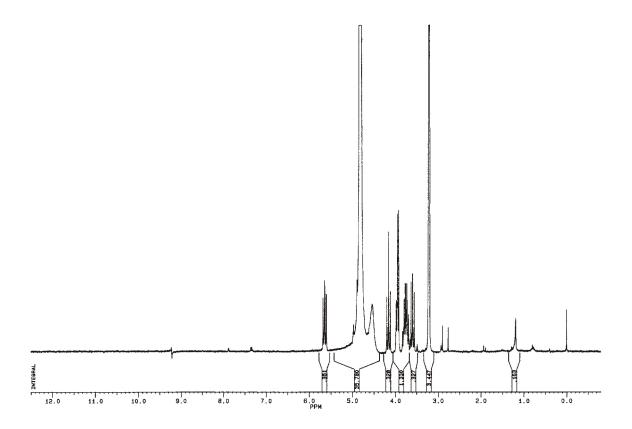
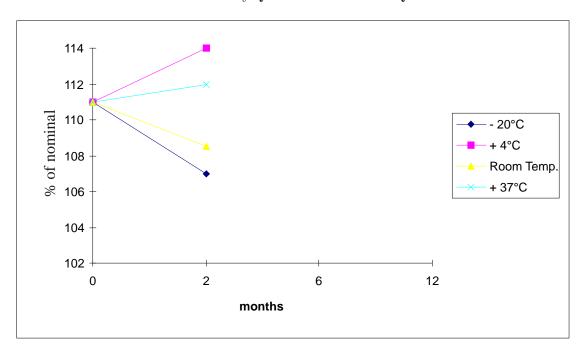


Figure 5. The NMR spectrum of tetramisole-d₅ hydrochloride

Chemical Shift (d)	number of protons	designation	
3.6	1	H5 ^a	
3.75}	4	(H2 and H3) x 2H	
3.85}			
4.15	1	H5 ^b	
5.65	1	Н6	


Datasheet BCR-MAT reference standard material Tetramisole-d₅ Hydrochloride

Preparation and validation of reference standards

The production of ampoules containing the reference material was described in the final report produced September 1995.

The thermal stability of the compound was under investigation and the results over a period of two months are expressed in the table and chart below.

Tetramisole-d₅ hydrochloride Stability Trials

Results of tetramisole-d₅ hydrochloride stability trials

The results below are the % recovery (with cv) of tetramisole-d₅ hydrochloride at 4 different storage temperatures over a period of 2 months compared with a standard equivalent to 0.1 mg.

	temp. (°C)			t = 6 months (% recovery)	t = 12 months (% recovery)
TS-d ₅	- 20°C	111.0 +/- 1.5	107.0 +/- 1.5	-	-
	4°C	-	114.0 +/- 1.0	-	-
	Room Temp.	-	108.5 +/- 2.0	-	-
	37°C	-	112.0 +/- 2.0	-	-

Datasheet BCR-MAT reference standard material Tetramisole-d₅ Hydrochloride

Conclusion

The spectroscopic data is consistant with the proposed structure for all the methods of determination although a little DMF (which was used as solvent during ampouling) was detected by NMR at approximately 2.8 and 2.9 d.

No significant impurities were detected by any of the methods of characterization employed.

The results from the stability trials indicate that tetramisole-d₅ hydrochloride is acceptably stable over a period of two months at temperatures up to 37 °C.