

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Disease burden of **food-related** pathogens in the Netherlands, 2022

RIVM letter report 2023-0400 E. Benincà et al.

Disease burden of food-related pathogens in the Netherlands, 2022

RIVM letter report 2023-0400

Colophon

© RIVM 2024

Parts of this publication may be reproduced, provided acknowledgement is given to: National Institute for Public Health and the Environment, along with the title and year of publication.

RIVM attaches a great deal of importance to the accessibility of its products. However, it is at present not yet possible to provide this document in a completely accessible form. If a part is not accessible, it is mentioned as such. Also see www.rivm.nl/accessibility.

DOI 10.21945/RIVM-2023-0400

E. Benincà (author), RIVM R. Pijnacker (author), RIVM I.H.M. Friesema (author), RIVM M. Kretzschmar (author), RIVM E. Franz (author), RIVM L. Mughini Gras (author), RIVM

Contact: Elisa Benincà Zoönosen en Omgevingsmicrobiologie / Voedsel elisa.beninca@rivm.nl

This investigation has been performed by order and for the account of Ministerie van VWS, within the framework of Programma 5

Published by: **National Institute for Public Health and the Environment, RIVM** P.O. Box1 | 3720 BA Bilthoven The Netherlands <u>www.rivm.nl/en</u>

Synopsis

The burden of disease of food-related pathogens in the Netherlands in 2022

Each year, RIVM investigates how many people become sick or die from gastrointestinal infections. To this end, we look at 14 pathogens that can cause such infections. They are mainly transmitted through food (around 41 per cent). People can also come into contact with these pathogens in the environment (through surface water, for example) or through animals or other people.

The burden of disease of these 14 pathogens was higher than in 2021 and 2020, but still a bit lower than in 2019, the year in which the COVID-19 pandemic began. This increase means that the burden of disease is almost back to pre-COVID-19 levels.

The burden of disease is expressed in Disability Adjusted Life Years (DALYs), an international measure for the number of healthy years of life that are lost due to disability or premature mortality. The total number of DALYs resulting from these 14 pathogens in 2022 (10,000 DALYs) was higher than in 2021 (9,100 DALYs) and 2020 (7,300 DALYs). However, the number of DALYs was slightly lower than in 2019 (11,000 DALYs). The fraction of the burden of disease attributable to foodborne pathogens in 2022 was estimated to be 4,300 DALYs. This was somewhat higher than in 2021 (4,200 DALYs) and 2020 (3,600 DALYs), but slightly lower than in 2019 (4,600 DALYs).

The total cost associated with the burden of disease in 2022 was estimated at 478 million euros. This was much higher than in 2021 (397 million euros) and 2020 (317 million euros), but slightly lower than in 2019 (480 million euros). The estimated cost includes the direct medical costs, for example in hospitals, as well as the costs incurred by the patients and families, such as travelling expenses. It also includes the costs incurred in other sectors, for example as a result of work absenteeism. The cost due to gastrointestinal infections resulting from foodborne pathogens in 2022 (201 million euros) was higher than in 2021 (189 million euros) and 2020 (173 million euros), but slightly lower than in 2019 (208 million euros).

The Ministry of Health, Welfare and Sport commissioned this research. The results provide policymakers with insight into the burden of disease and the various ways in which people can acquire an infection with foodrelated pathogens. This research also allows to monitor possible trends in time of the burden of disease caused by foodborne infections, as well as of the associated costs.

Keywords: food-related disease, burden of disease, DALY, costs

RIVM letter report 2023-0400

Publiekssamenvatting

Ziektelast van voedseloverdraagbare ziekteverwekkers in Nederland in 2022

Het RIVM brengt elk jaar in kaart hoeveel jaren mensen een slechte gezondheid hebben of eerder overlijden (ziektelast) door een infectie van de maag of darm. We hebben hiervoor naar 14 ziekteverwekkers gekeken die deze infecties kunnen veroorzaken. Ze worden vooral via voedsel overgedragen (ongeveer 41 procent). Mensen kunnen er ook via het milieu, zoals via oppervlaktewater, via dieren of andere mensen mee in aanraking komen.

De ziektelast door de 14 ziekteverwekkers was hoger dan in 2021 en 2020, maar nog wel iets lager dan in 2019, het jaar voordat de coronapandemie begon. Deze stijging geeft aan dat de ziektelast bijna terug is op het niveau van vóór COVID-19.

Voor de ziektelast wordt een internationale maat gebruikt: DALY's (Disability Adjusted Life Years). De bijdragen van de verschillende routes waardoor mensen besmet raken, verschillen per ziekteverwekker. Het totaal aantal DALY's dat deze 14 ziekteverwekkers in 2022 (10.000 DALY's) veroorzaakten, was hoger dan in 2021 (9.100 DALY's) en in 2020 (7.300 DALY's). Het was wel iets lager dan in 2019 (11.000 DALY's). Het deel van de ziektelast dat in 2022 aan voeding wordt toegeschreven, is geschat op 4.300 DALY's. Dat is wat hoger dan in 2021 (4.200 DALY's) en in 2020 (3.600 DALY's), maar iets lager dan in 2019 (4.600 DALY's).

De totale kosten van deze ziektelast in 2022 zijn geschat op 478 miljoen euro. Dat is veel hoger dan in 2021 (397 miljoen euro) en in 2020 (317 miljoen euro), maar iets lager dan in 2019 (480 miljoen euro). De geschatte kosten omvatten de directe medische kosten, zoals voor ziekenhuisopname, en de indirecte kosten die de patiënten en families maken, zoals reiskosten. Hieronder vallen ook de kosten die in andere sectoren worden gemaakt, bijvoorbeeld door ziekteverzuim. De kosten als gevolg van maag-darminfecties via voeding waren in 2022 (201 miljoen euro) hoger dan de 189 miljoen euro in 2021 en de 173 miljoen euro in 2020 maar iets lager dan in 2019 (208 miljoen euro).

Het ministerie van VWS heeft de opdracht voor dit onderzoek gegeven. De resultaten bieden beleidsmakers handvatten om meer zicht te krijgen op de ziektelast en de manieren waarop mensen met de ziekteverwekkers in contact komen. Ook geeft het een beeld hoe de ziektelast van voedselinfecties en kosten ervan zich door de jaren heen ontwikkelen.

Kernwoorden: voedsel-gerelateerde ziekte, ziektelast, DALY, kosten

Contents

Introduction - 9

1 Methods - 11

- 1.1 Trend information -11
- 1.2 Burden of diseasev12
- 1.3 Cost of illness -13
- 1.4 Attribution -13

2 Results - 15

- 2.1 Trend information - 15
- 2.2 Number of incident cases -16
- Disease burden by pathogen 19 Cost-of-illness by pathogen 21 2.3
- 2.4

3 **Overall conclusions – 29**

References — 31 4

Annex Detailed results - 33

Introduction

Foodborne infections encompass acute and chronic syndromes with varying duration and severity, as well as mortality. Risk-based food safety management (i.e. decisions on control, prevention and surveillance) requires a consistent, quantitative assessment of the relative public health importance of foodborne diseases [1]. As such, we express the public health impact of foodborne pathogens in burden of disease (BoD) and cost-of-illness (CoI). The methodology that is used to estimate the burden of disease (in terms of Disability Adjusted Life Years (DALY)) is described in detail in another study [1], and in the disease burden report of food-related pathogens over the year 2015 [2].

Since 2008, the RIVM regularly publishes estimates of the number of incident cases, burden of disease, and costs of food-related infectious disease on its webpages¹, and since 2010 in publicly available reports (e.g. [3, 4]). In the current report, trend information on disease incidence, demographics, and consumer price index (a measure for changes in price levels of consumer goods and services) were used to update the information to the year 2022. From 2019 onwards, the BoD and CoI for toxin-producing bacteria *Bacillus cereus, Clostridium perfringens* and *Staphylococcus aureus* were no longer estimated due to the absence of recent national surveillance data for these pathogens. However, these three pathogens were included in the tables and figures regarding the overall estimates (based on data from previous years [4]), to ensure comparability of the total burden and costs with previous years.

RIVM letter report 2023-0400

1 Methods

1.1 Trend information

Data on the size and age distribution of the Dutch population (Table 1), as well as mortality risks and the number of live births and stillbirths (Table 2) were obtained from Statistics Netherlands².

Age group	2022	2021	2020	2019	2018
0	179,133	168,270	169,497	168,443	169,566
1-4	685,520	689,356	691,975	697,619	698,533
5-11	1,288,551	1,281,948	1,293,205	1,294,145	1,303,023
12-17	1,184,960	1,171,648	1,182,568	1,197,548	1,214,974
18-64	10,764,428	10,706,658	10,677,785	10,610,404	10,555,872
65+	3,313,251	3,457,535	3,392,555	3,314,004	3,239,116
Total	17,415,843	17,475,415	17,407,585	17,282,163	17,181,084

Table 1 Population in the Netherlands by age group, 2018-2022.

Table 2 Live births by age of mothers in the Netherlands, 2018-2022

TUDIC Z LIVE DITUIS DY									
Age of mother	2022*	2021	2020	2019	2018				
-19	635	715	876	915	950				
20-24	9414	9899	10,015	10,685	11,223				
25-29	44,741	45,289	43,666	45,300	45,974				
30-34	78,488	75,904	70,258	69,205	68,110				
35-39	40,339	39,153	35,868	35,732	34,715				
40-44	8296	8007	7,571	7,356	7,089				
45+	450	474	427	487	464				
Total	182,362	179,441	168,681	169,680	168,525				

* Estimates based on observed trend data from 2019-2021

Trend information on the incidence of gastro-enteritis (GE) by pathogen in the general population and consulting the general practitioner was obtained from the following sources:

- Campylobacter spp.: RIVM ISIS-AR laboratory surveillance.
- Non-typhoidal Salmonella spp.: RIVM laboratory surveillance.
- Shiga-toxin producing *Escherichia coli* O157 (STEC O157): mandatory notification and laboratory surveillance.
- Perinatal and acquired listeriosis: mandatory notification and laboratory surveillance.
- Norovirus: estimated norovirus-associated hospitalized cases derived from RIVM laboratory surveillance.
- Rotavirus: RIVM laboratory surveillance.
- Hepatitis A virus: mandatory notification and laboratory surveillance.
- Hepatitis E virus: RIVM laboratory surveillance.
- Cryptosporidium spp.: RIVM laboratory surveillance data since 2013 until 2018, for 2019 the incidence is estimated based on observed trend from 2016-2018. The incidence in 2020 is based on observed (2017-2018) and estimated (2019) trend data from 2017-2019. The incidence in 2021 is based on observed (2018)

and estimated (2019-2020) trend data from 2018-2020. The incidence in 2022 is based on estimated trend data from 2019-2021. Although nationally representative data are not available anymore, the incidence data for *Cryptosporidium* spp. from three peripheral diagnostic laboratories is available and shows a strong decrease in 2020 compared to previous years. We used this rate of decrease (i.e., COVID-19 rescaling factor for 2020) to rescale the estimated 2020 incidence. As incidence data from the three peripheral diagnostic laboratories was not available for 2021 and in 2022, we looked at the increase in *Salmonella* incidence from 2020 to 2021 and from 2020 to 2022 and assumed the same increase for *Cryptosporidium* spp. (i.e., COVID-19 rescaling factor for 2021) and for 2022).

- *Giardia* spp.: a stable incidence was assumed since 2007 (i.e. the last year of RIVM laboratory surveillance data for *Giardia* spp.). Because the incidence of *Giardia* spp. follows similar trends as the incidence of *Cryptosporidium* spp., we assumed for *Giardia* spp. incidence in 2020, 2021 and 2022 the same trend as the one observed for *Cryptosporidium* spp. in 2020, 2021 and in 2022.
- No trend information was available for the GE toxin-producing bacteria (*Bacillus cereus*, *Clostridium perfringens* and *Staphylococcus aureus*), and toxoplasmosis. For the latter, trends in reported fatalities are included.

Trends in hospitalizations for gastro-enteritis as primary cause (ICD codes 20-93; 558.9) were obtained from the Dutch Hospital Data (DHD) for 2011-2014. Since 2015 the number of hospitalized patients is indirectly estimated from the observed time series of RIVM laboratory surveillance data on rotavirus, norovirus, campylobacteriosis, and salmonellosis. Because a substantial part of the estimated hospitalisations is due to other pathogens than those four, we corrected the baseline number of hospitalizations (i.e. hospitalizations due to other pathogens). This was done by downscaling the baseline with the average decrease in the number of cases of rotavirus, norovirus, campylobacteriosis and salmonellosis.

Excess mortality risks from campylobacteriosis and salmonellosis were assumed constant across the years. Fatalities due to listeriosis and STEC O157 were obtained from surveillance data based on mandatory notification to RIVM. Age-specific case fatality ratios for norovirus and rotavirus, originally obtained from German surveillance data, and for protozoan pathogens, originally obtained from the international literature, were assumed constant throughout the years (changes in years of life lost therefore reflect changes in incidence on which mortality is based).

1.2 Burden of disease

The method for the burden of disease calculations, in terms of Disability Adjusted Life Years (DALYs), was not changed since 2018 (i.e. reporting over 2017) [3].

1.3 Cost of illness

The method for CoI estimates was not changed since the 2019 report [5-7]. The cost prices used for the different resources were updated to 2022 euros using consumer price indexes as provided by Statistics Netherlands³.

1.4 Attribution

The fraction of human cases of enterically transmitted illness by five major pathways (food, environment, direct animal contact, human-human transmission, and travel) and by 11 groups within the food pathway was estimated using structured expert elicitation and is described in detail in Havelaar et al. [8]. For four pathogens (i.e. *Salmonella* spp., *Listeria monocytogenes, Campylobacter* spp. and STEC 0157) we did not use the estimates from the aforementioned expert elicitation, but we used the average attributable fractions estimated by a novel Bayesian statistical model that integrates the attribution estimates from the expert elicitation with attribution estimates based on empirical data from microbial subtyping and case-control studies [9]. To allow for comparison with earlier results, we also updated the attribution estimates by applying the same novel Bayesian statistical model.

RIVM letter report 2023-0400

2 Results

2.1 Trend information

Trend information for the last five years for specific pathogens is presented in Table 3. For trend information since 1999 for the 14 pathogens, see Annex - Table A.1.

A summary of trends is discussed below:

- The incidence of campylobacteriosis (laboratory confirmed cases) is slightly higher in 2022 than in 2021 and in 2020, i.e. 27 cases per 100,000 inhabitants compared to 24 cases per 100,000 inhabitants and 23 cases per 100,000 inhabitants in 2021 and in 2020 respectively.
- The incidence of salmonellosis (laboratory confirmed cases) is with 7 cases per 100,000 inhabitants slightly higher than in 2021 (6 cases per 100,000 inhabitants) and in 2020 (5 cases per 100,000 inhabitants).
- The estimated incidence of *Cryptosporidium* spp. in 2022 resulted in 6 cases per 100,000 inhabitants which is slightly higher than in 2021 (4 cases per 100,000 inhabitants) and in 2020 (2 cases per 100,000 inhabitants).
- The incidence of gastroenteritis by rotavirus (laboratory confirmed cases) in 2022 (21 per 100,000 inhabitants) was higher than in 2021 (13 per 100,000 inhabitants) and much higher than in 2020 (5 per 100,000 inhabitants).
- The incidence of gastroenteritis by norovirus (laboratory confirmed cases) was with 27 cases per 100,000 inhabitants much higher than in 2021 (19 cases per 100,000 inhabitants) and in 2020 (11 per 100,000 inhabitants).
- The incidence of acquired listeriosis (laboratory confirmed cases, active surveillance) was with 94 cases in 2022 higher than in 2021 (82 cases) but equal to 2020 (94 cases). The recorded fatalities increased from 11 cases in 2021 to 12 cases in 2020, but they were much lower than in 2020 (18 cases).
- The incidence of perinatal listeriosis (laboratory confirmed cases, active surveillance) decreased from 12 cases in 2021 to 8 cases in 2022. The incidence in 2022 was much higher than in 2020 (2 cases). The number of fatalities also decreased from 4 cases in 2021 to 2 cases in 2021. The number of cases of perinatal listeriosis in 2022 was higher than in 2020 (0 cases).
- The incidence of STEC 0157 (laboratory confirmed notified cases, surveillance) in 2022 was 71 cases, of which 17 were hospitalized, and was higher than in 2021 (55 cases, 22 hospitalized) and in 2020 (36 cases, 13 hospitalized). The number of patients with HUS was with 3 cases in 2022 lower than in 2021 (4 cases) but higher than in 2020 (0 cases).
- The incidence of hepatitis A virus (notified cases, surveillance) was 93 reported cases and 30 hospitalized cases in 2022. This is higher than in 2021 (78 reported cases and 23 hospitalized) and in 2020 (50 reported cases and 12 hospitalized).
- With 1 case per 100,000 inhabitants, the incidence of hepatitis E virus (laboratory confirmed cases) in 2022 was equal to the

incidence reported in 2021 but was lower than the incidence reported in 2020 (2 cases per 100,000 inhabitants).

• The number of patients that were admitted to the hospital due to GE was estimated to be 21.224 which was higher than the 15.824 estimated in 2021 and the 10.838 estimated in 2020.

Table 3 Trends in incidence per 100,000 inhabitants and reported cases, respectively, of food-related pathogens, 2018-2022.

		2018	2019	2020	2021	2022
<i>Campylobacter spp.ª</i> (x 100,000 inhabitants)		35	35	23	24	27
Salmonella spp. ^a (x 100,000 inhabitants)		9	9	5	6	7
<i>Cryptosporidium spp.^a</i> (x 100,000 inhabitants)		10	8	2	4	6
Rotavirus ^a (x 100,000 inhabitants)		17	16	5	13	21
Norovirus ^a (x 100,000 inhabitants)		27 ^c	25 ^c	11 ^c	19 ^c	27 ^c
Acquired listeriosis ^b		71	113	94	82	94
(Total reported cases)	Fatal	4	16	18	11	12
Perinatal Listeriosis ^b		7	4	2 ^d	12	8
(Total reported cases)	Fatal	2	0	0	4	2
STEC 0157 ^b		59	35	36	55	71
(Total reported cases)	Hospitalized	23 ^e	13	13	22	17
Hepatitis A virus ^b		188 ^g	166	50	78	93
(Total reported cases)	Hospitalized	57 ⁱ	135 ^j	12 ^k	23 ¹	30
<i>Hepatitis E virus ^a</i> (x 100,000 inhabitants)		2	2	2	1	1

Notes: a) Incidences per 100,000 habitants are presented in italics and the presented numbers are rounded: \geq 10 to two significant figures (e.g. 12.5 = 12) and <10 to 1 significant figure (e.g. 0.89=0.9); b) reported cases; c) estimated norovirus-associated hospitalized cases derived from RIVM laboratory surveillance data and therefore not directly comparable to numbers from before 2012; d) one twins; e) known for 58/59 cases; f) ~ 275 cases are (in)directly linked to an international outbreak in men having sex with men (MSM); g) 65 cases are (in)directly linked to an international outbreak of MSM h) known for 368/374 cases; i) known for 187/188 cases; j) known for 159/166 cases; k) known for 47/50 cases; l) known for 76/78 cases.

2.2 Number of incident cases

Ten of the selected pathogens (i.e. *Campylobacter* spp.; STEC 0157; *Salmonella* spp.; all three toxin-producing bacteria; norovirus; rotavirus; *Cryptosporidium* spp.; *Giardia* spp.) cause mainly acute gastroenteritis. The other four pathogens (i.e. *Listeria monocytogenes; Toxoplasma gondii*; hepatitis A virus; hepatitis E virus) cause also other diseases (e.g. meningitis, sepsis, hepatitis). The estimated number of incident cases of (acute) gastroenteritis by pathogen in 2022 is presented in Table 4. The estimated number of incident cases of diseases by non-gastrointestinal pathogens in 2022 is presented in Table 5. The number of incident cases by the 14 pathogens for the years 2018-2022 is presented in Figure 1 and in Table A.2 in Annex I.

The estimated total number of cases due to the 14 food-related pathogens with 1,599,000 cases in 2022 was higher than in 2021

(1,287,000 cases) and in 2020 (963,000 cases). The total number of estimated cases was even higher than the number of cases estimated in 2019 (1,570,000) the year preceding the Covid-19 pandemic.

Table 4 Mean estimated number of incident cases and 95% uncertainty interv	'al
(between brackets) of gastroenteritis by pathogen in the Netherlands, 2022.	

Pathogen	Number	Fatal cases [#]		
	General	GP visit	Hospitalised	
	population	(x 1,000)	(x 1,000)	
	(x 1,000)			
All causes	4,900	230	23	NA [#]
	(4,100-5,800)	(71-540)	-	
Bacteria – infec	tious			
Campylobacter	57	14	1	38
spp.				
	(7-160)	(7-26)	(0.41-2)	(25-53)
STEC 0157	2	0	0.02	4
	(0.21-9)	(0-0)	(0.02-0.02)	(2-7)
Salmonella spp.	23	3	1	20
	(2-70)	(2-6)	(0.52-2)	(18-23)
Bacteria – toxin	producing			· · ·
Bacillus cereus	53	7	0.22	0
	(18-130)	(2-21)	(0.07-0.53) 0.31	(0-0)
Clostridium	170	32	0.31	5
perfringens				
	(57-380)	(7-85)	(0.11-0.65)	(0.1-19) 7
Staphylococcus aureus	290	41	1	7
	(130-560)	(12-100)	(0.65-3)	(0.16-29)
Viruses				· · ·
Norovirus	620	14	2	70
	(420-900)	(8-23)	(1-3)	(29-130)
Rotavirus	270	16	6	48
	(130-490)	(10-25)	(4-8)	(15-110)
Protozoa				, <i>,</i>
Cryptosporidium spp.	48	3	0.41	3
	(15-120)	(1-5)	(0.16-0.83)	(0.06-13)
Giardia spp.	55	5	0.3	2
	(27-110)	(3-9)	(0.03-0.93)	(0.04-6)

#Presented numbers are rounded: ≥ 100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and ≥10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Pathogen	C	r of incident cases (95% CI)	Fatal cases mean (95% CI)		
Listeria					
monocytogenes					
Perinatal	8		2		
Acquired	94		12		
Hepatitis A virus [#]	460	(290-730)	1	(0.87-2)	
Hepatitis E virus [#]	760	(450-1200)	9	(3-19)	
Toxoplasma gondii#					
Congenital	370	(190-650)	13	(8-21)	
Acquired**	430	(200-740)	0		

Table 5 Mean estimated number of incident cases and 95% uncertainty interval (between brackets) of non-gastrointestinal pathogen in the Netherlands, 2022.

*No uncertainty because Listeria cases were acquired through surveillance. The reported number of cases of listeriosis includes only cases with systemic symptoms. Mild cases of listeriosis are not monitored and the number is thus unknown. ; ** chorioretinitis only. #The presented numbers are rounded: ≥10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

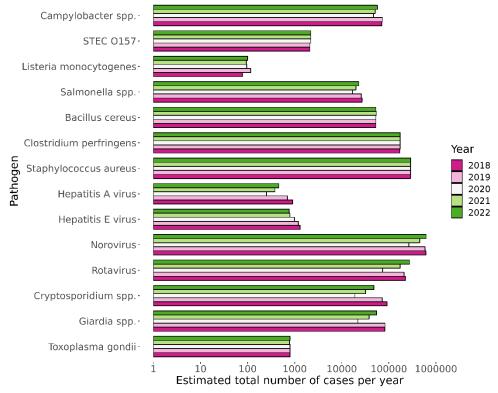


Figure 1 Comparison of mean estimated number of incident cases of foodrelated pathogens, 2018-2022.

The total number of estimated fatal cases due to foodborne disease in 2022 was higher than in 2021 and in 2020 (230 fatal cases in 2022 compared to 200 fatal cases in 2021 and to 163 fatal cases in 2020), but was slightly lower than in 2019 (245 fatal cases) (see Table A.3 in Annex).

2.3 Disease burden by pathogen

Table 6 presents the estimated burden of disease by pathogen for the total Dutch population in 2022, expressed as DALY per 100,000 inhabitants and DALY per case, both undiscounted and discounted with 1.5% rate.

The total disease burden of the 14 pathogens in 2022 is estimated at 10.000 DALYs and is higher than in 2020 and in 2021 but slightly lower than in the years preceding the pandemic (Table A.4 in Annex). For example, compared with 2021, an increase in disease burden was found for *Campylobacter* spp. (+200 DALYs), *Salmonella* spp. (+60 DALYs), norovirus (+600 DALYs), rotavirus (+580 DALYs), hepatitis A virus (+8 DALYs) *Cryptosporidium* spp. (+28 DALYs) and *Giardia* spp.(+50 DALYs).

In Figure 2, the contributions to total DALYs of the years lived with disability (YLD) associated with acute infections are shown per pathogen, as well as YLD associated with sequelae and years of life lost (YLL) due to premature mortality. YLD associated with acute infections contributed with 14% to the total disease burden; YLD associated with sequelae/residuals contributed 35% and YLL 51% of the total disease burden. The distribution between the different categories varied between pathogens (see Figure 2 for details).

Pathogen	DALY	(/year	DALY per 10	00,000/year	DALY per case		
Discount rate	0%	1.5%	0%	1.5%	0%	1.5%	
Bacteria – infectious			•				
Campylobacter spp.	2500	2300	15	13	0.04	0.04	
STEC 0157	150	120	0.87	0.68	0.07	0.05	
Salmonella spp.	960	850	6	5	0.04	0.04	
L. monocytogenes (perinatal)	230	130	1	0.75	29	16	
L. monocytogenes (acquired)	100	98	0.59	0.56	1	1	
L. monocytogenes (total)	330	230	2	1	3	2	
Bacteria – toxin producing							
Bacillus cereus	32	32	0.19	0.19	0.001	0.001	
Clostridium perfringens	200	190	1	1	0.001	0.001	
Staphylococcus aureus	220	210	1	1	0.001	0.001	
Viruses							
Norovirus	2000	1800	11	10	0.003	0.003	
Rotavirus	1500	1300	8	7	0.005	0.005	
Hepatitis A virus	50	40	0.29	0.23	0.11	0.09	
Hepatitis E virus	300	240	2	1	0.39	0.31	
Protozoa							
Cryptosporidium spp.	84	80	0.48	0.46	0.002	0.002	
Giardia spp.	150	140	0.84	0.83	0.003	0.003	
Toxoplasma gondii (congenital)	1700	990	10	6	5	3	
Toxoplasma gondii (acquired)	290	210	2	1	0.66	0.49	
Toxoplasma gondii (total)	2000	1200	12	7	3	1	

Table 6. Mean total DALY per year, DALY per 100,000 inhabitants and DALY per case of illness in the Netherlands, 2022.

Presented numbers are rounded: \geq 100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure(e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

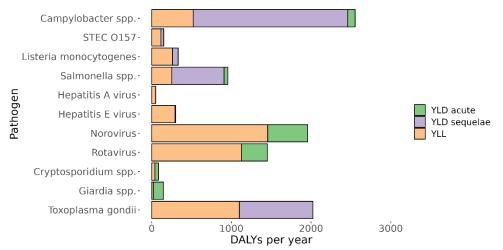
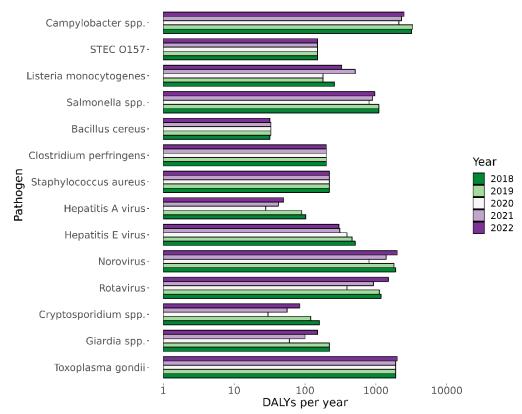



Figure 2 Mean DALY per year of food-related pathogens in 2022, split up into YLD associated with acute infections; YLD associated with sequelae and YLL.

The mean disease burden by the 14 pathogens for the years 2018-2022 is presented in Figure 3 and in Table A.4 in Annex.

Figure 3 Comparison of disease burden (undiscounted DALYs) of food-related pathogens in 2018-2022.

2.4 Cost-of-illness by pathogen

The total CoI in 2021 (478 M \in ; discounted at 4%) was higher than in 2021 (397 M \in ; discounted at 4%) and in 2020 (317 M \in ; discounted at 4%), but still lower than the years preceding the COVID-19 pandemic

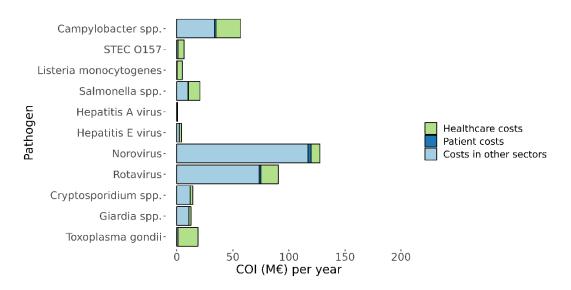

(Table 7, Figures 4-5, and Annex Table A.5). The four pathogens causing the largest CoI were norovirus (128 M€), rotavirus (91 M€), *Staphylococcus aureus* toxin (72 M€) and *Campylobacter* (57 M€). The lowest contribution to the CoI was by hepatitis A virus (0.9 M€). The largest changes in CoI compared to 2021 were for norovirus (+33 M€ and rotavirus +29 M€). The average cost per case was largest for perinatal *Listeria monocytogenes* infections (258,000 €/case).

Table 7 Estimated mean total costs of illness (COI), mean COI per 100,000 inhabitants and mean COI per case of illness in the Netherlands, 2022.


inhabitants and mean COI per case of illness in the Netherlands, 2022.									
Pathogen	COI/' (M€	-	COI per 100,000 (k€)*		COI per case (€)*				
Discount rate	0%	4%	0%	4%	0%	4%			
Bacteria – infectious									
Campylobacter spp.	62	57	350	330	1,100	1,000			
STEC 0157	13	7	74	38	5,900	3,000			
Salmonella spp.	22	21	130	120	960	900			
L. monocytogenes (perinatal)	6	2	34	12	735,000	258,000			
L. monocytogenes (acquired)	3	3 5	18	17	32,000	31,000			
L. monocytogenes (total)	9	5	51	28	88,000	48,000			
Bacteria – toxin producing									
Bacillus cereus	13	13	75	75	250	250			
Clostridium perfringens	35	35	200	200	200	200			
Staphylococcus aureus	72	72	410	410	250	250			
Viruses									
Norovirus	130	130	730	730	210	210			
Rotavirus	91	91	520	520	330	330			
Hepatitis A virus	0.8	0.8	5	5	1,900	1,900			
Hepatitis E virus	4	4	23	23	5,400	5,400			
Protozoa									
Cryptosporidium spp.	14	14	83	83	300	300			
Giardia spp.	13	13	73	73	230	230			
Toxoplasma gondii (congenital)	55	17	310	100	148,000	47,000			
Toxoplasma gondii (acquired)	1	1	8	8	3200	3200			
Toxoplasma gondii (total)	56	19	320	110	70,000	23,000			

Used abbreviations: million $\in (M \in)$; 1000 $\in (k \in)$. * Total COI per year are presented in million $\in (M \in)$ and if less than 1 million rounded to 1 significant figure (e.g. 0.0023 million =0.002). COI per 100,000 and COI per case are rounded: \geq 100,000 to three significant figures (e.g. 123,256 = 123,000 or 123 k \in); between <100,000 and \geq 10 to two significant figures (e.g. 1,325 = 1,300 or 1.3 k \in). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

In Figure 4, the mean CoI per year was split up in healthcare costs, patient/family costs and costs in other sectors. The latest were mostly productivity losses of patients and caregivers being absent from work. Healthcare costs accounted for 21% of the total costs for the 14 pathogens, patient/family costs for 2% and costs in other sectors accounted for 77%. The distribution between the different cost categories varied between pathogens.

Figure 4 Mean cost-of-illness (discounted) per year of food-related pathogens in 2022, split up into healthcare costs, patient costs and costs in other sectors.

The mean CoI estimates per pathogen for the years 2018-2022 is presented in Figure 5 and in Table A.5 in Annex.

Figure 5 Comparison of cost-of-illness ($M \in$, discounted at 4% and expressed in 2022 euros) of food-related pathogens in 2018-2022.

Attribution

The attribution results for the DALYs and CoI in 2022 are presented in Table 8 for the main pathways and in Table 9 for the different food groups. More details can be found in the Tables A.6–A.13 of the Annex. Foodborne disease burden accounted for 43% of the total burden (i.e. 4,300 DALYs of the total burden of 10,000 DALYs per year), and 42% of the total CoI (i.e. 201 M€ of the 478 M€). About 56% of the foodborne burden was associated with meat (i.e. poultry, pork, beef & lamb). These foods were also estimated to cause 42% of all food-related fatal cases, indicating that the pathogens associated with these foods are considered to cause more severe infections than pathogens associated with other foods. The attributions are estimated using the proportions from the expert elicitation of Havelaar et al. [8]. For four pathogens (i.e. Salmonella spp., Listeria monocytogenes, Campylobacter spp. and STEC O157), however, we did not use the estimates from the aforementioned expert elicitation, but we used the average attributable fractions estimated by a novel Bayesian statistical model that integrates the attribution estimates from the expert elicitation with attribution estimates based on empirical data from microbial subtyping and casecontrol studies [9].

The attribution results for incidence, number of fatal cases, DALYs and CoI estimates of foodborne diseases for the years 2018-2022 are presented in Tables 10-13. The foodborne disease burden increased by 100 DALYs from 4,200 DALYs in 2021 to 4,300 DALYs in 2022. The CoI increased by 12M€ from 189 M€ in 2021 to 201 M€ in 2022.

Table 8 Attribution of the mean estimated number of incident cases, fatalities, disease burden and cost-of-illness of foodborne disease^a to the major transmission pathways in the Netherlands, 2022.

Main pathway	Food	Environment	Human	Animal	Travel	Total
Number of incident cases (per year) ^b	654,000	187,000	553,000	71,000	135,000	1,599,000
Number of fatal cases (per year) ^b	81	35	73	14	30	230
Disease burden (DALY, undiscounted) ^b	4,300	1,900	2,300	660	1,300	10,000
Disease burden (DALY, discounted (1.5%)) ^b	3,500	1,400	2,000	560	1,100	8,600
Cost of illness (M€, undiscounted) ^c	231	78	142	28	53	531
Cost of illness (M€, discounted (4%)) ^c	201	63	140	25	49	478

a) Due to the 14 pathogens included in this study.

b) Presented numbers are rounded: ≥ 100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and ≥10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).</p>

c) Costs are expressed in million $\in (M \in)$.

Table 9 Attribution of the mean incidence, fatalities, disease burden and cost-of-illness of foodborne disease^a to food group in the Netherlands, 2022.

Food groups	Beef & Lamb	Pork	Poultry	Eggs	Dairy	Fish & shellfish	Produce	Beverages	Grains	Other foods	Humans & animals	Total
Number of incident cases (per year) ^b	111,000	44,000	52,000	19,000	52,000	54,000	38,000	15,000	40,000	121,000	107,000	654,000
Number of fatal cases (per year) ^b	11	9	14	3	7	7	8	2	3	4	13	81
Disease burden (DALY, undiscounted) ^b	740	810	880	130	270	290	310	76	110	200	500	4,300
Disease burden (DALY, discounted (1.5%)) ^b	580	550	760	110	210	250	240	67	97	170	430	3,500
Cost of illness (M€, undiscounted) ^c	40	29	29	6	18	17	15	5	11	31	30	231
Cost of illness (M€, discounted (4%)) ^c	33	18	26	6	16	15	12	4	10	30	29	201

a) Due to the 14 pathogens included in this study

b) Presented numbers are rounded: ≥100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and ≥10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) underascertainment (i.e. being sick without requiring medical help).

c) Costs are expressed in million € (M€)

Pathogen		II	ncidence/yea	r	
	2018	2019	2020	2021	2022
Campylobacter spp.	40,000	41,000	28,000	30,000	32,000
STEC 0157	780	770	850	870	800
Salmonella spp.	12,000	12,000	8,700	10,000	11,000
Listeria monocytogenes	61	92	77	76	82
Bacillus cereus	47,000	48,000	48,000	48,000	47,000
Clostridium perfringens	155,000	157,000	157,000	157,000	157,000
Staphylococcus aureus	251,000	252,000	252,000	252,000	253,000
Norovirus	103,000	98,000	44,000	76,000	103,000
Rotavirus	29,000	27,000	10,000	22,000	36,000
Hepatitis A virus	69	75	62	89	52
Hepatitis E virus	180	160	140	110	100
Cryptosporidium spp.	10,900	8,600	2,200	3,900	5,800
Giardia spp.	11,000	11,000	2,800	4,900	7,200
Toxoplasma gondii	430	430	430	430	450
Total	660,000	655,000	553,000	606,000	654,000

Table 10 Attribution of mean incidence to food in the Netherlands for 2018-
2022, total and by pathogen.

Presented numbers are rounded: \geq 100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure(e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Table 11 Attribution of mean number of fatal cases to food in the Netherlands
for 2018-2022, total and by pathogen.

Pathogen	Number of fatal cases/year								
	2018	2019	2020	2021	2022				
Campylobacter spp.	26	30	21	22	22				
STEC 0157	1	1	2	2	1				
Salmonella spp.	12	11	12	15	9				
Listeria	5	13	15	12	11				
monocytogenes									
Bacillus cereus	0	0	0	0	0				
Clostridium	4	4	4	4	4				
perfringens									
Staphylococcus	6	6	6	6	6				
aureus									
Norovirus	11	11	5	9	12				
Rotavirus	5	5	2	4	6				
Hepatitis A virus	0.2	0.3	0.2	0.3	0.2				
Hepatitis E virus	2	2	2	1	1				
Cryptosporidium spp.	1	1	0	0.2	0.4				
Giardia spp.	0.3	0.3	0.1	0.1	0.2				
Toxoplasma gondii	7	7	7	7	7				
Total	81	90	76	82	81				

Pathogen		DALY (ı	undiscounted)/year	
	2018	2019	2020	2021	2022
Campylobacter spp.	1,800	1,800	1,300	1,400	1,400
STEC 0157	56	56	59	61	56
Salmonella spp.	520	510	400	470	440
Listeria	210	140	140	410	270
monocytogenes					
Bacillus cereus	29	29	29	29	29
Clostridium	180	180	180	180	180
perfringens					
Staphylococcus	190	190	190	190	190
aureus					
Norovirus	320	310	140	240	330
Rotavirus	150	150	50	120	190
Hepatitis A virus	8	8	6	10	6
Hepatitis E virus	71	63	54	43	41
Cryptosporidium spp.	19	15	4	7	10
Giardia spp.	28	29	7	13	19
Toxoplasma gondii	1,100	1,000	1,100	1,100	1,100
Total	4,600	4,600	3,600	4,200	4,300

Table 12 Attribution of mean disease burden (DALY per year, undiscounted) to
food in the Netherlands for 2018-2022, total and by pathogen.

Presented numbers are rounded: \geq 100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Pathogen			per year (4%)							
	(Million €, expressed in 2022 euros)									
	2018	2019	2020	2021	2022					
Campylobacter spp.	39	39	28	30	32					
STEC 0157	4	4	4	4	2					
Salmonella spp.	12	12	9	11	10					
Listeria monocytogenes	2	3	2	3	4					
Bacillus cereus	12	12	12	12	12					
Clostridium perfringens	31	31	31	31	31					
Staphylococcus aureus	62	62	62	62	63					
Norovirus	22	20	10	16	21					
Rotavirus	10	9	4	8	12					
Hepatitis A virus	0.2	0.2	0.0	0.6	0.1					
Hepatitis E virus	1.0	0.8	0.7	0.6	0.6					
Cryptosporidium spp.	3	3	1	1	2					
Giardia spp.	2	2	1	1	2					
Toxoplasma gondii	10	10	10	10	11					
Total	210	208	174	189	201					

Table 13 Attribution of mean COI ($M \in /y$ ear discounted at 4%) to food in the Netherlands for 2018-2022, total and by pathogen

Total COI per year are presented in million \in (M \in) and if less than 1 million rounded to 1 significant figure (e.g. 0.0023 million =0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Overall conclusions

3

This report provides a public health perspective on the burden of 14 food-related pathogens in the Netherlands. The ranking of the foodborne pathogens when using burden of disease metrics is different compared to the ranking based on disease incidence. In 2022, we observed an increase in the number of incident cases for some of the 14 food-related pathogens, especially for norovirus, rotavirus, hepatitis A and *Campylobacter* spp. compared to the year 2020 and 2021.

The total BoD of the 14 food-related pathogens in 2022 (10,000 DALYs) was higher than in 2021 (9,100 DALYs, +10%) and 2020 (7,300 DALYs, +37%), but still lower than pre-COVID-19 pandemic year 2019 (11,000 DALYs, -9%). The fraction of the burden attributable to foodborne transmission in 2022 also increased compared to 2021 (from 4,200 DALYs to 4,300 DALYs; +2%) and in 2020 (3,600 DALYs, +16%), but was also lower than in 2019 (4,600 DALYs, -6%), albeit proportionally less than the overall BoD. Overall, we observed an increase in the burden of disease compared to the year 2020 and 2021 for Campylobacter spp., Salmonella spp., norovirus and rotavirus. In 2022, the disease burden for Campylobacter spp. and Salmonella spp. were almost back at pre-COVID-19 levels. For norovirus and rotavirus, however, the disease burden in 2022 was even higher than the years preceding the COVID-19 pandemic. Listeria was associated with a much lower disease burden in 2022 compared with 2021, but it was higher than the years before 2021.

The total CoI of the 14 food-related pathogens in 2022 was estimated at 478 million euros, which was higher than in 2021 (397 million euros, +20%) and 2020 (317 million euros, +51%). The highest costs were accounted for by norovirus. The costs resulting from infections contracted through food in 2022 (201 million euros) were higher than in 2021 (189 million euros, +6%) and 2020 (173 million euros, +16%). The total COI of *Campylobacter spp.* and *Salmonella spp.* in 2022 were much higher than in 2020 and in 2021 and were slowly increasing towards the levels of pre-COVID-19. The total COI of norovirus and rotavirus were much higher than in 2020 and 2020 and 2021 and were at the same level or even higher than in the pre-pandemic years.

Overall, the disease burden and associated costs caused by the 14 foodrelated pathogens in the Netherlands increased in 2022 as compared to the pandemic years 2021 and 2020, but it was still lower than in 2019, the last year before the COVID-19 pandemic. This indicates that the burden caused by these pathogens is almost back to the pre-COVID-19 levels. RIVM letter report 2023-0400

References

4

- 1. Havelaar, A.H., et al., *Disease burden of foodborne pathogens in the Netherlands, 2009.* Int J Food Microbiol, 2012. **156**(3): p. 231-8.
- 2. Mangen, M.J.J., *Disease burden of food-related pathogens in the Netherlands, 2015*, in *RIVM Letter report 2017-0060*. 2017, National Institute for Public Health and the Environment: Bilthoven. p. 42.
- 3. Mangen, M.J.J., *Disease burden of food-related pathogens in the Netherlands, 2017*, in *RIVM Letter report 2018-0037*. 2018, National Institute for Public Health and the Environment: Bilthoven. p. 52.
- 4. Pijnacker, R., *Disease burden of food-related pathogens in the Netherlands, 2018*, in *RIVM Letter report 2019-0086*. 2019, National Institute for Public Health and the Environment: Bilthoven. p. 50.
- 5. Lagerweij, G.R., et al., *Disease burden of food-related pathogens in the Netherlands, 2019.* 2020: Bilthoven. p. 51.
- 6. Benincà, E., et al., *Disease burden of food-related pathogens in the Netherlands, 2020.* 2021: Bilthoven. p. 50.
- 7. Benincà, E., et al., *Disease burden of food-related pathogens in the Netherlands, 2021*, in 2022, RIVM: Bilthoven. p. 45.
- 8. Havelaar, A.H., A.V. Galindo, D. Kurowicka, and R.M. Cooke, *Attribution of foodborne pathogens using structured expert elicitation.* Foodborne Pathog Dis, 2008. **5**(5): p. 649-59.
- 9. Mughini-Gras, L., et al., *A statistical modelling approach for source attribution meta-analysis of sporadic infection with foodborne pathogens. Zoonoses* and Public Health, 2022.

RIVM letter report 2023-0400

Annex Detailed results

	Table A.1 Trends in incidence per 100,000 inhabitants and reported cases, respectively, of food-related pathogens, 1999-2022.													
Year	Ca ^a	Sa ^a	Cryp ^a	RV ^a	NV ^a	aLm⁵	aLm fatal ^b	pLm ^b	pLm fatal ^b	0157 ^b	O157 hosp ^b	HAV ^b	HAV hosp ^b	HEV ^a
1999	39	21		19	14					32				
2000	42	20		16	13					43				
2001	44	20		18	11					41				
2002	41	15		17	12					49				
2003	33	21		18	13					57				
2004	40	16		15	13					37				
2005	44	13		21	16	85	15	6		53				
2006	40	16		26	17	59	17	5	1	40		258	39	
2007	41	12		20	15	60	12	6	1	83		168	27	
2008	39	16		27	18	51	6	1	1	45		183	35	
2009	44	12		31	18	76	4	3	1	57	21	176	29	
2010	50	14		35	23	73	13	4	1	51	21	262	52	0.8
2011	51	12		24	21	79	4	9	1	65	18 ^d	125	25	0.9
2012	49	21		20	26 ^c	71	8	6	0	85	31 ^e	121	28	1
2013	48	9	6	23	26 ^c	76	7	3	0	90	36 ^f	109	30	0.9
2014	48	9	6	9	25 ^c	92	9	4	2	79	31 ^g	105	23	2
2015	43	9	10	20	27 ^c	69	15	3	1	76	27 ^h	80	23	3
2016	38	11	12	10	33 ^c	89	8	7	4	64	21 ⁱ	81	22	3
2017	33	9	8	16	23 ^c	112	10	3	2	58	23	374 ^k	90 ^m	2
2018	35	9	10	17	27 ^c	71	4	7	2	59	23 ^j	188 ⁱ	57 ⁿ	2
2019	35	9	8	16	25 ^c	113	16	4	0	35	13	166	135°	2
2020	23	5	2	5	11 ^c	94	18	2	0	36	13	50	12 ^p	2
2021	24	6	4	13	19 ^c	82	11	12	4	55	22	78	23 ^q	1
2022	27	7	6	21	27 ^c	94	12	8	2	71	17	93	30 ^r	1

Table A.1 Trends in incidence per 100,000 inhabitants and reported cases, respectively, of food-related pathogens, 1999-2022.

Used abbreviations: Ca: *Campylobacter* spp.; Sa: *Salmonella* spp.; Cryp: *Cryptosporidium* spp.; RV: rotavirus; NV: norovirus; aLm: acquired listeriosis; pLm: perinatal listeriosis: O157: STEC o157; HAV: hepatitis A virus; hosp: hospitalized; HEV: hepatitis E virus.

Notes: a).per 100,000 inhabitants whereby presented numbers are rounded: \geq 10 to two significant numbers (e.g. 12.5 = 12) and <10 to 1 significant number (e.g. 0.89=0.9); b) reported cases; c) estimated norovirus-associated hospitalized cases derived from RIVM laboratory surveillance data and therefore not directly comparable to numbers from before 2012; d) known for 57/65 cases; e) known for 77/85 cases; f) known for 84/90 cases; g) known for 71/79 cases; h) known for 68/76 cases; i) known for 60/64 cases; j) known for 58 out of 59 cases; k) ~ 275 cases are (in)directly linked to an international outbreak in men-having sex with men (MSM); l) 65 cases are (in)directly linked to an international outbreak of MSM m) known for 368/374 cases; n) known for 187/188 cases; o) known for 159/166 cases; p) known for 47/50 cases; q) known for 76/78 cases; r) known for 86/93 cases.

Pathogen	Estimated mean number of incident cases/year							
_	2018	2019	2020	2021	2022			
Campylobacter spp.	71,000	73,000	47,000	51,000	57,000			
STEC 0157	2,100	2,100	2,200	2,200	2,200			
Salmonella spp.	27,000	26,000	17,000	20,000	23,000			
Listeria monocytogenes	78	120	96	94	100			
B. cereus toxin	53,000	53,000	53,000	54,000	53,000			
C. perfringens toxin	171,000	173,000	174,000	174,000	174,000			
S. aureus toxin	288,000	289,000	289,000	289,000	290,000			
Norovirus	615,000	585,000	265,000	453,000	619,000			
Rotavirus	224,000	211,000	74,000	173,000	275,000			
Hepatitis A virus	900	700	200	380	460			
Hepatitis E virus	1,300	1,200	1,000	790	760			
Cryptosporidium spp.	91,000	72,000	19,000	32,000	48,000			
Giardia spp.	82,000	83,000	22,000	38,000	55,000			
Toxoplasma gondii	770	760	770	780	800			
Total	1,630,000	1,570,000	963,000	1,287,000	1,599,000			

Table A.2 Mean number of inci	ent cases by pathogen	in the Netherlands, 2018-
2022.		

Presented numbers are rounded: \geq 100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figures (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help). There is one exception, *Listeria monocytogenes* which are acquired through surveillance.

Table A.3 Mean number of fatal cases by pathogen in the Netherlands,	2018-
2022.	

Pathogen	Esti	mated mean	number of	fatal cases/y	/ear
	2018	2019	2020	2021	2022
Campylobacter spp.	47	53	36	37	38
STEC 0157	4	4	4	4	4
Salmonella spp.	25	24	23	28	20
Listeria monocytogenes	6	16	19	15	14
B. cereus toxin	0	0	0	0	0
C. perfringens toxin	5	5	5	5	5
S. aureus toxin	7	7	7	7	7
Norovirus	69	66	30	52	70
Rotavirus	38	36	12	31	48
Hepatitis A virus	3	3	1	1	1
Hepatitis E virus	15	13	13	9	9
Cryptosporidium spp.	6	4	1	2	3
Giardia spp.	2	2	1	1	2
Toxoplasma gondii	12	12	12	12	13
Total	238	245	163	200	230

Presented numbers are rounded: \geq 100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help). There is one exception, *Listeria monocytogenes* which are acquired through surveillance.

Pathogen					
	2018	2019	2020	2021	2022
Campylobacter spp.	3,200	3,300	2,100	2,300	2,500
STEC 0157	150	150	150	150	150
Salmonella spp.	1,100	1,100	800	900	960
Listeria monocytogenes	260	180	180	510	330
<i>B. cereus</i> toxin	32	33	33	33	32
C. perfringens toxin	200	200	200	200	200
<i>S. aureus</i> toxin	220	220	220	220	220
Norovirus	1,900	1,800	800	1,400	2,000
Rotavirus	1,200	1,100	390	920	1,500
Hepatitis A virus	100	90	28	42	50
Hepatitis E virus	510	460	390	310	300
Cryptosporidium spp.	160	120	30	56	84
<i>Giardia</i> spp.	220	220	60	100	150
Toxoplasma gondii	1,900	1,900	1,900	1,900	2,000
Total	11,000	11,000	7,300	9,100	10,000

Table A.4. Mean estimated disease burden (undiscounted DALY/year) in the
Netherlands for the years 2018-2022, total and by pathogen.

Presented numbers are rounded: \geq 100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figures(e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help). There is one exception, *Listeria monocytogenes* which are acquired through surveillance.

Pathogen			per year (4%),		
		(Million €,	expressed in 2	022 euros)	
	2018	2019	2020	2021	2022
<i>Campylobacter</i> spp.	69	70	47	50	57
STEC 0157	7	7	7	7	7
Salmonella spp.	22	22	15	18	21
Listeria monocytogenes	4	5	4	5	5
<i>B. cereus</i> toxin	13	13	13	13	13
C. perfringens toxin	34	34	34	34	35
S. aureus toxin	71	71	71	71	72
Norovirus	127	120	58	95	128
Rotavirus	77	73	34	62	91
Hepatitis A virus	2	2	0.5	0.7	0.9
Hepatitis E virus	7	6	5	4	4
Cryptosporidium spp.	26	21	5	9	14
Giardia spp.	19	19	5	9	13
Toxoplasma gondii	18	17	18	18	19
Total	495	480	317	397	478

Table A.5 Mean discounted COI (4%) in million euros in the Netherlands for 2018-2022, total and by pathogen.

COI per year are presented in million \in (M \in) and if less than 1 million rounded to 1 significant figure (e.g. 0.0023 million =0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Main pathway	Food	Environment	Human	Animal	Travel	Total
Campylobacter spp.	32,000	8,600	1,700	6,300	8,600	57,000
STEC 0157	800	320	210	400	440	2,200
Salmonella spp.	11,000	1,200	2,600	1,800	6,900	23,000
Listeria monocytogenes	82	5	4	4	7	100
B. cereus toxin	47,000	580	640	580	3,900	53,000
C. perfringens toxin	157,000	3,800	3,700	3,700	5,600	174,000
S. aureus toxin	253,000	10,000	9,300	6,400	11,000	290,000
Norovirus	103,000	88,000	343,000	31,000	54,000	619,000
Rotavirus	36,000	47,000	160,000	8,200	24,000	275,000
Hepatitis A virus	52	51	83	0	270	460
Hepatitis E virus	100	190	58	82	330	760
Cryptosporidium spp.	5,800	13,000	13,000	6,500	9,500	48,000
Giardia spp.	7,200	13,000	19,000	5,900	9,800	55,000
Toxoplasma gondii	450	290	7	20	37	800
Total	654,000	187,000	553,000	71,000	135,000	1,599,000

Table A.6 Attribution of mean estimated number of incident cases by pathogen
to main pathways in the Netherlands, 2022.

Presented numbers are rounded: \geq 100,000 to three significant figures(e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Table A.7 Attribution of mean estimated number of fatal cases to main pathways
in the Netherlands, 2022.

Main pathway	Food	Environment	Human	Animal	Travel	Total
<i>Campylobacter</i> spp.	21	6	1	4	6	38
STEC 0157	1	0.6	0.4	0.7	0.8	4
Salmonella spp.	9	1	2	2	6	20
Listeria monocytogenes	11	0.7	0.6	0.6	1	14
<i>B. cereus</i> toxin	0	0	0	0	0	0
C. perfringens toxin	4	0.1	0.1	0.1	0.1	5
<i>S. aureus</i> toxin	6	0.3	0.2	0.2	0.3	7
Norovirus	12	10	39	3	6	70
Rotavirus	6	8	28	1	4	48
Hepatitis A virus	0.2	0.2	0.3	0	0.9	1
Hepatitis E virus	1	2	0.7	0.9	4	9
Cryptosporidium spp.	0.4	0.8	0.8	0.4	0.6	3
Giardia spp.	0.2	0.4	0.5	0.2	0.3	2
Toxoplasma gondii	7	5	0.1	0.3	0.6	13
Total	81	35	73	14	30	230

Presented numbers are rounded: ≥10 to two significant figures(e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Main pathway	Food	Environment	Human	Animal	Travel	Total
Campylobacter spp.	1,400	380	76	280	380	2,500
STEC 0157	56	23	14	28	31	150
Salmonella spp.	440	49	110	73	290	960
Listeria	270	17	13	13	23	330
monocytogenes	270	17	13	15	25	220
<i>B. cereus</i> toxin	29	0.4	0.4	0.4	2	32
C. perfringens toxin	180	4	4	4	6	200
S. aureus toxin	190	8	7	5	8	220
Norovirus	330	280	1,100	98	170	2,000
Rotavirus	190	250	850	44	130	1,500
Hepatitis A virus	6	6	9	0	30	50
Hepatitis E virus	41	74	23	32	130	300
Cryptosporidium spp.	10	23	23	11	16	84
Giardia spp.	19	35	51	16	26	150
Toxoplasma gondii	1,100	730	18	51	93	2,000
Total	4,300	1,900	2,300	660	1,300	10,000

Table A.8 Attribution of mean disease burden (DALY per year, undiscounted) to main pathways in the Netherlands, 2022.

Presented numbers are rounded: ≥ 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure(e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Table A.9 Attribution of mean cost-of-illness (M€ per year, discounted at 4%) to
main pathways in the Netherlands, 2022

Main pathway	Food	Environment	Human	Animal	Travel	Total
<i>Campylobacter</i> spp.	32	9	2	6	9	57
STEC 0157	2	1	0.6	1	1	7
Salmonella spp.	10	1	2	2	6	21
Listeria monocytogenes	4	0.2	0.2	0.2	0.3	5
B. cereus toxin	12	0.1	0.2	0.1	1	13
C. perfringens toxin	31	0.8	0.7	0.7	1	35
S. aureus toxin	63	3.0	2	2	3	72
Norovirus	21	18	71	6	11	128
Rotavirus	12	15	53	3	8	91
Hepatitis A virus	0.1	0.1	0.2	0	0.5	0.9
Hepatitis E virus	0.6	1	0.3	0.4	2	4
Cryptosporidium spp.	2	4	4	2	3	14
Giardia spp.	2	3	4	1	2	13
Toxoplasma gondii	11	7	0.2	0.5	0.9	19
Total	201	63	140	25	49	478

COI per year are presented in million \in (M \in) and if less than 1 million rounded to 1 significant figure (e.g. 0.0023 million =0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Food groups	Beef &	Pork	Poultry	Eggs	Dairy	Fish &	Produce	Beverages	Grains	Other	Humans	Total
	Lamb					shellfish				foods	&	
											animals	
<i>Campylobacter</i> spp.	6,200	990	16,000	740	1,300	2,200	990	580	580	580	2,200	32,000
STEC 0157	520	74	18	14	28	18	28	21	18	21	41	800
Salmonella spp.	790	2,300	1,400	1,600	740	440	630	330	440	620	1,300	11,000
Listeria monocytogenes	5	5	9	2	23	5	23	2	3	3	2	82
B. cereus toxin	3,400	1,700	760	1,700	2,700	950	950	800	8,000	25,000	1,100	47,000
<i>C. perfringens</i> toxin	75,000	13,000	11,000	4,400	6,400	10,000	11,000	3,900	4,100	12,000	5,700	157,000
S. aureus toxin	19,000	20,000	20,000	8,300	37,000	15,000	5,100	4,600	19,000	75,000	30,000	253,000
Norovirus	3,300	3,200	3,000	2,000	2,100	16,000	7,500	3,200	5,400	5,200	53,000	103,000
Rotavirus	0	1,000	0	0	610	6,900	8,500	1,600	2,700	1,600	13,000	36,000
Hepatitis A virus	0	0	0	0	0	7	7	2	2	2	33	52
Hepatitis E virus	0	77	0	0	0	5	8	4	0	0	11	100
<i>Cryptosporidium</i> spp.	1,500	250	170	160	530	1,300	1,200	170	0	170	350	5,800
Giardia spp.	1,400	350	220	0	550	930	2,400	230	0	240	880	7,200
Toxoplasma gondii	100	230	22	0	21	17	26	0	0	10	26	450
Total	111,000	44,000	52,000	19,000	52,000	54,000	38,000	15,000	40,000	121,000	107,000	654,000

Table A.10 Attribution of mean incidence by pathogen to food groups in the Netherlands, 2022.

Presented numbers are rounded: \geq 100,000 to three significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,256 = 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,000); between <100,000 and \geq 10 to two significant figures (e.g. 123,000); between <100,000

figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual

surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Food groups	Beef & lamb	Pork	Poultry	Eggs	Dairy	Fish & shellfish	Produce	Beverages	Grains	Other foods	Humans & animals	Total
<i>Campylobacter</i> spp.	4	0.7	10	0.5	0.9	1	0.7	0.4	0.4	0.4	1	22
STEC 0157	1	0.1	0.03	0.03	0.05	0.03	0.05	0.04	0.03	0.04	0.07	1
Salmonella spp.	0.7	2	1	1	0.6	0.4	0.6	0.3	0.4	0.5	1	9
Listeria monocytogenes	0.7	0.6	1	0.3	3	0.7	3	0.2	0.4	0.4	0.3	11
B. cereus toxin	0	0	0	0	0	0	0	0	0	0	0	0
<i>C. perfringens</i> toxin	2	0.3	0.3	0.1	0.2	0.3	0.3	0.1	0.1	0.3	0.1	4
S. aureus toxin	0.5	0.5	0.5	0.2	0.9	0.4	0.1	0.1	0.5	2	0.7	6
Norovirus	0.4	0.4	0.3	0.2	0.2	2	0.8	0.4	0.6	0.6	6	12
Rotavirus	0	0.2	0	0	0.1	1	1	0.3	0.5	0.3	2	6
Hepatitis A virus	0	0	0	0	0	0.02	0.02	0.007	0.007	0.005	0.1	0.2
Hepatitis E virus	0	0.9	0	0	0	0.06	0.09	0.04	0	0	0.1	1
<i>Cryptosporidium</i> spp.	0.09	0.02	0.01	0.01	0.03	0.08	0.07	0.01	0	0.01	0.02	0.4
Giardia spp.	0.04	0.01	0.006	0	0.02	0.03	0.07	0.006	0	0.007	0.02	0.2
Toxoplasma gondii	2	4	0.3	0	0.3	0.3	0.4	0	0	0.2	0.4	7
Total	11	9	14	3	7	7	8	2	3	4	13	81

Table A.11 Attribution of mean number of fatal cases by pathogen to food groups in the Netherlands, 2022.

Presented numbers are rounded: ≥ 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Food groups	Beef &	Pork	Poultry	Eggs	Dairy	Fish & shellfish	Produce	Beverages	Grains	Other foods	Humans &	Total
	Lamb										animals	
<i>Campylobacter</i> spp.	280	44	700	33	59	99	44	26	26	26	99	1400
STEC 0157	36	5	1	1	2	1	2	1	1	1	3	56
Salmonella spp.	33	97	59	69	31	18	26	14	18	26	55	440
Listeria monocytogenes	16	15	30	7	76	16	76	6	8	8	8	270
B. cereus toxin	2	1	0.5	1	2	0.6	0.6	0.5	5	15	0.7	29
<i>C. perfringens</i> toxin	86	15	13	5	7	12	12	5	5	14	6	180
S. aureus toxin	14	15	15	6	28	11	4	3	14	57	23	190
Norovirus	10	10	9	6	7	51	24	10	17	16	170	330
Rotavirus	0	5	0	0	3	37	45	8	14	9	68	190
Hepatitis A virus	0	0	0	0	0	0.7	0.7	0.2	0.2	0.2	4	6
Hepatitis E virus	0	30	0	0	0	2	3	1	0	0	4	41
<i>Cryptosporidium</i> spp.	3	0.4	0.3	0.3	0.9	2	2	0.3	0	0.3	0.6	10
Giardia spp.	4	0.9	0.6	0	1	2	6	0.6	0	0.6	2	19
Toxoplasma gondii	260	570	54	0	52	42	66	0	0	26	65	1100
Total	740	810	880	130	270	290	310	76	110	200	500	4300

Table A.12 Attribution of mean disease burden (DALY per year, undiscounted) by pathogen to food groups in the Netherlands, 2022

Presented numbers are rounded: ≥ 10 to two significant figures (e.g. 1,325 = 1,300) and <10 to 1 significant figure (e.g. 0.0023=0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Food groups	Beef & Lamb	Pork	Poultry	Eggs	Dairy	Fish& shellfish	Produce	Beverages	Grains	Other foods	Humans & animals	Total
<i>Campylobacter</i> spp.	6	1	16	0.7	1	2	1	0.6	0.6	0.6	2	32
STEC 0157	2	0.2	0.06	0.04	0.08	0.06	0.08	0.06	0.05	0.06	0.1	2
Salmonella spp.	0.7	2	1	1	0.7	0.4	0.6	0.3	0.4	0.6	1	10
Listeria monocytogenes	0.2	0.2	0.4	0.1	1	0.2	1	0.09	0.1	0.1	0.1	4
B. cereus toxin	0.8	0.4	0.2	0.4	0.6	0.2	0.2	0.2	2	6	0.3	12
<i>C. perfringens</i> toxin	15	3	2	0.9	1	2	2	0.8	0.8	2	1	31
S. aureus toxin	5	5	5	2	9	4	1	1	5	19	7	63
Norovirus	0.7	0.7	0.6	0.4	0.4	3	2	0.7	1	1	11	21
Rotavirus	0	0.3	0	0	0.2	2	3	0.5	0.9	0.5	4	12
Hepatitis A virus	0	0	0	0	0	0.01	0.01	0	0	0	0.06	0.1
Hepatitis E virus	0	0.4	0	0	0	0.03	0.04	0.02	0	0	0.06	0.6
<i>Cryptosporidium</i> spp.	0.4	0.08	0.05	0.05	0.2	0.4	0.4	0.05	0	0.05	0.1	2
<i>Giardia</i> spp.	0.3	0.08	0.05	0	0.1	0.2	0.5	0.05	0	0.05	0.2	2
Toxoplasma gondii	2	5	0.5	0	0.5	0.4	0.6	0	0	0.2	0.6	11
Total	33	18	26	6	16	15	12	4	10	30	29	201

Table A.13 Attribution of mean cost-of-illness (M€ per year, discounted at 4%) by pathogen to food groups in the Netherlands, 2022.

COI per year are presented in million \in (M \in) and if less than 1 million rounded to 1 significant figure (e.g. 0.0023 million =0.002). The presented numbers are estimates that rely on annual surveillance data being corrected for: i) coverage (where applicable); ii) underdiagnosis and underreporting; and iii) under-ascertainment (i.e. being sick without requiring medical help).

Published by:

National Institute for Public Health and the Enviroment, RIVM P.O. Box 1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en

January 2024

Committed to health and sustainability