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Synopsis

Generic guideline for Quantitative Microbial Risk Assessment of food and water

Pathogens in food or water can make people ill. The probability of this happening is calculated 
by means of risk assessments. The World Health Organization (WHO) has drawn up guidelines 
stipulating how to carry out these risk assessments. RIVM has written this background 
document with the most recent knowledge on these risk assessments and the newest 
calculation methods. The WHO and the Food and Agricultural Organization (FAO) will use the 
information to update the guidelines for Quantitative Microbial Risk Assessment (QMRA) of 
food and water. The information is useful for those working with risk assessment of food and 
water safety.

An example of the recent developments is a method that enables standard, uniform risk 
assessment if there are few data available or if the data available are uncertain (Bayesian 
analysis). RIVM also puts forward alternatives for the use of DALYs (Disability Adjusted Life 
Year) as a measure in the event of outbreaks of disease. DALYs express the harm or 
inconvenience (disease burden) due to various diseases, including those caused by 
microorganisms in food and water. This method is not suitable for outbreaks in which many 
people become ill due to the same pathogen. Furthermore, computer software is available as  
a tool to conduct risk assessments and for training and education. RIVM gives criteria for such 
software tools and examples of existing, generally-available QMRA tools.

RIVM is the WHO's collaborating centre for Risk Assessment of Pathogens in Food and Water.

Keywords: Guideline, QMRA, developments, pathogens, food, water
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Publiekssamenvatting

Generieke richtlijn voor kwantitatieve microbiologische risicoschatting voor voedsel en 
water

Ziekteverwekkers, die in water en voedsel voorkomen, kunnen mensen ziek maken. De kans 
hierop wordt met risicoschattingen berekend. De Wereldgezondheidsorganisatie (WHO) heeft 
richtlijnen opgesteld waarin staat hoe deze risicoschattingen moeten worden uitgevoerd. Het 
RIVM heeft dit achtergronddocument gemaakt met de meest recente kennis over deze 
risicoschattingen en de nieuwste rekenmethoden. De WHO en de Food and Agricultural 
Organization (FAO) zullen de informatie gebruiken om de richtlijnen voor microbiologische 
risicoschattingen (Quantitative Microbial Risk Assessment of QMRA) voor water en voedsel te 
actualiseren. De informatie is bruikbaar voor mensen die werken met risicoschattingen voor 
water- en voedselveiligheid.

Een voorbeeld van de recente ontwikkelingen is een methode die het mogelijk maakt om 
risicoschattingen op een standaard en uniforme manier uit te voeren als er weinig of onzekere 
gegevens beschikbaar zijn (Bayesiaanse analyse). Verder reikt het RIVM alternatieven aan voor 
het gebruik van DALY’s (Disability Adjusted Life Year) als maat bij ‘uitbraken’ van ziekten. 
DALY’s drukken de schade of het ongemak uit (ziektelast) van verschillende ziektes, inclusief 
ziekten die micro-organismen via voedsel en water veroorzaken. Bij uitbraken, wanneer 
meerdere mensen ziek worden van dezelfde ziekteverwekker, is deze methode minder 
geschikt. Ook is computersoftware beschikbaar als hulpgereedschap voor het uitvoeren van 
risicoschattingen en ook voor training en onderwijs. Het RIVM geeft criteria voor zulke 
software tools en voorbeelden van bestaande, algemeen beschikbare QMRA-tools.

Het RIVM is collaborating centre for Risk Assessment of Pathogens in Food and Water van de 
WHO.

Kernwoorden: Richtlijn, QMRA, ontwikkelingen, pathogenen, voedsel, water
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1	 Introduction

1.1	 Scope

The Food and Agriculture Organization of the United Nations and the World Health 
Organization have developed and published several guidance documents pertaining to 
Microbiological Risk Assessment (MRA) (FAO/WHO, 2003, 2008, 2009). However, some of 
these documents are over a decade old and like in many areas the science and technology 
around microbiological risk assessment (MRA) has continued to evolve since then. In this 
context this document aims to bring together the most recent developments in the area of 
MRA, and in this way, facilitate any updates and/or expansions of existing guidance documents 
considering technical and method descriptions, and new developments in assays for microbial 
detection and identification, information on host responses to infection, methods for 
mathematical modelling, and characterization of risk at the population level. Taking into 
consideration that there are additional WHO guidance documents on MRA for both food and 
water (FAO/WHO 2003,2008,2009; WHO, 2009), this document is also aimed at promoting 
harmonisation of MRA between these areas. This document too should be considered a 
snapshot overview: Quantitative Microbial Risk Assessment (QMRA) is subject to rolling revision 
because new data, methods and insights are generated continually in ongoing research. 
This document, like the existing guidance, aims to provide generic guidance to conducting 
QMRA for food and water.
We adhere to the standard risk assessment framework by successively discussing hazard 
identification (HI), exposure assessment (EA), hazard characterization (HC), and risk 
characterization (RC) as defined by Codex Alimentarius Commission (1999). 
A major development in risk science is the availability of powerful statistical methods for 
Bayesian analysis that allow dealing with small data sets, in particular uncertain categorical data 
in a standard, uniform manner. Another important development is the acceptance of the 
Disability Adjusted Life Year (DALY) as an endpoint metric in risk studies. It is instructive to show 
how the DALY is a special case of a mixed utility function, suitable for comparing disease burden 
across populations, or for different hazards within an exposed population. The DALY is less 
suitable for large-scale outbreaks or disasters, and the present document provides guidance on 
alternatives. 
Details about models for reduction or increases of pathogens in food and water production 
and distribution chains are beyond the scope of this report, but references are given. There is a 
large and growing body of literature on models for transport and fate of (pathogenic) microbes 
in the environment (including food and drink). Guidance for specific problem areas in exposure 
modelling should therefore be commissioned to an expert panel, and documented in a 
separate report.
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Finally, computer software packages are becoming increasingly important for QMRA, both to 
support numerical calculations (parameter estimation, Monte Carlo simulation, analysis of 
uncertainty and variability) and as guidance tools (expert system) for training and education. 
We provide criteria for such software tools and examples of existing (and generally available) 
QMRA tools.

1.2	 Statement of purpose

Every risk assessment starts with a statement of purpose, specifying a hazard and setting a risk 
for a particular time frame or event. What is the problem that needs to be studied and which 
decisions are at stake?
The purpose of a risk assessment is to provide support for decision making. Risk assessment 
encompasses gathering information (data collection), interpreting the information (model 
building) and calculating expected losses or gains (risk characterization). The risk metric, the 
units the risk is expressed in, should allow for compliance testing (by comparison with 
standard levels), or selecting between alternative strategies (comparison among different 
intervention scenarios), for instance.
Examples: Food safety testing, checking whether the presence of enteric pathogens on 
ready-to-eat salads causes health risks in excess of a predefined risk level; Testing whether 
high pressure treatment decreases enteric virus concentrations in shellfish to acceptable levels; 
Select whether cleaning and disinfection decrease infection risks sufficiently to prevent 
outbreaks in nursing home settings.
It is important to note whose interests are at stake: for public health, the disease burden in the 
population may be the appropriate outcome to guide decision making. For the manager of a 
food production process, the risk that any adverse outcomes may be associated with the 
produced foods, is more relevant than the disease burden.

1.3	 Risk assessment team

One individual or a small team may carry out a risk assessment, but access to a range of other 
expertise usually is needed (WHO, 2008, 2009). The team should represent all relevant areas 
of expertise and address all stakeholder perspectives throughout all stages of the risk 
assessment. Ideally, therefore, such a team comprises multidisciplinary experts and 
stakeholders. Experts may be trained risk assessors, modellers, mathematicians, statisticians, 
medical, general microbiologists, food and water technologists, animal and plant health 
specialists, agriculture technologists, human and veterinary epidemiologists, public health 
specialists, and other specialists as identified for specific projects. Such a multidisciplinary 
team warrants the appropriate application of risk assessment methodologies, collection of 
relevant information and the quality of the data and models. 
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Data may be (a combination of) locally specific data as well as from additional sources, such as 
literature. Note that in section 3.3, we provide a Bayesian approach to combine qualitative and 
quantitative information that allows calculation of a quantitative risk. The risk assessment 
team is also crucial for evaluation of the risk outcomes, deciding whether a next risk 
assessment tier is required (section 3.3), and whether and how the risk assessment and risk 
outcomes are to be documented for reviewing and communication.

1.4	General introduction to risk assessment

What is risk? In microbial risk assessment, risk is usually defined as having two dimensions:  
(1) the probability that something unpleasant happens: the probability of an adverse outcome, 
and (2) the severity of that outcome. To calculate risk, these two dimensions need to be 
combined into a single quantity. Below we will give a generally applicable definition, but first,  
a simple example may be helpful. One of the oldest areas of research in probability is the 
analysis of games of chance. The example given below introduces all aspects of risk 
assessment and shows how to define risk in a very simple, yet statistically sound manner. 

Example: throwing a dice
To introduce the concept of risk, we play a game. You may throw a dice once, with the 
following rules: when the result is 5 or 6 you win €1.00 (loss is – €1.00); in case the result is 1, 2, 
3 or 4 you lose, and pay €0.50. This means that you have a 2/6 chance of winning €1.00 and a 
4/6 chance of losing €0.50. How high is the risk you would be taking when playing this game? 
The risk is the expected loss, which is not difficult to calculate: 2/3 × (+ €0.50) + 1/3 × (- €1.00). 
Which adds up to: nothing! Therefore, you may conclude that this was a fair game. 

Definition of risk
Various elements of risk need to be considered for a quantitative analysis: 
Probability – How likely are all possible outcomes that may occur. 
Severity – What are the potential losses associated with any of the possible outcomes?
Degree of control – To what extent can any outcome be prevented from happening or can the 
severity of the consequences be mitigated? Are there any alternatives to choose from?
Decision – How can knowledge of the risk be used to make decisions about strategies for 
intervention or prevention? 
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Box 1  Definition of risk.

Risk is expected loss

One or more elements of the above dimensions of risk have been used in microbial risk 
assessments. A generic definition of risk may be found in the statistical literature. Risk may be 
simply calculated as expected loss (e.g. Cox and Hinkley, 1974).  
Loss can be expressed numerically with a “utility” function, assigning a quantitative measure 
of loss to each possible outcome. This loss function represents the severity of the outcome 
(e.g. expressed in costs, DALYS or infection risk). In order to calculate the risk, we need to have 
a list of all possible outcomes: anything that may happen (e.g. as consequences of an event or 
a decision). Then, one wants to know the probability (distributions) of all these outcomes, and 
a loss function (utility function) assigning magnitudes of loss to all possible outcomes.

Box 2  How to calculate expected (total) loss for quantitative risk assessment.

Defining the mathematical expectation of loss: for any possible outcome xk there is a loss 
ck while the probability that any outcome xk occurs is pk. Therefore, the risk R is
 
R = ∑k ck pk� (1)

For a continuous outcome x with probability density f(x) and loss function c(x), the risk 
can be calculated as

R = ∫xc (x)ƒ(x)dx� (2)

Our knowledge of each of these variables ck and pk is usually incomplete. For instance, not all 
possible consequences of exposure to an infectious micro–organism may be known. However, 
it is often not hard to define a set of categories which adds up to a complete description (for 
instance: exposed or not, infected or not, ill or not). 
The above example throwing a dice was very simple with only two possible outcomes, and the 
losses were expressed in a single currency. In risk assessment, outcomes usually have different 
dimensions, and their quantification is not straightforward. This may be illustrated by a second 
example to explore the dimensions of risk, a bicycle ride:
This activity is healthy and enjoyable, but it also includes the risk of a fall, or a punctured tyre, 
or the bicycle could be stolen, or one might even be hit by a car. How different are the risks 
involved with these outcomes? The probabilities of any each of these outcomes occurring is 
different. In the event that any of the possible outcomes would occur, the severities or costs 
involved are also different.
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In addition, the subject involved has a different degree of control over each of these outcomes, 
both with respect to probability and severity.
If the cyclist wants to control the risk, they could adjust their behaviour: by avoiding dangerous 
situations the probability of an accident can hopefully be reduced. Alternatively, one could also 
attempt to reduce the damage in case of an accident, for instance by wearing a helmet. 

Table 1 Adverse events potentially associated with bike riding in a city. Dimensions of risk and 
their magnitudes, expressed as (arbitrary) financial losses. The column for costs also shows the 
reduced loss when wearing a helmet.

Costs (€)

Event Probability No helmet Helmet Control

Fall 0.01 5000 1000 a lot

Puncture 0.10 10 10 little

Theft 0.001 500 500 little

Car accident 0.001 10000 6000 some

For the risky bike ride probabilities and losses for each outcome may be collected (Table 1) and 
expected losses may be calculated.
Without helmet:
p(fall)c(fall) + p(punct.)c(punct.) + p(theft)c(theft) + p(acc.)c(acc.) = 
0.01 × 5 000 + 0.10 × 10 + 0.001 × 500 + 0.001 × 10 000 = €61.50
With helmet:
p(fall)c(fall) + p(punct.)c(punct.) + p(theft)c(theft) + p(acc.)c(acc.) = 
0.01 × 1 000) + 0.10 × 10 + 0.001 × 500 + 0 001 × 6 000 = €17.50 
By buying a helmet, I can decrease my expected losses by €44. Given the price of a bicycle 
helmet this might be cost-effective...

1.5	 Units of risk: Integrated metrics 

In the previous two examples, risk has been expressed in monetary currency. This is common 
for many types of decision making (cost–effectiveness). While attractive, because monetary 
value is easy to understand and often cost is a limiting factor, it is not always straightforward 
to express loss on a monetary scale. For instance, how should a human life be valued, or how 
expensive should living with a chronic illness be considered? In many risk studies, only 
probability outcomes are considered. For instance, risk resulting from drinking water has been 
expressed as annual individual probability of infection (1 in 10 000 annual infection risk) (Regli 
et al., 1991; Teunis et al., 1997). Aside from ignoring severity in symptomatic cases, this may be 
appropriate as long as infectious enteric pathogens are concerned, so that infection may be 
considered a (worst case) proxy for illness. 
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More recently the World Health Organization has proposed the use of Disability Adjusted Life 
Years (DALYs) to quantify risk. DALYs incorporate both mortality and decreased quality of life 
resulting from periods of illness, by calculating the sum of numbers of life years lost and years 
lived with disability, weighted for severity. Severity scores are standardized (based on 
psychometric research in experts). The DALY approach can be used for infectious and non–
infectious diseases, and different life histories depending on gender, socio-economic status, 
geographic location can be incorporated. A major outbreak may influence a community in 
many ways: as more people stay at home public services may break down (public transport, 
health services, social services) and companies will have losses due to the absence of laborers. 
This may be a nonlinear phenomenon: moderately sized outbreaks may have only a small 
effect on public life, but as an outbreak increases in size, human resources will become a 
limiting factor and the losses may increase briskly. Such effects can be modelled as nonlinear 
utility functions, linking outbreak size and severity of losses (Teunis and Havelaar, 2001). More 
about integrated risk metrics and their calculations can be found in chapter 7.

1.6	Conceptual framework 

At the basis of quantitative risk assessment lies the notion of causality, of risk as the result of a, 
possibly complicated, chain of conditional events. As soon as we know or accept that exposure 
to a certain chemical compound or pathogenic microbe causes health effects, it is possible to 
study and quantify the occurrence of these health effects. Note that this seems slightly at odds 
with epidemiological studies where an (statistical) association between two observations, e.g. 
exposure to particulate matter and premature death is observed, and this association is used 
for predictions of risk. In such a case, the association is not strictly known to result from a 
causal relation, but the existence of such a relation is considered plausible, for instance 
because of other, supporting evidence. 
Through the Risk Paradigm, the existence of the causal chain connecting cause and effect, it is 
possible to study and quantify risk. Early risk assessments for microbial pathogens used a 
general approach outlined for chemical and radiation risks (National Academy of Sciences, 
1977; National Re- search Council, 1983; WHO, 1981). This framework defined four stages:  
(1) Hazard identification, (2) Exposure assessment, (3) Hazard characterization and (4) Risk 
characterization. The Food and Agriculture Organization of the United Nations and the World 
Health Organization have worked on standards for food safety based on quantitative risk 
assessment (Codex Alimentarius Commission, 1993; WHO, 1995; Codex Alimentarius 
Commission, 1999; Codex Committee on Food Hygiene, 2003) and guidance for microbial risk 
assessment (FAO/WHO, 2000, 2002, 2006). In a parallel development, the International Life 
Sciences Institute (ILSI) and the United States Environmental Protection Agency (USEPA) have 
formulated a framework for microbial risk assessment (ILSI/EPA, 2000; Benford, 2001). 
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1.7	 Variability and uncertainty

Because risk is described as a probability, inherently, at all stages of a risk assessment, variability 
and uncertainty of models and data (microbiological data, environmental conditions, parameter 
values of distributions) need to be addressed. Variability and uncertainty may be described 
qualitatively or quantitatively, and are included in assumption on models and data. Variability 
and uncertainty may be estimated from the available (monitoring) data. Variability and 
uncertainty need to be part of the reported predictions of risk.

Variability entails differences attributable to true heterogeneity of diversity e.g. in a population 
or exposure parameter. When collecting data, observed variation may be attributable to true 
heterogeneity or diversity in a population or exposure parameter. Variability describes 
differences among the observed population. For example, different individuals have different 
food intakes and different susceptibility to infection and illness. Variation over time for a given 
individual is referred to as intra-individual variability. Variation over members of a population 
at a given time is referred to as inter-individual variability. Variability cannot be reduced by 
collecting more data, only more precisely characterized (WHO, 2003).

Uncertainty arises from lack of knowledge about specific factors, parameters or models.  
In QMRA, one may be uncertain about the structure of the model, e.g. whether the 
concentration of pathogens in a series of food samples should be assumed fixed or variable. 
Lack of knowledge regarding the appropriate and adequate inference options to use to 
structure a model or scenario, are also referred to as model uncertainty and scenario 
uncertainty. 
Given the model assumptions, a model may be fitted to available data, resulting in parameter 
estimates. With real world data sets of limited size, these parameter estimates are uncertain, 
i.e. they usually can be quantified within a specified range (confidence interval, or credible 
interval). Lack of knowledge regarding the true value of a quantity, such as a specific 
characteristic (e.g. mean, variance) of a distribution for variability, is referred to as statistical or 
parameter uncertainty. 
These uncertain parameters cause the calculated risk to be uncertain also: uncertainty in 
predicted risk is a consequence of the joint uncertainties in all contributing factors. 
Uncertainty can be quantified by obtaining information from scientific studies, such as through 
research on mechanisms, and data collection with appropriate sample sizes and representative 
sampling designs (WHO, 2003). In quantitative risk assessment, the chosen models, their most 
likely parameter values and attendant uncertainty should also be clearly communicated (WHO, 
2003). In QMRA practice, uncertainty is also the reason for caution and for making conservative 
or worst case assumptions: “err on the safe side”.
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Nauta (2000) demonstrated how risk estimates may depend on how variability and 
uncertainty are separated. But, as Nauta (2000) pointed out, it may be difficult, or even 
impossible to distinguish them. Variability and uncertainty may be correlated as well. Monte 
Carlo methods have been developed to address issues of propagation of variability and 
uncertainty in risk models (see eg. Rai, S. N. and Krewski, D. ,1998). Analysis of uncertainty and 
variability given a risk model and available data may be addressed in Bayesian hierarchical 
models (Clough et al. 2005, 2009; Teunis et al. 2008).

A basic understanding of uncertainty and variability are crucial for decision making. This is an 
educational issue: not only risk analysists and topical scientists, but also any stakeholder needs 
to understand how uncertainty and variability may change the decision they need to make. 

In order to decide what action to take three choices are at hand: 
1.	 Take a precautionary approach: Assume the worst (i.e., use the appropriate confidence 

limit), unless data are convincing to the contrary.
2.	 Take a permissive approach: Assume the best (i.e, use the other limit), unless data are 

convincing to the contrary).
3.	 Take data at face-value (i.e., ignore uncertainty intervals).

The choice should be guided by the consequences or cost of adopting the ‘wrong’ approach. 
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2	Tiered risk assessment

2.1	 General

Risk assessment (RA) is a tiered process. In the first tier of risk assessment, an initial run 
through all stages (HC, EA, RC) is conducted using a priori available data and knowledge and 
the outcome is a first (and usually crude) quantitative estimate of risk. The expected outcome 
of this initial walkthrough of all stages of the risk assessment is understanding of the 
formulated problem, data requirements, and (possibly) efforts required to provide a suitable 
risk report. The conclusion may be that the risk is so small that further study is unnecessary, so 
that the first-tier RA is all that is needed. Usually, more iterations are needed, where following 
tiers require additional data and refined models (Figure 1) for HC, EA, and RC. In the following 
tiers, EA will commonly be repeated using more data, whereas HC may remain unchanged 
because mostly available data have been used. RC needs to be conducted in each new tier, 
because risks need to be calculated anew. 
To reach the point that there is no need for further analysis requires testing of a hypothesis. 
The answer to the question in Figure 1, whether the risk is substantially below target, may not 
be simply confirmed when the risk estimate is ten or a hundred times lower than the target, 
because of uncertainty. An uncertainty estimate must be included to enable a decision.
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Figure 1. Tiered (iterative) approach to implementing QMRA for risk management; increase in 
tier relates to gathering more/local data to reduce uncertainties (adopted from WHO, 2016). 
*The risk level of the system should be reviewed at a regular interval according to the relevant 
risk management protocol.
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2.2	First tier risk assessment

The formulated problem must be translated into a risk model: a first, preliminary conceptual 
model describing the whole risk chain (network), from sources of microbial contamination to 
human exposure and health effects. The conceptual model tends to be based on general 
knowledge of pathways for contamination by faecal-oral pathogens. Topical experts may 
contribute specific knowledge related to e.g. human contact behaviour, food or water 
treatment processes, factors influencing pathogen survival and infectivity, and factors 
influencing host susceptibility and illness symptoms. In many cases, the conceptual model may 
be represented as a linear chain of (conditional) events: pathogen occurrence in raw materials, 
survival during processing, human consumption of contaminated food, infection, acute 
symptomatic illness. In the real world, exposure results from multiple concurrent pathways, 
with potential for cross-contamination (like preparing food with dirty hands), resulting in an 
exposure network, rather than a linear chain (Wang et al. 2017).
For most problems, a specific hazard must be selected: a pathogen of interest for which a risk 
assessment will be constructed (hazard identification). This pathogen may be identified from 
practical experience, e.g. outbreaks associated with the food of interest, or it may be an 
indicator pathogen with properties similar to the pathogen of interest. For instance, the 
indicator pathogen may have high infectivity in humans, and/or it may be resistant to 
environmental decay. Sometimes, it is not possible (or even desirable) to specify a pathogen, 
and risk may be thought to result from exposure to a compound source, e.g. faecal 
contamination due to lack of hygiene in food handling and/or preparation.
Once a conceptual model has been formulated, a list of factors (parameters) may be made, 
that must be specified in order to perform the risk calculations (Figure 1: Tier 1). Although 
determination of these factors (model parameters or risk variables) is the objective of the 
analysis stage of the risk assessment procedure (i.e. exposure assessment and hazard 
characterization), it is informative to start with crude, initial ‘guestimates’ for all factors in the 
conceptual model. Already at this stage, it is strongly recommended to collect quantitative 
data including information on variability and uncertainty as much as possible. When all 
elements of the risk chain (or the risk network) have been defined, a preliminary calculation of 
the risk can be done. Such a first-tier exercise provides vital information about the risk 
assessment: a comprehensive list of all information required to run the conceptual model; 
identification of gaps, in the structure of the conceptual model as well as in the data it needs; 
an impression of the computational effort required for the risk assessment; and an initial 
estimate of the resulting risk.
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Box 3  Risk chain: a highly simplified example.

Pill = Craw × 10-DR × Ving × Pinf (1) × Pill|inf(1)� (3)

where Craw is the pathogen concentration in the raw source material; DR is the log 
(decimal) reduction in treatment/processing of the product; Ving is the ingested amount 
of food or water; Pinf(1) is the probability of infection for a single pathogen; and Pill|inf(1) is 
the (conditional probability of illness given infection, when exposed to a single pathogen. 
Each of these factors Craw, DR, Ving, Pinf(1) and Pill|inf(1) in the risk model may result from a 
(sub)model, for instance a probability distribution describing its variation, and that 
sub-model is characterized by parameters. In the hazard identification stage, the model 
is set up and initial values for the factors are defined. In the analysis phase (exposure 
assessment and hazard characterization), each of the factors is studied in detail, sub-
models are set up and parameters estimated, using information from any appropriate 
data sources.

After completion of the first-tier risk assessment, the model and risk outcomes must be reviewed 
(by the team) and the conclusions should be documented. In Figure 1, this is the conditional step 
in the decision stage: “is the risk substantially below target?” Most often, the conclusion is that 
the risk is insufficiently known, so that more information is needed. The data collected in the 1st 
tier RA now can be used to specify constraints for the analysis stage. Aside from more data 
collection, additional questions on model choice may be addressed, for example: is the 
conceptual model adequate for the task, or should it be modified? If so, how? What information 
is needed for exposure assessment? What is available (i.e. preliminary information is sufficient for 
a full-scale exposure assessment), and where is additional data collection necessary? 
The same questions may be addressed for assessment of health effects: what is needed, how 
much was found in the preliminary stages, and where is additional research required? At this 
time, it is instructive to reconsider the first decision stage in Figure 1: how can we know 
whether the calculated risk is substantially above target? The adjective “substantially” suggests 
a qualification of how much the risk is above target: a category of risk considered important 
enough to warrant additional study.

2.3	Qualitative and quantitative assessment

In older documents on risk assessment (WHO, 2003, 2008, 2009), qualitative risk assessment 
is contrasted to quantitative risk assessment. Even, the term semi-quantitative risk 
assessment is used, as an intermediate stage between qualitative and quantitative risk 
assessments. Problems formulated in qualitative risk assessment are not necessarily different 
from those in quantitative risk assessment, nor do the conceptual models have to be different. 
The only difference is in the quantification of risk factors: when the available information does 
not allow straightforward quantification of a factor, it is characterized by a categorical 
outcome (high or low, strong or weak,…). This may happen when there is only data from a 
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sanitary survey, for instance. Obviously, this leads to difficulties in combining factors for risk 
calculations, as straightforward arithmetic does not apply. For that reason, a set of 
conventions is used to characterize risk when the basic data are categorical (WHO, 1981, 1993, 
1995). In semi-quantitative risk assessment, risk factor categories are given a score (0: good, 1: 
medium, 2: bad) and calculations are based on score arithmetic (FAO/WHO, 2003, 2008, 2009). 
Unfortunately, such an approach tends to be arbitrary and cannot ensure that information is 
weighted according to its reliability.

Using a Bayesian approach to statistical analysis, uncertainty in any variable is expressed as a 
probability distribution. In other words, any variable is included in a quantitative manner, even 
when it is highly uncertain. Basic probability calculus can then be used to calculate the resulting 
uncertainty in outcomes. The Bayesian approach (Gelman et al., 2013) allows dealing with sparse 
data, and the information provided by observations that do not produce numerical data can be 
handled appropriately, even allowing for combing categorical data (like clean or dirty 
environment) with enumeration data (microbial indicator or pathogen counts). The advantage of 
such a statistically rigorous method for evaluating data from unequal sources is that any 
information that contributes to the risk may be included, while weighted appropriately by its 
content. Note that such unequal sources as observed cleanliness (from a sanitary survey) and 
microbe counts might previously have been considered incompatible for quantitative analysis.

This provides a framework for combining the information from different sorts of data, and 
defines a statistical basis for the matrix method used in semi-quantitative risk assessment  
[FAO/WHO, 2009: WHO guideline doc on Risk Char]. Combining two data sources that are 
consistent (e.g. both indicating high, or both indicating low risk) leads to more pronounced 
outcomes (either high or low risk) with decreased uncertainty. When the two data sets are 
inconsistent, i.e. one indicates that the risk is high, while the other implies low risk, the 
outcome of the combined analysis is not shifted to either high or low risk, but instead shows 
increased uncertainty, which is entirely appropriate [See section 3.3 Case 1]. Another advantage 
of a Bayesian approach is the opportunity for including statistical learning: when an additional 
observation is added to the data analysed previously, the effect on the (posterior) estimate 
may be calculated: shrinkage towards the mean in case of consistence, and expansion of the 
uncertainty in case the new observation conflicts with earlier data. The involved calculations 
are standard and can be done by software (BUGS, JAGS, Stan), without burdening the end user 
with technical detail, so that Bayesian methods have become feasible for general purpose 
analysis (Gilks et al. 1996, Gelman et al. 2013).
Instead of using the three different approaches (quantitative, qualitative, and semi-
quantitative risk assessment) outlined in earlier guideline documents, any risk assessment can 
be done within the quantitative framework, without having to choose between alternative 
approaches. The subjective tables for combining categorical data are not needed, as we have a 
statistically sound procedure to combine variables with arbitrary precision. And finally, in a 
Bayesian framework, initial risk estimates as calculated in a first-tier assessment allow testing 
against a target risk (e.g. addressing a question like: how likely is it that the risk exceeds the 
target level?). Therefore, the decision in Figure 1: “is the risk substantially above target?” may 
now be made in a well-defined manner in every tier of risk assessment.
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Box 4  Bayes’ theorem: how observations change the probability that a hypothesis may be true.

P(H | O) =  � (4)

P(O|H) is the probability of observing O when hypothesis H is true (i.e. its likelihood) 
P(H) is the prior probability that hypothesis H is true, before any observations were made 
P(H|O) is the posterior probability that H is true given the observed data 
P(O) is the probability of observing O under any possible hypothesis
For any complete set of mutually exclusive hypotheses,  P(O) = ∑iP(O|Hi)P(Hi)

 

2.4	Case: Is the food safe or unsafe?

This is an example of a tier 1-risk assessment (the starting point) using only limited data: at a 
farm, fresh strawberries are harvested and packaged for shipping to retail. The produce may 
be contaminated by faecal matter through unsafe irrigation or cross-contamination, through 
handling or by dirty equipment. In order to investigate possible contamination of raw produce 
with faecal microbes, during an inspection survey, only one sample is taken and tested for 
faecal indicator organisms. The test only indicates presence or absence of the faecal indicator 
(categorical: positive/negative outcome). Now assume that extensive monitoring experience 
has shown that in poor hygiene conditions (categorical) the probability of a positive sample is 
0.6 (hypothetical, quantitative value), in other words, when a farm is known to have low 
hygiene standards, there is a 60% chance that a produce sample tests positive for faecal 
indicators. Note that this extensive experience may be available as locally specific data, or may 
be taken from literature (to emphasize the usefulness of having default data as provided by 
literature databases and/or computational tools: see the Appendix with this report). In 
hygienic farm conditions, the probability of a positive sample is 0.05: when a farm is known to 
have good hygiene, there is only 5% chance that a produce sample tests positive for faecal 
indicators.

Now if the sample that was taken for our survey is positive, what is the probability that this 
farm has poor hygiene? We do not know beforehand, so that the probability that the 
hypothesis “this farm has poor hygiene” (H0) is equally likely as the alternative “this farm has 
good hygiene” (H1). Prior probabilities of either hypothesis are therefore 0.5. If the farm had 
poor hygiene, the likelihood of observing a positive sample would be 0.6. Using Bayes’ 
theorem (Box), the posterior probability of the hypothesis “this farm has poor hygiene” then is

0.6x0.5 0.92
0.6x0.5+0.05x0.5

P(O|H₀)P(H₀)
P(O|H₀)P(H₀)+P(O|H₁)P(H₁)

= ≈ � (5)
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The denominator here is the probability of a positive sample, if either hypothesis H0 is true or 
H1 is true. This leads to the conclusion that, based on our general knowledge of test outcomes 
on many farms, we are confident that this is an unsafe farm, even with only a single sample. 
What if the produce sample had tested negative? In case of a negative sample, what would be 
the probability that the farm had good hygiene (H1 is true)? The probability of a negative 
sample from a hygienic farm is 1-0.05=0.95 so that the probability that H1 is true becomes 

0.95x0.5 0.70
0.95x0.5+0.4x0.5

P(O|H₁)P(H₁)
P(O|H₁)P(H₁)+P(O|H₀)P(H₀)

= ≈  � (6)

the denominator again calculating the probability of a negative sample under any of the 
hypotheses. When our sample tests negative, we are not nearly as confident that the meat 
came from a hygienic slaughterhouse. The reason of course is that negative samples are not 
only found in hygienic places: unsafe slaughterhouses are likely to produce negative samples 
as well (with 40% probability). 

2.5	Iterative approach: beyond tier 1

When the outcome of the first-tier risk assessment warrants further study, the critical 
knowledge gaps must be identified. This is in fact a major goal in the first-tier assessment: use 
the risk calculations to find where the most influential contributions are least known. These 
knowledge gaps guide adaptations to the risk study: data collection to strengthen the basis for 
parameter estimation; adaptations to the design of the model, resulting from improved 
understanding of the system that is studied; improvements to the implementation of these 
adaptations, to allow higher precision and/or efficiency in calculations.
Once the adapted, improved model has been implemented and run, the results are again 
scrutinized for their usefulness in decision making (risk management). The same procedure 
that was used to decide whether the first-tier assessment provided sufficient knowledge of the 
risk for decision making, is applied again. And yet again, the result may not satisfy the 
requirements: the risk may still be insufficiently specified, e.g. to decide whether action should 
be taken or not. The reason may be that still more data are required, to achieve more precise 
outcomes, or the model needs more covariables to improve predictions. Adaptations are then 
needed, and another cycle of model (re-)formulation, data collection, parameter estimation, 
and risk prediction is required (Figure 1, iteration). The goal of the cyclic approach to risk 
assessment is to obtain ever better (i.e. more useful) risk estimates, with each new iteration 
learning from the shortcomings of the previous one. The stakeholders often also play an 
important role, not only in checking whether the goals formulated in the initial design stage 
are fulfilled, but also whether these goals may need correction. The iterative approach to risk 
assessment here models the development of science: as more knowledge is acquired, the 
questions that initiated the study are also better understood.
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3	 Exposure assessment

3.1	 General

Exposure assessment simply involves estimating the ingested dose of a pathogen resulting 
from consumption of contaminated food or water. A generic model for exposure assessment 
may be formulated as

D = C × 1/Se × Sp × Z1,...,m × Y1,...,n × V � (7)

where D is the ingested dose of a pathogen. C represents the concentration of the pathogen at 
the starting point of the risk assessment chain. In the case of food, this may be anywhere in 
the food production chain, where the pathogen is enumerated. In the case of drinking water, it 
is typically the concentration in the source water. Se represents the sensitivity of the method 
used for enumeration of the pathogen. Sp is the specificity of the enumeration method.  
Z represents n consecutive treatments. A treatment may be aimed at reducing pathogen 
numbers, for example disinfection, an inactivation process, or otherwise physically removed 
by filtration or by taking out contaminated portions. Z may also represent mixing, by which 
pathogen concentrations are reduced (dilution). In that case, Z is the fraction of the pathogen, 
or its indicator organism, that passes a treatment. Y represents a growth (WHO, 2008). For Z 
predictive models may be used or distribution that describe changes in numbers (or 
concentrations) of pathogens. In food RA, increases and reductions in the food production and 
distribution chain are given by the ICMSF equation to test meeting a food safety objective 
(FSO) (Nauta, 2008; Zwietering et al., 2010). V is the ingested amount of food or water per 
intake event or within a particular period.

3.2	Enumeration of pathogens and indicator organisms

Exposure assessment (as part of QMRA for water or food) encompasses a quantitative 
evaluation of the intake of a pathogen. As direct enumeration in food or water as consumed is 
often not possible, because samples would rarely contain any pathogens, exposure 
assessment usually must be based on indirect estimation. In raw food stuffs pathogens may be 
more prevalent, resulting in countable numbers in reasonably sized samples. Therefore, the 
first step is to quantify pathogen occurrence, usually in terms of concentrations in the source 
material: raw food ingredients or source water.
It is important to realize that detection methods are imperfect: pathogens are usually present 
in low concentrations. A small sample of contaminated food or water may contain few 
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pathogens, or even none at all. And even when there are a few pathogens in a sample, they 
may be lost during processing for detection. The detection process may not reliably detect all 
pathogens present in the (processed) sample (Se<100%), or may produce stray positive 
outcomes, i.e. detect pathogens that were not present (Sp<100%. In some cases, surrogate 
microbes may be used instead of the pathogen of interest, but these surrogates may not 
mimic the real pathogen.
Microbiological detection methods can be complicated and fragile, depending on many factors 
that must be controlled in order to obtain precise (little random error) and reproducible 
results. Changing methodologies, particularly improvements in the selective media, need to be 
evaluated (WHO, 2008). In fact, of each detection method, the performance characteristics to 
detect a pathogen from a particular matrix must be known. 
Documentation of all microbiological data (pathogens and indicator organisms) should be in 
the form of raw data. Raw data are unprocessed data. In the case of microbial enumeration, 
the raw data may consist of colony counts or plaque counts in combination with the 
equivalent size of the sample, corresponding to the counted numbers. For molecular assays, 
similar requirements may be formulated. For instance, gene copy counts resulting from PCR 
are inferred from fluorescent measurements, and depending on the assay, various data may be 
recorded: presence/absence with serial dilutions (conventional PCR), Ct values and standard 
curve data(qPCR) or numbers of cells and dilutions (dPCR).
The sample size is the amount of contaminated material, in case of foodstuffs usually a 
weight, in case of water usually a volume. The equivalent sample size is that part of a sample 
that was used for enumeration. Note that a microbe concentration, such as colonies per gram 
or per ml is not raw data. When data have been collected with presence/absence or most 
probable number testing, the raw data consists of zeroes and ones with sample sizes. Both 
microbial count and sample size contain information and determine accuracy. Awareness of 
the simple concept of raw microbial data is of fundamental importance in microbial risk 
assessment.
The following example is an illustration of what the raw data are in qPCR enumeration and 
how losses may of the original sample may accumulate. A large sample size is collected 
because of representativeness: for example, 10 liters of water or 10 portions of 10 g each of a 
food product. Adsorption-elution and ultrafiltration reduces the sample to 10 ml. Of the 10 ml, 
0.1 to 1 ml is taken for extraction of nucleic acid. The nucleic acid is contained in 50 µl. For the 
qPCR reaction, 5 µl is used. So, finally, the gene copy count is determined for 0.1% - 1% of the 
original sample and 99% - 99.9% is discarded. The raw data may look like this: the copy count 
and the actual investigated sample size, which is 10 ml – 100 ml or 0.1 g to 1 g. The sensitivity 
may easily be improved by enumerating ten replicates.

Accuracy is the absence of systematic and random error – commonly known in metrology as 
trueness and precision, respectively (WHO, 2003, 2008). Sensitivity and specificity represent 
systematic error. Accuracy is the degree of agreement between average predictions of a model 
or the average of measurements and the true value of the quantity being predicted or 
measured (WHO, 2003). 
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For example, 100 colonies counted in 100 grams of sample and 10 colonies in 10 grams of 
sample have the same calculated concentration. However, the former observation is more 
accurate, because more colonies were observed, in a larger sample. When only the 
concentrations are reported, the information about accuracy is lost: it obviously does not 
matter whether 100 colonies were counted in 100 grams or 10 colonies were counted in  
10 grams. However, when fitting a distribution to the raw data to describe the variability in 
concentration between samples, it does matter. The observations based on higher counts are 
weighted higher than those based on small numbers of counted microbes. 
Especially in food microbiology it is common place to discard low counts, typically fewer than 3. 
But this is deletion of information. For example, the raw data are 3 colonies in 10 grams and 23 
colonies in 100 grams from one food sample. The raw data of this sample for fitting a 
distribution should be 26 colonies and 110 grams (so there is some processing of raw data),  
not 23 colonies and 100 grams. Note that discarding high counts per sample, like more than  
300 colonies per agar plate is justified because of systematic error. The measurement error as  
a function of the counted numbers should be described as part of the performance 
characteristics of a detection method.
Typically, in qPCR enumerations, data sets consist of many non-detects (zero gene copies per 
sample) in combination with high gene copy counts. Detection by qPCR is considered as a 
highly sensitive detection method, where sensitive is understood as positive detection in 
samples with low concentration (detection limit). In the context of risk assessment, it is 
necessary to quantify the limitations of the microbial detection methods, including qPCR. 

3.3	Sensitivity and specificity

Presence or absence
The sensitivity of a detection method is the probability of detecting an organism when it is 
known to be present:

Se = P (1 | 1) � (8)

The specificity of a detection method is the probability of not detecting an organism when it is 
known to not be present:

Sp = P (1 | 0) � (9)

The probability of a positive outcome p1 then is

p1 = (Se)p + (1 – Sp)(1 – p) � (10)

where p is the “true” probability that an organism is present in the sample. The first part (Se)p 
is the probability of detecting a “true positive”; the second part (1 − Sp)(1 − p) is the probability 
of a “false positive” (1 − Sp is the probability that the test produces a positive result in absence 
of an organism and 1 − p is the probability that the organism is absent). 
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The “true” probability of detection is 

P1–(1–Sp)
Se–(1–Sp)

=p = � (11)

Therefore,	 either	 Se > 1−Sp and p1 ≥1− Sp 
					     or 	 Se < 1−Sp and p1 ≤ 1− Sp 

Enumeration
Use of a detection method with low sensitivity will result in the occurrence of false negatives 
(WHO, 2008). In microbiological literature, sensitivity may be designated as recovery: the 
fraction recovered from any organisms that were present in the sample. Because of 
imperfections and losses, the observed counts are lower than the true number in the present 
sample. Not correcting for the sensitivity of the detection method, therefore, results in 
underestimation of risk. In many risk assessments, this correction is indeed omitted because 
sensitivity data are lacking. 
Suppose a sample of volume V is taken and processed for analysis, using a detection method 
with known specificity and sensitivity. When a number k is detected, the number m of true (not 
false) positives is binomially distributed. 

� (12)

Any microbe of the k detected in the sample is assumed to have the same probability Sp that it 
is the targeted pathogen. When m positives would have been detected, the number of false 
negatives (k − m missed pathogens) in the sample has a negative binomial distribution, and 
the total number that must have been present is distributed as

=  � (13)

Where Se is the probability that a pathogen is detected. The (marginal) distribution of the true 
number n may be calculated

∑=  � (14)
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which can be written as

P (n | k) = (1 − Se)n(1 − Sp)k ×  ∑  � (15)

where both (0 < Se, Sp < 1). This relation, despite from being somewhat cumbersome to 
evaluate analytically, is not difficult to calculate numerically. 
In QMRA, specificity is not always dealt with: false positives may be neglected. Assuming that 
there are only false negatives, the numbers counted underestimate the numbers of microbes 
that are present. The correction may be found in the above equation for P(n|m). Ideally, an 
internal control is used with each sample, to allow per sample correction. Often, such a control 
is not available as this would make detection laborious and costly. Instead, in order to estimate 
the sensitivity of the detection method of the index pathogen, a limited number of samples are 
spiked with a known number of the same microorganism, or with a suitable indicator organism 
(presumed to have similar characteristics in the detection procedure). After processing of the 
samples, a fraction of the spiked microorganisms will be recovered. Thus, this produces paired 
data on the spiked numbers and the recovered numbers of microbes. The sensitivity (recovered 
fraction) may be assumed to vary between samples (e.,g. according to a Beta distribution with 
two positive shape parameters, denoted by α and β; Beta distributed random numbers vary 
between 0 and 1). Suitable models for estimation of the sensitivity and its distribution have 
been published, details may be found in Teunis et al. (1999b, 2005b, 2009). 

3.4	Pathogen concentration at the start of a risk assessment chain

When they are processed in the lab, it may be assumed that samples are well homogenized 
and mixed, so that the assumption that microbes are Poisson distributed within a sample, may 
be correct. However, in QMRA one usually deals with series of samples resulting from repeated 
observations within a surveillance program, over time and/or location. For such sets of 
samples, it is not self-evident that the concentration would be fixed, and not variable. To 
accommodate the plausible assumption that the pathogen concentration is variable, it is 
usually modelled as a random variable, so that the sampling distribution (the numbers 
counted in successive samples) is a mixture distribution, for instance a Poisson distribution 
with random parameter (cV: concentration c and sample volume V). The concentration c may 
be any positive real-valued random number, but it is convenient (and not very restrictive) to 
use a gamma distribution. The negative binomial distribution is the (marginal) distribution 
when the counts in any single sample are Poisson (meaning that each sample is well mixed) 
while samples taken at different times have random concentrations, that in turn are Gamma 
distributed (Teunis et al., 1999a, 2009). The Gamma distribution has two parameters, a scale 
factor λ and a shape factor r. These parameters can be estimated by fitting the Negative 
Binomial distribution to the observed raw data (counts and volumes). A Gamma distribution is 
very flexible in shape. It may be right- or left skewed. 
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The relations between the mean u, variance v, r and λ are simple: u = rλ and u = rλ2. An 
important feature of fitting a Negative Binomial distribution to the raw data is that zero counts 
(non-detects) can be included. This is not possible when fitting a Gamma distribution to 
concentrations. An alternative that is also popular in literature is the lognormal distribution. 
The disadvantage is that a Poisson-lognormal mixture cannot be easily written in closed form 
(like the negative binomial distribution for the Poisson-gamma mixture).

3.5	Enumeration by culture (infectious) versus by PCR

Enumeration by PCR methods provides counts of genes (gene copies). A subset of these 
genome copies may be within an intact, infectious microorganism or virus. Therefore, the 
numbers of infectious microorganisms or viruses are smaller than the numbers of genome 
copies. Assuming that all pathogens determined by PCR are infectious may overestimate risk. 
In this regard, uncertainty is large: the fraction of infectious particles to gene copy numbers 
may vary over a wide range, and, especially in the case of viruses or parasites that cannot be 
grown in tissue culture, to detect infectious virus particles, the difference is unknown. If it is 
possible to count gene copies as well as infectious particles, as similar approach may be used 
as for determining sensitivity. After all, the number of infectious particles is a fraction of the 
number of gene copies, and, therefore, a Beta distribution describes the relation between 
paired numbers of gene copies and infectious particles. 

3.6	Surrogates for pathogen occurrence

A quite different problem is the use of surrogate microbes for assessment of the occurrence of 
pathogens in food or water. Traditionally, faecal indicators are used in food and water safety 
testing, based on the assumption that presence of human faecal material is a necessary 
condition for the presence of human enteric pathogens. This may in general be true more 
often than not, on average over a long-term period, which is perhaps why bacterial faecal 
indicators are still widely used. However, we should be looking for an indicator whose 
concentration is proportional to the pathogen of interest, with reasonably high (not just 
bordering on significant) correlation. Presence or absence of the surrogate (microbe or other, 
chemical or physical variable) should be influenced by the same environmental conditions as 
the pathogen. While studies trying to link occurrence of pathogens to that of indicators often 
do find weak correlation, this does not mean that presence of the indicator predicts presence 
of pathogens. This becomes apparent when studying the time course of indicators and 
pathogens in environmental sources. In surface water sources, for instance, both pathogens 
and indicator organisms tend to occur in peaks: short term high concentrations, followed by 
periods without any detectable organisms (Westrell et al., 2006). Occurrence in peaks indicates 
that the presence of an organism is related to some discrete event. Unfortunately, peaks in 
indicators and pathogens do not match (LeChevallier et al. 2001). It therefore is not likely that 
pathogens and indicators are present because of the same event or process. 
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One should therefore be very cautious in the use of indicators as surrogates for the occurrence 
of pathogens in microbial risk assessment.

3.7	Treatment

Food production processes usually imply some form of treatment to remove microorganisms, 
and reduce human exposure. There is a huge variety of process models for predicting 
pathogen inactivation, die-off or removal in various treatment process (heating, irradiation, 
filtration, removal of contaminated units, mechanical cleaning,…). For example, for first order, 
two-rate and Weibull inactivation models, see Van Boekel (2002). Uncertainty in process 
model predictions usually represent model uncertainty given the data and model choice. 
Variability can be included by predicting treatment efficacy as a function of variable process 
conditions.

Generically, it may be assumed that micoorganisms passing treatment do so independently, 
with a certain probability or fraction passing or surviving the treatment process. This fraction 
may be modelled as a binomial process, either with paired or unpaired samples (Teunis et al., 
1999b, 2009), or as the ratio of the Gamma distributed effluent concentrations / the Gamma 
distributed influent concentrations. Paired samples result from sampling before and after 
treatment at the same time. Collection of paired data from a treatment step requires exact 
timing of the sampling. The pairing may be lost if mixing occurs during treatment. Residence 
times in treatment may vary from a few hours to several days. In many cases, even with short 
residence times and samples of influent and effluent collected on the same day, pairing is not 
evident.
Dependent of these settings and on the raw data values, treatment fraction z may be equal to 
one, be described by a Beta distribution, or be described as the ratio of the Gamma distributed 
concentrations of influent and effluent. This ratio distribution is a so-called type II Beta 
distribution or F-distribution (Teunis et al., 2009) that often provides a convenient description 
of the variation in treatment efficiency. 

3.8	Surrogates for removal in treatment

Surrogate microbes are frequently used for the characterization of reduction in treatment. 
Bacteriophage data instead of human pathogenic viruses, non-pathogenic bacterial indicators 
instead of pathogenic bacteria, and bacterial spores instead of survival stages (cysts, oocysts) 
of human pathogenic protozoa. A major reason is that it is usually not possible to study full–
scale industrial processes by seeding them with human pathogens, as this would require their 
isolation and decontamination, which would be highly impractical and costly. Some of the 
indicator organisms that are used also are present in the environment in high numbers, so that 
they can often be detected prior as well as posterior to treatment, so that seeding is not 
necessary. Ideally, the survival of these indicators should be compared to that of the real 
pathogens in small scale (bench top) lab studies, to validate their use as indicators. 
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Occasionally there may be theoretical justification for use of a particular surrogate organism, 
for instance with processes that physically remove microbes, where similar physicochemical 
properties (similar sizes, similar surface charges) indicate similar expected behaviour. Note also 
that when characterizing removal or inactivation, a fraction is estimated. This is a relative 
measure, possibly not strongly dependent on absolute concentrations of the organisms. 
Models for estimating fractions of concentrations may be used for determining whether data 
for two microbes present in different concentrations would be consistent with equal removal 
or inactivation rates, thus allowing for testing the usefulness of surrogates in different 
conditions.

3.9	Growth

Growth of the pathogen of concern is one of the most important processes of food QMRA for 
bacteria. Growth is the process that fundamentally differentiates microbial exposure 
assessment in foods from chemical exposure assessment. According to Nauta (2002a), models 
of bacterial growth need to be expressed in terms of probability, for example to predict the 
probability that a critical concentration is reached within a certain amount of time. In contrast, 
available predictive models have been developed and validated to produce point estimates of 
population sizes and therefore do not accommodate this requirement. Nauta (2002a) 
suggested that a new type of predictive models needs to be developed that incorporates 
modelling of variability and uncertainty in growth. An example is provided by Matagaras  
et al. (2006) 

There is a big and rapidly growing body of literature on predictive pathogen modelling for 
foodborne risk assessment. Covering this field in any meaningful sense is beyond the scope of 
this document. Therefore, a separate document should be developed to summarize existing 
literature, document state of the art concerning quantitative models of pathogen growth and 
survival, and list knowledge gaps and research needs. This could be a component of the 
“rolling revision” approach, to extend and actualize WHO (2008).

3.10	 Human behaviour and intake

Exposure depends on human choices made during selection of ingredients, preparation in the 
kitchen, and eating behaviour. At the time of consumption, foods may be contaminated by 
pathogens present in the ingredients, passed down through the farm-to-fork chain. In 
addition, there may also be contamination that is deposited on the food during handling, in 
retail, or in the kitchen during preparation, or during eating. Preferences of consumers in their 
diet and preferences in cooking and consumption may therefore be of decisive importance in 
exposure to microbial pathogens. In addition, there is variation in hygiene behaviour among 
individuals (Curtis et al. 2003) and the numbers of faecal bacteria on fomites vary considerably 
(Rusin et al. 1998, Medrano-Félix et al. 2011). For this reason, in addition to predicting the 
numbers of pathogens downstream from a contaminated source in a farm-to-fork risk 
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assessment, one also needs to consider the behaviour in the home environment that 
influences the contamination of foods at consumption.
First, this concerns choice of ingredients and where to purchase (supermarket, small local 
retailers). Then transport and storage at home (e.g. duration of storage and refrigerator 
temperature). Then cooking behaviour, determining the risk of cross-contamination in the 
home kitchen (Mylius et al. 2007). Initial steps have been made to describe contact behaviour 
of human with sources of faecal contamination (Curtis et al. 2003), and to set up quantitative 
models of such behaviour, to estimate probabilities of activities that cause faecal exposure 
(Teunis et al. 2016). Such studies indicate that oral exposure to food- and waterborne 
pathogens is linked to contaminated fomites, through hand contact (Wang et al 2017). Studies 
into consumer behaviour, to obtain quantitative descriptions of choices in food consumption 
and probabilities, durations, and/or frequencies of contact behaviour are highly needed. Risk 
studies often focus on scenarios for describing contingencies: a particular chain of events that 
may lead to exposure. If the probability would be known that any risky scenario does occur, as 
well as the probability of alternative scenarios, this would result in a much better basis for 
decision making. In addition, Nauta et al. (2008) concluded that in developing risk 
communication regarding domestic food hygiene practices, the focus should be on activation 
of the knowledge that consumers already possess at the moment of food preparation rather 
than food safety education.

3.11	 Case: Pathogen peaks

A drinking water production plant using a surface water source has a chain of treatment 
processes that reduces pathogen concentrations about 5 log10 units. Source waters are from a 
protected catchment where low contamination levels are expected. For that reason, a minimal 
monitoring effort is made: three samples of 10 l are taken per year, and analyzed for the 
presence of Cryptosporidium oocysts. 

Tier 1 – Business as usual
In the first year of monitoring, only negative samples are found: oocyst counts are 0 in 10 l. 
What is the estimated oocyst concentration in the source water? Assuming Poisson distributed 
counts, 0 in 30 l means that the oocyst concentration is 0 (oocysts/l), with a 95% upper level of 
0.064 (oocysts/l). That means that a pessimistic estimate of the concentration in finished 
water would be 0.064 x 10-5 = 6.4 x 10-7 (oocysts/l). Assuming the risk of infection after 
exposure to a single oocyst of Cryptosporidium parvum is 0.16, and daily water intake 1 l for 
anyone in the population, the infection risk for a single exposure (daily) is approximately 10−7. 
For such low daily risk, the yearly risk may be approximated as 365 x 10-7 = 0.4 x 10-4. When the 
1 in 10 000 rule for annual individual infection risk is used, would this water be considered safe 
for consumption? One cannot really decide, because we have no idea how reliable this point 
estimate is. But since the point estimate is based on “best” data for reduction in treatment, 
and not a worst case estimate, the fact that it is so close to 1 in 10 000 is reason for some 
concern. 
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Tier 2 – An unusual event 
In the second year of monitoring the first two samples are again zero, but the third sample 
appears to contain 100 oocysts in 10 l. What is the estimated oocyst concentration now? We 
might still assume that the oocyst counts are Poisson distributed. Now there were 100 oocysts 
in 30 l so that the concentration would be 3.3 (oocysts/l). The yearly infection risk now can be 
calculated as 3.3 x 10-5 x 0.16 x 365  19.3 x 10-4 . If the 95% upper confidence level of the 
Poisson concentration is used, as above, the risk is 4.0 x 10-5 x 0.16 x 365  23.5 x 10-4. The 
Poisson distribution however is not a good model when the data show much dispersion, as in 
this example.
A better model is the negative binomial distribution. The parameters of the negative binomial 
distribution can be estimated by fitting the negative binomial distribution to the observed 
counts: 0 in 10 l, 0 in 10 l and 100 in 10 l. Maximum likelihood estimates are (r,λ) = 
(0.076,44.03). The 95% upper level for this gamma distributed oocyst concentration is 19.3 
(oocysts/l). Note that this is a lot higher than the 95% upper level for the Poisson model. The 
reason is that we have now included variation in oocyst concentration between samples into 
the model. 
[A likelihood ratio test comparing goodness of fit shows that the deviance (-2 times the log– 
likelihood) is 226.17 - 16.82 = 209.35 which is highly significant ( 2 (1) deviate). Therefore, the 
negative binomial model provides a significantly better description of the observed data than 
the Poisson model.]
Using this high upper 95% level in the risk assessment as a point estimate would increase the 
estimated yearly infection risk even higher than but doing this would produce an overly 
pessimistic risk estimate, because we have seen that the concentration is not always so high 
throughout the year. A Monte Carlo estimate of the risk using only the oocyst concentration as 
a random variable, leads to an estimated yearly risk of 19.3 x 10-4; the 95% level is 25.5 x 10-4. 
Not unexpectedly, the high count in one of the samples causes the infection risk to exceed the 
1 in 10 000 level. Action will have to be taken. 

Tier 3 – Better monitoring 
The high count in one of the samples causes alarm and first action is to take another sample, 
to check if the oocyst concentration is still high. It is not: the next sample, 1 week later, is zero 
again. Now the treatment plant managers decide to change their monitoring schedule: they 
are going to take a 100 l sample every month of the year. At the end of that third year 11 
samples have all led to zero counted oocysts, but there was one sample of 100 l river water 
where 100 oocysts were found. As it has been established that a Poisson distribution is not 
suitable to analyse risk for varying pathogen concentrations the negative binomial model is 
used, and best (maximum likelihood) parameter estimates are (r,λ) = (0.014,5.96). Using 
Monte Carlo simulation for the random oocyst concentration the average yearly risk is now 
0.49 x 10-4, and the 95% level 0.9 x 10-4. 
That risk estimate may seem to indicate that the water quality is compliant with the 1 in 10 000 
limit, but note that we have still assumed that treatment always reduces the oocyst 
concentration by 5 log10 units. As the upper 95% level of our risk estimate remains close to 1 in 
10 000 there is still reason for concern.
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4	Hazard characterization

4.1	General

A generic hazard characterization for various exposure pathways will be described. 
Quantitative risk assessment methods exploit the conditional relations between exposure, 
infection and illness. To become ill from an infectious pathogen, a person must have been 
infected (colonized) by that pathogen. And to become infected, a person must have been 
exposed, i.e. have ingested at least one infectious pathogenic organism. In terms of 
conditional probabilities: 

P(ill) = P(ill | inf) × P(inf) = P(ill | inf) × P(inf | exp) × P(exp) � (16)

where P(ill|inf) is the conditional probability of illness given infection: the probability that an 
infected host develops symptoms of acute illness. This may be a dose dependent probability. 
Assuming exposure to n pathogenic organisms, P(ill|inf; n) is a (conditional) illness dose 
response relation. P(inf|exp) is the conditional probability of infection given exposure: the 
probability that an exposed host becomes colonized by the infectious pathogen. This 
probability is thought to always depend on the numbers n of pathogens that were ingested, 
and P(inf|exp;n) is a (conditional) infection dose response relation. P(exp) is the probability 
that a host is exposed (to, say, n pathogenic organisms) when in contact (ingestion, 
inhalation, . . . ) with a contaminated environment. Thus P(exp) = P(n|dose), as determined by 
exposure assessment, where dose represents some characterization of the distribution of n 
(often its mean). Thus, there are two main contributions to the risk that must be characterized: 
exposure and health effects resulting from that exposure. Exposure assessment is specific to 
any problem that is studied: often, direct enumeration of microbes in contaminated foods or 
water is not possible, because of low concentrations, or because contamination is a rare event. 
Therefore, indirect methods for exposure assessment have been developed, measuring 
pathogen concentrations in environmental sources (including e.g. raw foodstuffs) and the (log) 
changes caused by transport, storage, preparation, etc. 

4.2	Data sources

Studies in risk assessment usually are based on proxy dose response information: a surrogate 
pathogen in humans, or a surrogate symptom in a surrogate (animal) host. As the objective is 
to determine health risk, the question remains how much uncertainty and bias such substitute 
data introduce. 
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Human challenge studies
For some pathogens human challenge studies have been published. Compared to quantitative 
risk assessments in toxicology, this is a great advantage. Health effects of genuine pathogens 
have been studied in the appropriate host (the one that the pathogen co–evolved with). 
However, as exposure of human volunteers to serious risk would be unethical, only relatively 
mild pathogens can be used, in immune competent hosts of good general health. As a 
consequence, the risk of infection may be underestimated, and it is likely that the (conditional) 
risk of illness given infection is underestimated in volunteer studies. Really harmful pathogens 
causing severe illness cannot be studied in human volunteers. 

Natural experiment studies
Incident or outbreak reports deal with human patients linked to exposure to some microbial 
hazard and can be considered prime evidence for the infectivity and/or pathogenicity of the 
pathogen at hand. In outbreaks, it is likely to find severely infectious (causing many cases) and 
pathogenic strains (causing severe illness) in weakened hosts, as this increases the chance of 
detecting the outbreak. A pathogen that causes outbreaks of severe illness is highly likely to be 
relevant for public health, and of interest to quantitative risk assessment. Therefore, use of 
outbreak data for assessing infectivity and pathogenicity is important: this would include 
pathogens of interest (as they do cause outbreaks) and provide dose response information 
from the opposite end of the scale, compared to volunteer studies. The most infectious and 
pathogenic organisms in the most vulnerable (most susceptible) hosts. Exposure often is not 
known, but there are exceptions: sometimes food inspectors can obtain a sample of the 
implicated food and estimate the pathogen concentration. A single outbreak provides only 
limited information, a single exposure estimate, with corresponding numbers of exposed and 
affected subjects is the best that can be achieved, usually. Data from different outbreaks show 
considerable variation in observed attack rates, caused by many characteristics that may vary 
among outbreaks. The exposed population may differ, e.g. in age, or prior experience 
(acquired immunity to the pathogen); the vehicle may be different (different food, differences 
in preparation of the food); the pathogen may have a different history prior to its presence in 
the food. For such a meta–analysis combining data from different outbreaks, a hierarchical 
model is appropriate, to explicitly incorporate variation in infectivity between outbreaks. In 
Teunis et al. (2007), such a set of outbreaks is studied with a two–level dose response model. 
An additional complication is overdispersion in exposure. Unlike experimental studies, the 
pathogen may be distributed unevenly in the vehicle (e.g. food or water) and the quantity 
ingested may also vary. Such heterogeneous exposures affect the dose response relation. 
Animal challenge studies depend on a proxy host, but may allow study of variation in dose 
response due to pathogen properties (typing). These studies are often difficult to translate to 
human dose response, due to differences in host response to infection and different 
pathogenesis.
In vitro experiments may be used to characterize a specific host barrier, and the effects of 
variation on its performance (e.g. gastric pH barrier; attachment/invasion of cultured intestinal 
mucosa cells).
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4.3	Dose response models

The idea that exposure to large numbers of pathogens would be more likely to cause infection 
than exposure to only few organisms is appealing. The host defenses might be ‘overwhelmed’ 
by a massive number of viruses or bacteria, leaving the door to infection wide open. The idea 
of a ‘threshold’ dose, above which infection occurs seems to be as popular in microbial risk 
assessment as it is in toxicology. The threshold dose would be the lowest dose that causes a 
biological effect. There is a difference between exposure to a low dose of a chemical substance 
and exposure to a low dose of microbes however: low doses of a chemical substance consist of 
many molecules. For instance, an LD50 for Botulinum Toxin A in mice of 47pg (Krewski and van 
Ryzin, 1981) corresponds to 5.7×108 molecules. In contrast, a low dose of microbes often 
consists of only a few organisms. This difference is of the utmost importance in quantitative 
microbial risk assessment. A sample from a suspension with a low concentration may contain 
a small number of microbes, and there may be a nonzero probability that such a sample does 
not even contain a single organism. This is the basis for much of exposure assessment. And it 
is also the starting point for an important class of dose response models: hit theory models. 
Some important classes of models relevant for microbial dose response assessment are: 
Cooperation, inhibition models: Interactions between pathogens in causing infection (and/or 
illness), can result in a nonlinear dose response relation. Cooperative effects tend to steepen 
the slope of the dose response relation, inhibition has an opposite effect. The incorporation of 
heterogeneity also makes the any dose response relation less steep. Therefore, we have here a 
problem of identifiability: any observed slope could have occurred as a result of some balance 
between cooperative effects and inhibition or heterogeneity.
Extreme value models: the idea that only the “fittest” organisms in an inoculum elicit a response. 
Can be described as a specific form of heterogeneity.
Hazard models: The timing of events after challenge with a pathogen dose may be modelled as a 
hazard: the probability per unit time of an effect occurring. Useful when such temporal 
information is available, as is often the case (especially in experimental studies). 
Time dose response models (Huang and Haas 2009): time post-inoculation may be used as a 
covariable to predict the probability of acute health effects. These models have been shown to 
be useful for (animal models) for bioterror agents.
Predator–prey models: Can be used for modelling the interaction between a (colonizing/invading) 
micro–organism and an adaptive defensive response of the host (like the immune response). 
Allows highly specific description of the mechanisms in action at the expense of many 
parameters and a high degree of complexity, especially when heterogeneity is incorporated.
Hit theory models: infection as the result of a random hit process: any (number of) organism(s) in 
the inoculum may succeed in breaching the host defenses and initiate infection. Many variants 
are possible: independent action or collective action; single hit or multiple hits; heterogeneity 
or not; exposure to aggregates or dispersed particles; . . . The familiar single hit model with 
independent action only consists of the probability of exposure (ingestion of an organism) and 
the probability that one or more of the ingested organisms elicit a response. 
The Beta-Poisson model is the most commonly used model for microbial dose response. It is 
based on the assumptions that the dose is a Poisson sample, any ingested pathogen has 
probability to survive and colonize that is a sample from a Beta distribution, and independent 
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action: survival of any ingested pathogen is independent from any other pathogens in the 
same inoculum.
It should be noted that for some pathogens, more than one dose-response model is in use, e.g. 
Campylobacter (Chen et al., 2006; Teunis et al. 2005a), Cryptosporidium (Chappell et al., 2006; 
Messner and Berger, 2016; Teunis et al., 2002), Salmonella (Oscar, 2004; Teunis et al., 2010), and 
STEC (Haas et al., 2000); Teunis et al., 2004). An overview of dose response data and models 
can also be found at http://qmrawiki.canr.msu.edu/index.php/Dose_Response

4.4	Beyond infection

During infection, there is a probability of becoming ill: the longer infection is present, the 
higher the probability that symptomatic illness will occur. Conversely, the duration of infection 
may be related to the balance between the health status of the host (immunity) and the 
infectious potential of the pathogen. A host with strong defences against the pathogen is 
assumed to clear infection rapidly. Conversely, a highly virulent pathogen is assumed to be 
able to sustain growth for a long period. These three basic building blocks: presence of 
infection, illness hazard, and duration of infection can be translated into a model: the hazard 
model for illness dose–response (Teunis et al., 1999c). The hazard function can have arbitrary 
shape, as long as the illness risk is proportional to the duration of infection: when the duration 
of infection is twice as long, the integral of the hazard over this period becomes exactly twice 
as large. Arbitrarily, is has been assumed that the scale parameter (and not the shape 
parameter) of the (gamma) distribution of the duration of infection depends on the dose.  
If the simplest possible relation, direct proportionality, is chosen, there are three possible 
alternatives: the duration of infection increases with dose, it decreases with dose, or it is 
independent of the dose. In Salmonella dose response, a higher dose not only causes an 
increased probability of infection (as seems to always be the case), but also, in an infected 
person, an increase of the probability of becoming ill (Teunis et al. 2010). A biological 
explanation may be that the higher initial dose may allow the pathogens to reach numbers 
that are damaging to the host more quickly, before defensive responses can slow down growth 
in order to prevent tissue damage.
Microbial infection may not only lead to acute illness, but there may also be long-term 
sequelae: systemic disorders that manifest months or years after infection, and may persist for 
long periods. Some sequelae result from chronic infections (e.g. chronic Q fever), others seem 
related to auto-immune disorders (Campylobacter and Guillain-Barré syndrome, Salmonella 
and reactive arthritis). As there is not a clear relation with exposure, such long-term health 
effects are usually described as a (fixed) conditional probability: the risk of long-term health 
impairment given infection. These risks tend to be small, but the health effects may be severe: 
disability and premature death. Therefore these sequelae cause the majority of the health 
burden for the pathogens where they are known to occur.
In a small fraction of the cases, acute symptoms may be severe enough to lead to mortality, in 
particular in infants or the elderly.

http://qmrawiki.canr.msu.edu/index.php/Dose_Response


37Generic Guidance to Quantitative Microbial Risk Assessment for Food and Water

4.5	Immunity, to infection and/or illness

A basic approach to including immunity into dose response models is to include a covariable to 
describe the variation in susceptibility. For incorporation of covariables it is an advantage when 
parameters in the model are (biologically) meaningful. A candidate marker for susceptibility 
could be a serological parameter, like the baseline concentration of antibodies against the 
pathogen that is used for challenge. High baseline levels of serum antibodies could indicate 
recent infection or illness. If this would be associated with some protective effect, it should be 
possible to detect this protective effect with an appropriate model. The concentration of 
antigen–specific antibodies can be measured, and can be used as an indicator of the degree of 
protective immunity. For example, published experimental dose response studies indicate that 
there indeed may be an association between high IgG-levels and protection against infection 
by the protozoan parasite Cryptosporidium parvum (DuPont et al., 1995; Chappell et al., 1999). 
The dose response relation

Pinf (D | pm) = 1 − e −Pm � (17)

can be modified by letting the single hit probability of infection depend on a covariable x

 � (18)

where the covariable x is the log of the baseline serum antibody concentration. This “wraps” 
the logistic regression model into the single hit dose response relation. The resulting model 
still is a single hit model (Teunis et al. 2002). The dose response relation now is a function of 
two variables, dose and antibody level, which can be visualized in a three–dimensional graph. 
A graph of pm against baseline IgG shows that increased baseline IgG is associated with 
protection against infection with Cryptosporidium parvum. Note that this does not imply that the 
serum antibodies are protective; rather, high baseline IgG indicates recent infection, and more 
recent infection appears more likely to retain protective immunity.
At the population level, transient (acquired) immunity to an infectious pathogen may cause a 
counter-intuitive relation between infection pressure and illness incidence. For Campylobacter a 
decrease in infection pressure, e.g. due to enhanced food hygiene, may lead to a temporary 
increase in the numbers of acute symptomatic cases, because of decreased boosting (Swart  
et al. 2012).

It should be attempted to restrict analysis of factors in quantitative risk assessment to human 
pathogens in human hosts. Exposure analysis assumes data on the occurrence of human 
pathogens in food or water sources; analysis of infectivity and pathogenicity assumes data 
from human volunteer studies or outbreaks. Such data are not abundant and often their 
availability is a major limiting factor in quantitative risk assessment. When crucial data cannot 
be found, surrogate data are used, challenging the “quantitative” part of quantitative risk 
assessment.
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4.6	Surrogates for infectivity/pathogenicity

In dose response assessment for pathogenic microbes the availability of human challenge data 
is a great advantage, compared to toxicology. However, given the variability of microbial 
pathogens it is safe to say that any pathogen studied in a human challenge study is a 
surrogate. The single isolate, often propagated in lab conditions for a long time, is a surrogate 
for any study in microbial risk where a similar pathogen (the same species, genetic variant?) 
infects human hosts from a different vehicle, with a different history in the environment. 
Possibly with greatly increased heterogeneity, but it is not known how genetic or phenotypic 
heterogeneity influences infectivity and/or pathogenicity in humans. Sometimes, an outbreak 
happens to be studied in such detail that dose response information may be gleaned from 
such data, providing an opportunity to study infectivity and pathogenicity “in the wild”. It may 
be expected to find more virulent strains of a pathogen in an outbreak, compared to an 
experimental study with a laboratory–adapted strain. Fortunately, limited data so far indicate 
no strong differences, so that it seems safe to use human challenge data in risk assessment. 

4.7	Surrogate hosts

Studies with human subjects are expensive and require expert personnel, special facilities and 
safety-tested inocula. Relatively few studies exist and safety of clinical studies is scrutinized 
more than ever, making it unlikely that many more experimental human dose response studies 
can be done in the future, however valuable these studies are for understanding the processes 
of infection and pathogenesis. There are also many pathogens for which it is unlikely that 
there will ever be human experimental data, because they are too dangerous. Yet for many of 
these dangerous pathogens dose response information is wanted the most. An example is  
E. coli O157:H7, which causes, in addition to diarrhea, renal failure, and many infections, 
especially in infants, end in death. Animal studies have been proposed as a solution to this 
problem. For instance, a study exists where rabbits have been challenged with E. coli O157:H7 
(Haas et al., 2000). An outbreak of E. coli O157:H7 enteritis in a boarding school in Morioka city, 
Japan, in 1996 was studied in unusual detail, even providing data on faecal excretion of the 
pathogen in all pupils and teachers, as well as a dose, that appeared to be low (31 cfu) (Teunis 
et al., 2004). This outbreak gives us the opportunity to compare infection probabilities of 
rabbits and humans, and shows that it is highly unlikely that these are the same (Figure 2). 
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Figure 2: Dose response relation for E. coli O157:H7 in rabbits (Haas et al., 2000) and fraction 
infected in outbreak in Morioka, Japan in 1996 (Teunis et al., 2004). Both pupils (208/828) and 
teachers (7/43) are shown, with 95% confidence intervals. Note that it is highly unlikely that 
infectivity of this pathogen is the same in humans and rabbits.
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This example highlights a fundamental problem with animal data for human dose resonse 
assessment: not just the pathogenesis should be (more or less) comparable with that of 
humans, but also the magnitude of the probabilities of health effects should be comparable. 
We cannot know if that is the case when there are no observations in humans, and may only 
guess whether a pathogen is more or less virulent in an animal than in its human host.  
A pathogenic microorganism is often specialized in infecting a particular host species, after a 
period of co-evolution with that host species. Such co-evolution may have optimized the 
interaction into various directions, making the pathogen more virulent or, less virulent. 
Available evidence seems to indicate that infectivity tends to be high for pathogens infecting 
their proper host, and lower in case of a “mismatch” (a host species barrier). Returning to E. coli 
O157:H7, this is an important pathogen causing many outbreaks, and for some of these 
outbreaks dose response data could be obtained, allowing construction of a dose response 
relation, based entirely on outbreak data (Teunis et al., 2008b). In rare circumstances it may 
even happen that appropriate outbreak data are available for a pathogen that has been 
studied in a human challenge study. Two outbreaks of campylobacteriosis among children who 
visited a cheese farm and drank raw milk appeared to produce a fine dose response relation 
for the attack rate of diarrhea and amount of milk consumed. This dose response relation 
appeared to not only be consistent with challenge study dose response data for infection,  
but provided additional information on its shape (Figure 3).
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Figure 3: Infection and conditional illness dose response (illness among infected subjects): 
posterior mode curves and predictive intervals. (a) Human feeding study (Black et al., 1988); (b) 
Combined model based on human feeding study and the two milk outbreaks (Teunis et al., 
2005); (c) Unconditional probability of illness (probability of becoming infected and ill) in adults 
(volunteer study of Black et al. (1988)) and (d) children (milk outbreaks, Teunis et al. (2005)).
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Interestingly, contrary to the dose response relation for infection, the conditional probability 
for illness among infected subjects also appeared to depend on dose, but quite differently in 
the milkborne outbreak and the experimental study (compare Figures 3c and 3d). It is tempting 
to attribute that difference to differential susceptibility: the volunteers in the challenge study 
had been exposed before (some even still had serum antibodies) whereas the children were 
young enough to not be immune. 
Use of animal dose response data in human risk assessment is common practice for chemical 
and radiation hazards but it is not quite as common in risk assessment for infectious diseases. 
It is a fortunate circumstance that human challenge data as well as an – as yet still mostly 
unexplored – reservoir of outbreak data is available, so that perhaps we may not need to 
resort to animal studies very often.

4.8	Safety factors

Use of safety factors is a common practice used in toxicology to account for unknown or 
uncertain steps in chemical risk assessment. For instance, when dose response is based on 
animal data, or when a benchmark dose for adults must be translated to infants, the dose is 
lowered by a certain factor, thus making the result safer by presumably erring on the safe side. 
As long as the uncertainty in the estimated risk is not known, the effect produced by a safety 
factor also remains unknown. Although originally designed on the basis of distributions of 
uncertainty in translating dose response relations between species, the procedure has 
deteriorated into allowing factors of 10 for any uncertain step in risk assessment. As such an 
approach replaces a proper study of uncertainty (statistical and/or conceptual) it should be 
avoided and instead, efforts should be made to describe and quantify uncertainty.
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5	 Risk characterization

5.1	 General

Once all components of risk have been identified and quantified, they can be used to 
characterize the risk. This may involve nothing more than calculating a point estimate of 
exposure and using a dose response model to transform exposure estimates into estimates of 
infection risk. Usually, however, risk characterization is more complicated: variability and 
uncertainty must be evaluated, and endpoints may be integrated metrics of risk, estimating 
loss at the population level. Starting with the simplest scenario: estimating infection risk for 
repeated exposures, for instance the accumulated risk over a one-year period, we proceed to 
methods for weighting risk and methods for calculating risk, including Monte Carlo simulation. 
Then we finish with a few remarks on generalizing risk, and how to verify the outcomes of a 
risk assessment. 
The probability of a specific health effect results from a chain of events, each with their 
probabilities of occurrence. The probability of exposure to a certain dose results from the 
probabilities of events determining food or water contamination, and behavioural events 
determining treatment (e.g. preparation of food) and uptake (consumption) of contaminated 
media. The resulting probabilities of infection and illness depend on the dose response 
relations, possibly influenced by additional variables determining virulence of the pathogen 
and host susceptibility. 
Dose response relations are special because they are generic: most risk assessments use dose 
response information from published literature. Care must be taken that the used numbers are 
appropriate for the risk study. Various models exist for the dose response relation for infection 
and the dose response relation for illness when infected (the conditional relation for illness 
given infection). Most are based on hit theory, evaluating the probability of infection resulting 
from any single inoculated (ingested) pathogen particle acting independently to cause infection 
(Haas, 1983; Teunis and Havelaar, 2000). Note that there are two different forms of the Beta–
Poisson model, an exact and an approximate function. Care should be taken that when 
parameter estimates for the exact model are not valid for the approximate model (rule of 
thumb: β < 10 and α > β/10) these parameter estimates should NOT be used for predicting risks 
with the approximate model because they will result in serious errors in the calculated risk.
In addition to these dose response models for infection there are also models for predicting 
the probability of acute illness in infected subjects. Illness dose response relations are not 
always available because most dose response data are from human challenge studies with 
severe study size limitations. 
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As ususally, only a fraction of those infected becomes ill, while only part of the exposed 
subjects become infected, the numbers involved are often quite small. In case there are data 
on the occurrence of symptoms of acute illness in challenged volunteers, the probability of 
becoming ill when infected may be dose dependent or not, in other words, there may be a 
dose response relation for the conditional probability of becoming ill when infected, or not 
(Teunis et al., 1999b). In the latter case, there may be an estimate of a (fixed) probability of 
infected subjects becoming ill, for instance based on outbreak studies. It is therefore often 
possible to proceed from infection risk towards risk of acute illness. In terms of probabilities

P(ill, dose) = P(ill | inf, dose) x P(inf, dose)� (19)

In case the (conditional) illness probability is dose-dependent (Teunis et al., 1999b, 2005, 
2010), this has consequences for epidemiology. The reason is that when a population is 
exposed to low doses of an enteric pathogen some people may become infected but few of 
these infected subjects will become ill, so that cases are sporadic. When the dose is high there 
is not only a higher probability of infection, but also those that are infected have a higher 
probability of becoming ill, so that a cluster of enteric illness may be detected. 

5.2	Long term illness and sequelae 

It is sometimes possible (and necessary!) to proceed beyond acute illness and estimate 
probabilities of developing severe long–term sequelae: chronic illnesses caused by infection 
with a pathogenic micro–organism. Examples are symptoms of auto–immune disease 
following bacterial infection (Salmonella and arthritis; Campylobacter and Guillain–Barré 
syndrome). The probabilities of such long– term health effects may not be dose dependent  
(a moot point because it is hard to imagine a study establishing such a relationship) but is 
possibly associated with other factors like genetic makeup of the pathogen and the host. Even 
though the probabilities of illness may be quite small (in particular for long– term sequelae) 
including such endpoints may be relevant because the associated health burden is 
considerable, for two reasons: (1) the symptoms may be quite severe, and (2) they may be 
present, at least in part, for many years, possibly as long as the affected subject lives. 
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5.3	Scale

Usually, we are not interested in the infection risk for a single subject following a single 
exposure event, but rather in the accumulated risk over a specific period. For instance, the 
yearly risk associated with use of a particular foodstuff. Often, it is necessary to calculate risks 
resulting from repeated exposure events. When the probability of infection or illness, 
associated with a single intake event is known, calculation of the probability for a series of 
such events seems straightforward. It should be noted that, given the heterogeneity that is 
usually present in risk models, such calculations (as in text box 6) can be done using Monte 
Carlo simulation, generating a new probability for each intake event.

Imagine that these events are a day apart: every day one drinks a glass of water, for instance. 
For such a consumption pattern it seems plausible that exposure events are independent. By 
the time a glass of water is consumed, the previously consumed portion has passed the 
intestinal tract completely. That is not always so clear, however: in case of two or three meals a 
day, each containing a contaminated ingredient, it is not so plausible that the previous meal 
has been digested completely. And even when passage has completed between intakes, any 
pathogens succeeding in attaching to the intestinal mucosa may remain there for a longer 
period than one day and it is conceivable that interaction spans more than a day. In case two 
or more intake events are only a short period apart, doses may be assumed additive and the 
resulting risk can be calculated. In real world situations the intake pattern may be 
intermediate. Many risk models however, deal with low doses, for instance as encountered in 
drinking water risk assessments. Low dose approximations for both models of repeated 
exposure are identical. 

Box 5  Long-term risk from repeated exposure, assuming independence: multiplicative model.

Estimates of daily risk may be extrapolated to yearly risk. When p1 is the probability of  
a positive effect (infection, illness) on day 1, and p2 the same on day 2, and on day i the 
probability is pi, then the probability of becoming positive (once, or more times) within  
a period of n days is

 � (20)

If all pi are very small so that Pn << 1 then

 � (21)
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Box 6 � Long-term risk from repeated exposure with short intervals between consumption 
events: additive model.

When the time intervals between exposure (ingestion of contaminated food or drinks) is 
short, exposures may not be considered independent and the cumulated risk must be 
calculated differently When several portions of food/drink are ingested shortly after one 
another, doses are additive. The risk may be calculated by first adding all ingested doses

� (22)

and then using the dose response model to calculate the probability of infection or illness

Pn = ƒ(cVtot | Ɵ)� (23)

if all Vi are very small so that cVn << 1 then the single hit model is may be approximated 
by a linear relation 

Pn  E(pm)cVtot� (24)

so that in the latter case the risk is equal to the result we got with independent exposure.

More sophisticated dose-response models consider timing between exposure events, and take 
into account immune system interactions with the inoculated pathogens (Pujol et al., 2009), 
potentially leading to decreased risks after repeated exposure.

5.4	Calculations

The simplest possible procedure of calculating risk is to take a sample of the estimates for all 
of the involved factors (or parameters) and use these to calculate probabilities of infection or 
illness, and/or other risk outcomes. For an assessment of microbial risk in food or water such a 
calculation could be as follows: 

First, calculate exposure See also equation (7) in section 4.1. Next, translate exposure estimates 
into infection.

P(inƒ) = Pinƒ (D|Ɵ)� (26)



47Generic Guidance to Quantitative Microbial Risk Assessment for Food and Water

Using the dose response relation, the infection risk may be calculated. Other dose response 
models for acute illness may be inserted. This calculation may be repeated, each time 
repeating the sampling for all parameters, resulting in a Monte Carlo sample of the risk. When 
any (or all) parameters are defined as distributions, representing variability, these calculations 
can be repeated many times to obtain a (marginal) distribution of the infection (or illness) risk. 
In case the uncertainty is also available, a nested Monte Carlo simulation can be performed 
(Vicari et al. 2007, Pouillot and Delignette-Muller 2010).

5.5	Propagation of uncertainty

The above algorithm may be repeated for assessing variability and uncertainty. The source 
concentration C, all reductions by treatment (expressed as fractions), ingested volumes and 
the dose response parameters θ, may be sampled from probability distributions characterizing 
their variability and/or uncertainty. These distributions should have been found by statistical 
analysis of the available data, during exposure assessment and hazard characterization. In case 
of uncorrelated factors, a single random value can be generated for each variable, and a risk 
(say, a probability of infection) can be calculated. This can be repeated as often as necessary, 
generating a distribution of risks, of arbitrary size. How many iterations are needed? Figure 4 
shows how percentiles of Monte Carlo samples on various risk estimates change with the 
number of iterations, for a risk assessment of Cryptosporidium in drinking water, for a water 
supply with infrequent failure in treatment (Teunis and Havelaar, 2001). It is clear that several 
thousands of iterations are needed before the higher and lower percentiles stabilize.  
A common default is ten thousand iterations.
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Figure 4. Stability of percentiles of dose and daily and yearly risk, with increasing number of 
(Monte Carlo) iterations n. From (Teunis et al., 1999b).
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Usually, the distributions of the various factors of risk are uncorrelated. If not, for instance 
when a multilevel analysis has been done to characterize exposure, the result is a joint 
multivariate distribution, and Monte Carlo samples can be constructed from such distributions 
by means of Markov chain Monte Carlo techniques (Gilks et al., 1996). In fact, such samples 
often directly result from the statistical analysis, if prediction of the outcome (the source 
concentration, or the combined removal or probability of passage) is done. Calculations of risk 
often involve a chain of events, resulting in dose as a product of several factors. When the dose 
is not too high the infection risk is again the product of dose and the (single hit) infectivity of 
the pathogens, as most infection dose response models are linear at low doses. Conditional 
probabilities of acute illness are often given as a fixed probability, that is multiplied by the 
infection risk to produce illness risks. And finally, accumulated risks (over a year, for instance) 
again involve products of many terms, for each individual exposure event. For those reasons, 
risk calculations usually are done in a multiplicative realm. A consequence of this is that risk 
distributions tend to assume a lognormal shape.
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5.6	Transmission cycle

To translate infectious disease risk to the population level, the transmission cycle must be 
considered. Variable doses among the members of an exposed population may lead to 
infection in some of the exposed subjects. Once these infected (colonised) subjects start 
shedding pathogens, they may infect others, with whom they share contacts. This is called 
secondary infection (Diekmann et al. 2012). Thus, whenever an exposed subject is infected, 
they may cause a cluster of cases: an outbreak. The potential for secondary transmission is 
summarised in the reproduction number: the number of secondary cases any infectious 
subject causes. This may depend on immunity in the exposed population: the basic 
reproduction number R0 represents the number of secondary cases produced by an infectious 
subject released into a completely susceptible population (Diekmann et al. 2012). Thus, the risk 
caused by environmental exposure of the index (primary) case is amplified, by the numbers of 
secondary cases caused by this index case. Some food- or waterborne pathogens have 
epidemic potential, e.g. norovirus. In a real-world outbreak of enteric illness, the numbers of 
cases infected by any infectious vary strongly, as may be seen e.g. in healthcare associated 
norovirus outbreaks (Sukhrie et al. 2012, Teunis et al. 2013).
Sometimes it may be advantageous to model a closed transmission cycle, for instance when 
the infected population sheds pathogens into the environment, and these environmental 
pathogens are the source of exposure. This may occur e.g. in coastal areas where human 
shellfish consumption causes outbreaks of enteric viruses, while the shedded viruses are 
transported in sewage to the harvesting grounds of e.g. oysters, where they can contaminate 
these same oysters. Also, for foodborne zoonotic pathogens it may be important to consider 
transmission in the animal population.

5.7	Case: Why point estimates are a bad idea

A quick way to assess the risk might seem to take best (e.g. maximum likelihood) estimates for 
all the factors in the risk chain and calculate a point estimate of the risk. While it is often 
argued that this gives an impression of the magnitude of risk, it is a potentially dangerous 
approach. It is known from experience that distributions of risk usually are strongly (left–) 
skewed: while low levels of risk may be likely, there is a small probability of very high risks. 
Often, it is exactly the very small probability of a very severe outcome that we need to know. 
For instance, consider a drinking water treatment plant that removes pathogens with about 4 
log10 units, nominally, thus rendering the finished water safe for consumption. If this treatment 
plant operates within design limits 364 days in a year, but at one day every year (on average) 
performance is degraded, so that only 1 log10 unit is removed, there is a small probability 
(about 0.27%) that the water contains a 1 000–fold higher pathogen concentration. In case the 
daily infection risk under nominal operation is 10−7, it is 10−4 when performance is degraded. 
Without days of degraded operation, the yearly risk is approximately 0.37 × 10−4, with 
degraded operation it becomes approximately 1.37 × 10−4. The single degradation event 
dominates the yearly risk. Under such strongly skewed exposure conditions the arithmetic 
average of daily risk (and, in case it is low enough, the arithmetic average of daily dose) is still 
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the unbiased estimator of yearly risk. Such an average of a strongly skewed distribution can 
only be estimated with precision when the tails are well described, requiring many samples, or 
a method of capturing degradation events and sampling during such events. 
When the goal of risk assessment is decision support (it usually is) then it is desirable to know 
quantiles of the estimated risk. The often debated infection risk level of 1 in 10 000 is only 
enforceable when there is a confidence level associated with it. In order to use a risk 
assessment to determine whether a water utility complies with the legal limit, the probability 
of exceeding that set risk limit must be below a certain level, say 95%. In the QMRA for 
drinking water in the Netherlands, the 95-percentile of the annual infection risk is the accepted 
level to test for compliance (Schijven et al., 2011). Therefore, a point estimate is useless. The 
confidence range associated with microbial estimates of risk may easily exceed a factor 100 in 
either direction from the average risk. Whether the average risk is below 1 in 10 000 therefore 
hardly provides any confidence in compliance.
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6	Integrated risk metrics

6.1	General

Risk metrics combine probability estimates and measures of severity for a disease into a single 
number. This is nothing different from the expected loss calculations in the introduction. At 
the individual level, when the costs involved with sickness (its cost, or “severity”) are c and the 
probability of becoming ill is p, the risk is

R = cp� (29)

Instead of a single outcome, the disease might progress into several categories of 
severity{c1,c2,...,cm} with corresponding probabilities{p1,p2,...,pm}. The risk now is the  
weighted sum R = ∑i=1cipi

� (30)

In public health, risk usually is not defined on the level of the single individual, but on the 
population level. We have seen that the population risk is not simply N (the population size) 
times the individual risk, because of heterogeneity – variability in risk among individuals – and 
because often risks of different magnitudes are weighted differently. Before dealing with those 
problems we need to know the size of the affected population. 

Population affected
In a city with a million inhabitants the drinking water may carry an individual yearly risk of 
infection with rotavirus of 10−5. Does that mean that every year 10 people will be infected? On 
average, that may be true. But even when the infection risk is fixed at 10−5 the numbers 
infected will show random fluctuations around this average of 10. A better description would 
be that the numbers of inhabitants infected yearly is binomially distributed with n = 106 and 
p = 10−5, and a good approximation is a Poisson distribution with parameter μ = np = 10 (Nicas, 
1996). In case the probability of infection is high and the exposed population is big so that the 
expected numbers are high, the variance in numbers infected due to random fluctuations is 
small compared to the expected numbers and can often be neglected. It is rare, in quantitative 
risk assessment, to have a fixed probability of infection or illness. There are always sources of 
heterogeneity: in exposure, and/or susceptibility of the host or virulence of the pathogen and 
these cause the probability of infection or illness to have a distribution itself, which is often 
highly skewed. The distribution of numbers affected then is a mixture, of the binomial (or its 
approximation, the Poisson) distribution and a distribution for p.
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This distribution of the probability of a health effect p can have any shape, depending on the 
characteristics of exposure and dose response, so that in general it may not be easy (or even 
possible) to find the mixture distribution for numbers affected in closed form. It is however 
usually not difficult to simulate such a mixture distribution with Monte Carlo sampling. Some 
microbial infections may cause secondary transmission: primary infection in subjects exposed 
to pathogens in food or water (or aerosol) causes them to start excreting pathogens, rendering 
them infectious to other susceptible subjects. Given the right circumstances, there is 
considerable potential for rapid growth of the numbers infected, multiplying the numbers of 
primary cases by a large factor and causing an outbreak: a cluster of cases. Instead of the 
binomial distribution of numbers of cases the numbers affected then must be estimated from 
a transmission model.

6.2	Risk endpoint

The impact on society of outbreaks of large size can be disproportionally severe compared to 
small outbreaks. This is an aspect that has received very little attention in QMRA. Public 
transportation, logistics for goods and supplies, and public health services will suffer 
increasingly when too many citizens are incapable of performing their public functions.  
The increase in severity with increasing size of the outbreak can be expressed in a (nonlinear) 
weighting function, or (dis-)utility function (Cox and Hinkley, 1974). This is a simple and 
statistically sound method to account for nonlinear effects in the severity of a large outbreak, 
compared to that of a small one. Suppose we have a probability distribution for the numbers 
of subjects affected by some infectious disease, p(n). If the costs associated with any infection 
are fixed, say c (in arbitrary units), the risk may be calculated

� (31)

where N is the size of the exposed population. Here the losses have been expressed as

u(n) = cn � (32)

is a very simple utility function returning the costs of an (adverse) health effect as a function of 
the numbers affected. If we would like to give additional weight to large outbreaks, we could 
use instead the expectation of a function u(n) as

R = E (u(n)) = ∑ u (n)p(n)� (33)

where u(n) > cn for large n, for instance

u(n) = cna, a > 1� (34)
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Different functions for weighting risk can be used for different problems, and weighting 
functions can also be employed to various categories of risk, for instance different endpoints 
of disease caused by the same pathogen, or different diseases (health burdens) caused by 
different agents in the same food or water. For a set of health effects with costs {u1(n), u2(n), 
 . . . , um(n)} with numbers affected n with probabilities {p1(n), p2(n), . . . , pm(n)} the risk is 
calculated as

 � (35)

Assuming that each individual can have any combination of health effects simultaneously.  
For mutually exclusive endpoints the numbers in each category are not independent. The joint 
distribution of these numbers n = {n1, n2, . . . , nm} is then multinomial with probability p(n) and 
the risk becomes
R = E (p(n) ∑k=1 uk (nk))

� (36)

Such mixed utility functions can be useful in transforming risks to a common scale.

6.3	A specific mixed utility function: the DALY 

When intervention measures have two or more disjunct, potentially competing effects, an 
integrated risk metric may be necessary. For instance, drinking water disinfection reduces the 
risk of infection and gastro-intestinal illness, but at the same time may increase the risk of long 
term illness caused by the toxicity of disinfection by–products (Havelaar et al., 2000). When 
both end-points – diarrhea and toxicity – can be measured on a common scale, quantitative 
weighting is possible. One such common metric that has gained popularity is the DALY 
(Disability Adjusted Life Year) originally proposed by Murray (1996) in the Global Burden of 
Disease study. Disease may result in reduction of survival time (quantity of life), in reduction of 
the quality of life or both. The loss of healthy life years in a population, measured in DALYs, is 
calculated as

DALY = YLL+ YLD� (37)

where YLL is the number of life years lost due to mortality and YLD is the number of years lived 
with a disability, weighted with a factor between 0 and 1 for the severity of the disability. For 
further details, see Murray (1996). If we think of severity weights as utility functions this is an 
example of the methods for calculating risks introduced in the previous section. The Life Years 
Lost have severity 1 (they are lost completely) and the Years Lived with Disability are a 
combination of any possible categories of illness with associated severities. For many enteric 
illnesses, a specific severity weight is not available. The Global Burden of Disease study 
(Murray, 1996) specifies a mean (median) weight of 0.066 (0.054) for illnesses characterized as 
“watery diarrhea”. Similar measures (Quality Adjusted Life Years) are commonly used in 
Medical Technology Assessment and Medical Decision Making to quantify the utility of 
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different options in a decision model (Murray, 1996). DALYs fulfill a similar role in decisions 
about the cost–effectiveness of intervention strategies in the drinking water or food chain, or 
to balance risks of interventions that reduce one kind of risk but increase another (Havelaar et 
al., 2000). Likewise, DALYs can be used as a rational, integrated measure of public health 
impact when defining Drinking Water or Food Safety Objectives. For health effects with impact 
over a very long period discounting of DALYs may be used, reducing the calculated numbers of 
DALYs by a certain yearly fraction, thereby reducing the influence of effects that are remote in 
time. For instance, future life years may be weighted less when they are further in the future. 
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7	 Computational QMRA tools

A computational tool with a user-friendly interface to conduct QMRA may provide decision 
makers and other stakeholders, including experts and students, an open and science-based 
tool to predict infection and/or illness risks from exposure to pathogens in food or water 
routinely. 

Based on experience with QMRAspot (Schijven et al., 2011), ideally, the tool has the following 
characteristics:
•	 The tool contains a probabilistic risk assessment, multiplicative model with functions for 

estimating factors from user provided surveillance data.
•	 For a set of index pathogens, the model computes infection and/or illness risks including 

variability and uncertainty in any contributing factor.
•	 In case of user-provided data, like from monitoring programs, maximum likelihood 

estimation assesses distribution parameter values. 
•	 In the case of absent data or when data provide insufficient information, there is a well-

described procedure for choosing default parameters, based on experience in deployment of 
the model and from scientific literature. 

•	 The risk outcome can be tested against a standard or legal level, like a health based target.
•	 The focus of the tool is on robustness and stability so that it analyses many data sets well. 
•	 The tool requires no extensive prior knowledge about QMRA by the user, because the tool 

provides guidance to the user on the quantity, type and format of raw data and performs  
a complete and automated analysis of the raw data.

•	 The uniform approach promotes proper collection and usage of raw data and, warrants 
quality of the risk assessment as well as enhances efficiency, i.e., less time is required.

•	 The tool must be transparent and science-based, and, therefore rely on publications in 
peer-reviewed journals, as well as have a (online) manual including the executable code,  
its use and detailed explanation of the risk assessment model.

•	 Workshops should be organised to train users. The interactive tool itself is educational.
•	 Version control should follow quality control standards. Corrections to operational versions 

are guided by feedback from users and by analysing the expanding database of tested 
surveillance data.

•	 The tool and manual provide directions for feedback, to record comments, 
recommendations, and to catch errors.

•	 Results are displayed as graphs (time series, histograms, pdfs) and tables (mean, quantiles).
•	 The tool produces a QMRA report including data, distribution parameter values, and risk 

outcomes for documentation.
•	 The tool contains some “tornado” chart of correlation of calculated risk with contributing 
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factors for sensitivity analysis.
•	 Functionality is in place to have users compare different scenarios, e.g. adding nonzero 

observations to a set of occurrence data without any positives; adding or removing 
treatment stages, or modifying existing stages.

•	 The studies providing the basic information for the submodels on occurrence, detection 
efficiency, treatment effects, and dose response have dealt with uncertainty (in conjuction 
with variability) and compared different models to address model uncertainty (cited).

•	 The tool is freely available
•	 Continual updating is warranted by internal and external feedback communicated by users 

(in routine use, but also in courses and individual use. The review and update activities are 
coordinated by the main author (and contact).

•	 	A user-friendly interface, the guidance in data collection, the provision of default values,  
a user-manual, workshops and courses make the risk assessment tool highly educative.

Below a non-exhaustive list of existing QMRA tools is given:

•	 www.foodrisk.org
•	 https://foodrisklabs.bfr.bund.de/foodrisk-labs/
•	 ILSI report (Basset et al., 2012)
•	 QMRAspot (Schijven et al., 2011) covers most of the abovementioned characteristics. 

QMRAspot has been developed to calculate infection risks by consumption of waterborne 
pathogens in drinking water. It does not include an uncertainty analysis.

•	 FDA-iRISK is an online tool from the Food and Drug Administration (FDA) for constructing 
risk models and estimating health burden. (Chen et al., 2013)

•	 The Interactive online catalogue on risk assessment (ICRA) is an open repository for risk 
assessment models (http://www.icra-edu.org). It currently includes several models regarding 
bacteria in meat and eggs.

•	 MicroHibro is an online tool for microbial risk assessment in vegetables and meat. A draft 
manual is also available (www.microhibro.com).

•	 The World Health Organization (WHO) and Food and Agricultural Organization (FAO) link to  
a few tools regarding: Cronobacter in infant formula; Campylobacter and Salmonella in 
chicken; and assessment of sampling plans..

•	 R Packages for Risk Assessment (Pouillot and Delignette-Muller). Two R1 packages 
specifically developed to help risk assessors in their projects are now available: 
“fitdistrplus”, gathers graphical and statistical tools for choosing and fitting distributions. 
“mc2d”, helps to build and study two-dimensional (or second-order) Monte-Carlo 
simulations. 

•	 The QMRA package in R (Brecht, 2016 )provides mMaximum-likelihood and Bayesian 
parametric methods for exposure and dose-response assessment.

The list non-exhaustive because it is meant as a starting point for a “rolling revision” type of 
updates and as examples.

http://www.foodrisk.org
https://foodrisklabs.bfr.bund.de/foodrisk-labs/
http://www.icra-edu.org
http://www.microhibro.com
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