RIJKSINSTITUUT VOOR VOLKSGEZONDHEID EN MILIEU BILTHOVEN

Rapportnr. 348802014

De behandeling van loodintoxicaties

E. Spaans¹, I. de Vries², A. van Dijk³,
T.J.F. Savelkoul²

januari 1996

¹ student Farmacie, Universiteit Utrecht
² Nationaal Vergiftigingen Informatie Centrum, RIVM
³ Academisch Ziekenhuis Utrecht

Dit onderzoek werd verricht in opdracht en ten laste van het Ministerie van VWS in het kader van project nr. 348802
Rijksinstituut voor Volksgezondheid en Milieu, Postbus 1, 3720 BA, Bilthoven,
tel. 030-2749111, fax 030-2742971
VERZENDLIJST

1. Hoofdinspecteur voor de Preventieve en Curatieve Gezondheidszorg, Drs.G.H.A. Siemons
2. Hoofdinspecteur voor de Gezondheidszorg, Drs.J. Verhoeff
3. Directeur-Generaal van de Volksgezondheid, Prof.dr.B. Sangster
4. Hoofdinspecteur Gezondsbescherming, Dr.F. Schuring
5. Hoofdinspecteur van de Volksgezondheid voor de Hygiëne van het Milieu, Ir.P.J. Verkerk
6. Prof.dr.J.H. Glerum, Centrum Apotheek AZU
7. Mw.drs.F.F.T. Ververs, Centrum Apotheek AZU
8. Depot Nederlandse publicaties en Nederlandse bibliografie
9. Directie van het Rijksinstituut voor Volksgezondheid en Milieu
10. Prof.dr.ir.D. Kromhout
11. Dr.ir.G. de Mik
12. Dr.W.H. Könemann
13. Dr.ir.H.J.G.M. Derks
14. Dr.F.J.J. Brinkmann
15. Dr.J. Meulenbelt
17-20 Auteurs
21-22 Bibliotheek RIVM
23. Bureau Rapportenregistratie
24-44 Reserve exemplaren t.b.v. Bureau Rapportenbeheer
45-50 Reserve-exemplaren
INHOUDSOPGAVE

Verzendlijst 2

Inhoudsopgave 3

Abstract 4

Samenvatting 5

1. Inleiding 6

2. Kinetiek 10

3. Ontwikkeling van het model 12
   3.1 Methode 12
   3.2 Ontwikkeling van het model 13
   3.3 Beschrijving van het model 13

4. Resultaten 17
   4.1 Standaardsituatie 17
   4.2 Chronisch verhoogde blootstelling 18
   4.3 Behandeling door middel van chelatietherapie 20
   4.4 AUC 26

5. Discussie 27

Literatuur 30
Abstract

Although lead pollution, and by that lead intoxication, should be a decreasing problem in the western human society, the Dutch Poison Control Centre and the medical toxicology outpatient clinic of the university hospital Utrecht are still often faced with patients having a worrisome blood lead concentration. Understanding of the behaviour of lead in the human body is essential in dealing with these problems. Therefore we have developed a kinetic model which can explain this behaviour (chapter 3). Furthermore we have considered the situation of a high lead burden and gave an insight in the events happening while treating these patients (chapter 4).
SAMENVATTING

Regelmatig worden het Nationaal Vergiftigingen Informatie Centrum van het Rijksinstituut voor Volksgezondheid en Milieu en de polikliniek Medische Toxicologie van het Academisch Ziekenhuis Utrecht geconfronteerd met vragen van artsen die te maken hebben met personen met een verhoogde blootstelling aan lood. Om deze vragen te kunnen beantwoorden is het noodzakelijk inzicht te hebben in de kinetiek van lood in het menselijk lichaam.

In deze studie is een model ontwikkeld dat als hulpmiddel gebruikt kan worden bij het creëren van dit inzicht (Hoofdstuk 3). Vervolgens wordt aan de hand van computersimulaties het verloop van een chronisch verhoogde loodbelasting en het nut van chelatietherapie beschreven (Hoofdstuk 4).
1. INLEIDING

Loodvergiftiging is een eeuwenoud probleem. Hippocrates beschreef in 370 B.C. als eerste de ziektegeschiedenis van een man, die hevige darmkoliëken kreeg door blootstelling aan lood, dat hij uit erts extraheerde. De blootstelling aan lood was in deze tijd enorm. In het oude Romeinse Rijk kon bij met name de hogere bevolkingsklassen de blootstelling aan lood extreem hoog zijn. Gemiddeld zou de absorptie van lood circa 250 µg/d bedragen, maar de absorptie kon ook oplopen tot 1,5 mg/d. Meer dan de helft hiervan was afkomstig uit wijn die speciaal in loden of geglaauwde potten werd gekookt om een zoete smaak te krijgen. Deze zoete smaak werd veroorzaakt door het in de wijn aanwezige loodacetaat. Wijn bestemd voor de hogere bevolkingsgroepen bevatte meer loodacetaat dan wijn bestemd voor de andere bevolkingsgroepen en daarbij komt dat de hogere bevolkingsklassen meer wijn dronken dan de lagere bevolkingsklassen. Er wordt wel beweerd dat deze massale chronische loodintoxicatie mede geleid heeft tot de val van het Romeinse Rijk(2).

Lood is een gemakkelijk te bewerken metaal en heeft vele toepassingsmogelijkheden. Loodvergiftiging, zowel chronisch als acuut, kwam frequent voor onder mijnwerkers en metaalarbeiders. Een loodintoxicatie was dan ook een typisch voorbeeld van een ziekte die als één van de eerste beroepsziekten werd erkend.

Belangrijke bronnen van blootstelling voor de algemene bevolking waren vooral loodhoudend aardewerk, verf en speelgoed, maar ook loden drinkwaterleidingbuizen. Door het in de loop der tijd toegenomen gebruik van lood, waaronder zeker ook het gebruik van loodhoudende benzine, is er veel lood in het milieu terecht gekomen. Lucht, bodem, water en voedsel bevatten nu meer lood dan vroeger. Het milieu levert dan ook een belangrijke bijdrage aan de blootstelling (en lichaamsbelasting) van de algemene bevolking.

Echter, ook de kennis over mogelijke schadelijke effecten van chronische blootstelling aan lage concentraties lood is toegenomen. Zo is bijvoorbeeld beschreven, dat relatief lage bloedloodconcentraties nadelige effecten kunnen hebben op de cognitieve ontwikkeling van kleine kinderen(2,3).

Door het besef van de schadelijkheid van lood, onder andere resulterend in de anti-lood campagnes van verschillende milieubewegingen, wordt het gebruik van lood inmiddels steeds meer teruggedrongen. In 1934 werd het gebruik van loodhoudende verf voor beroepsmatige toepassing binnewijis al verboden; in 1993 werd het gebruik van loden hagelkorrels door jagers verboden; speelgoed vormt geen risicovolle bron meer, katalysatoren en loodvrije benzine hebben alon hun intrede gedaan en nieuwe waterleidingen bestaan tegenwoordig niet meer uit loden materialen, terwijl bestaande loden leidingen
geleidelijk worden vervangen.

Acute loodintoxicaties komen in Nederland nog maar zelden voor. Dit in tegenstelling tot een chronisch verhoogde loodbelasting, die gelukkig niet altijd aanleiding geeft tot duidelijk waarnembare klinische symptomen. Dit neemt overigens niet weg, dat uit een dergelijke chronische situatie onder bepaalde omstandigheden wel acute vergiftigingsverschijnselen kunnen ontstaan.

De pathofysiologie en symptomatologie van een acute en chronische intoxicatie verschillen nogal van elkaar\(^{40}\). Uiteraard heeft dit zijn weerslag op de behandeling. Het stellen van de diagnose alleen op grond van het klinisch beeld is niet eenvoudig, doordat de symptomen divers zijn en een loodvergiftiging zich op verschillende manieren kan presenteren. Het zal dan ook duidelijk zijn dat met name de anamnese belangrijk is in het opstellen van een juiste differentiaaldiagnose. Hierbij moet uitvoerig worden ingegaan op arbeidsomstandigheden, hobby's en woonomstandigheden van de patiënt om een mogelijke blootstelling te kunnen vaststellen.

Wanneer er een vermoeden bestaat op een verhoogde loodbelasting bij een patiënt, zal laboratoriumonderzoek uitsluitend kunnen geven. De mate van blootstelling en de hieruit voortvloeiende lichaamsbelasting worden in kaart gebracht door een aantal bloedparameters te meten.

Er bestaat een goede relatie tussen de bloedloodconcentratie en de optredende nadelige gezondheidseffecten, zowel op subklinisch als op klinisch niveau. Deze bloedloodwaarde geeft alleen de belasting ten tijde van de bloedafname weer en geeft geen informatie over eerdere blootstellingen of hoe langdurig de blootstelling is geweest. Daarom wordt op dit moment de bepaling van zinkprotoporfyrine (ZPP) of vrije erythrocyten protoporfyrine (FEP) in bloed gebruikt als indicator voor een langdurige blootstelling aan lood.

Essentieel in de behandeling van een loodvergiftiging in het algemeen is in ieder geval de onmiddellijke opheffing van de blootstelling. In het geval van een verhoogde loodbelasting zou dit betekenen dat de patiënt niet meer c.q. minder met lood in aanraking mag komen.

Wanneer een bepaalde hoeveelheid lood is ingenomen, is absorptieverhinderende therapie geïndiceerd. Deze bestaat uit het laten braken of maagspoelen van de patiënt en uit het vervolgens toedienen van natriumsulfaat of magnesiumsulfaat om de laxatie te bevorderen. Bovendien kan het lood zich binden aan sulfaat, waardoor het vrijwel onoplosbare loodsulfaat ontstaat, dat dan niet meer geabsorbeerd wordt.

Indien er voldoende lood is geabsorbeerd, zal dit in eerste instantie leiden tot verhoogde bloedloodconcentraties, eventueel gevolgd door een klinisch manifeste intoxicatie. Het klinisch beeld bepaalt het te volgen beleid; bij ernstige intoxicatieverschijnselen en hoge
bloedloodwaarden valt chelatietherapie te overwegen. Chelatoren zijn organische verbindingen die met metalen stabiele wateroplosbare complexen kunnen vormen, welke vervolgens renaal uitgescheiden kunnen worden. In het verleden is Na-Ca-EDTA als chelator gebruikt, evenals dimercaprol (British Anti Lewisite, BAL) en het minder effectieve penicillamine, maar zij bleken veel bijwerkingen te hebben en de bloedloodwaarde kon zelfs tijdens de behandeling dramatisch stijgen!

De stof dimethylsuccimeracid, DMSA, ook wel 'succimer' genoemd, is de laatste jaren erg op de voorgrond komen te staan als chelator. Deze stof lijkt weinig bijwerkingen te hebben, en kan in tegenstelling tot de genoemde chelatoren oraal toegediend worden.

Het opheffen van een verhoogde blootstelling aan lood is niet altijd direct te realiseren (hobby's, arbeidsomstandigheden). Voor arbeids situaties geldt het zogenaamde loodbesluit: hierin zijn drie actieniveau's vastgesteld waarbij maatregelen genomen dienen te worden.(5) Het eerste actieniveau treedt in werking wanneer de bloedconcentratie in de lucht hoger is dan 40 μg/m³, als tijdig gemiddelde over 40 uur/w (TGG-40), of wanneer de bloedloodwaarde van een werknemer hoger is dan 300 μg/l. Dit eerste actieniveau houdt in dat de werkgever de werknemers moet voorlichten over de gevaren van lood en dat eten, roken en drinken op de werkplek moet worden tegengegaan. Tevens moeten bij overschrijding van de bloedloodwaarde van 300 μg/l alle werknemers in de gelegenheid gesteld worden om een medisch onderzoek te ondergaan. Bij het tweede actieniveau wordt een luchtloodconcentratie van 75 μg/m³ (TGG-40) overschreden, of de bloedloodwaarde van een werknemer is hoger dan 500 μg/l. In dit geval worden dezelfde maatregelen genomen als bij het eerste actieniveau; daarnaast moet een meetprogramma uitgevoerd worden, schone en vuile zones ingeërricht worden, werkkleding verstrekt worden en passende hygiënische voorzieningen geboden worden. Het derde actieniveau geldt voor de individuele werknemer die een bloedloodconcentratie van 600 μg/l overschrijdt. Deze werknemer moet volgens het loodbesluit in de gelegenheid gesteld worden tot intensievere medische begeleiding. In feite zouden werknemers aan het arbeidsproces onttrokken moeten worden totdat betere (persoonlijke) arbeidshygiënische maatregelen gewaarborgd zijn.

Regelmatig worden het Nationaal Vergiftigingen Informatie Centrum van het Rijksinstituut voor Volksgezondheid en Milieu en de polikliniek Medische Toxicologie van het Academisch Ziekenhuis Utrecht geconfronteerd met vragen van artsen die te maken hebben met personen met een verhoogde blootstelling aan lood. Het betreft hier zowel blootstellingen in de arbeids situatie, op schietbanen en patiënten die met loden kogeltjes aangeschoten zijn, als kleine kinderen. Soms zijn bepalingen van de bloedloodconcentratie en/of de FEP verricht en wordt advies gevraagd over de interpretatie van deze waarden. Vrijwel altijd speelt inherent hieraan de vraag of een specifieke behandeling ingesteld moet worden. Deze laatste vraag is lang niet altijd even eenvoudig
te beantwoorden en vereist een goed inzicht in het gedrag van lood in het lichaam.

Belangrijke aandachtspunten zijn vooral:
- hoe ontwikkelt een chronische verhoogde loodbelasting zich?
- wanneer ontwikkelt een chronische loodbelasting zich tot een intoxicatie?
- wanneer is het zinvol om een verhoogde loodbelasting te behandelen (met chelatoren)?

Om deze vragen te kunnen beantwoorden is het noodzakelijk inzicht te hebben in de kinetiek van lood in het menselijk lichaam. Teneinde deze kinetiek beter inzichtelijk te maken, is besloten een toxicokinetisch model te ontwikkelen dat deze kinetiek kan beschrijven. Zoals ieder model is ook dit model een -zij het zo goed mogelijke- benadering van de werkelijkheid en vooral bedoeld als hulpmiddel bij het begrijpen en aanschouwelijk maken van de kinetiek. Het model kan gebruikt worden bij de evaluatie van een chronische of acute loodbelasting, de evaluatie van de behandeling van een loodintoxicatie of bij de risicoschatting van een blootstelling.

In de navolgende hoofdstukken wordt de ontwikkeling van dit model beschreven en worden voorbeelden voor het gebruik gegeven. Het model is ontwikkeld aan de hand van gegevens van verder gezonde personen. Er is dus geen rekening gehouden met een eventuele secundaire pathologie als lever- of nierfunctiestoornissen en stoornissen in de botstofwisseling.
2. KINETIEK

Opname
De opname van anorganisch lood kan via twee verschillende routes geschieden\(^{4,6}\). Na ingestie is de mate van absorptie uit het maagdarmkanaal afhankelijk van verschillende factoren, zoals de hoeveelheid lood die zich in het maagdarmkanaal bevindt, de fysische en chemische eigenschappen van het aanwezige lood en de leeftijd en conditionele toestand van de betreffende persoon\(^{7}\). Volwassenen absorberen 5-10% van de ingenomen hoeveelheid lood. Bij verminderde voedelinname neemt de absorptie van lood toe; deze kan bij vasten zelfs oplopen tot 35-40%. Ook bij kinderen loopt dit op tot 35-40%. Deze grotere opname bij kinderen wordt vaak verklaard uit het feit dat kleine kinderen een grote behoefte aan essentiële mineralen, met name calcium, hebben. Ook zou de nog onvolwassen darmwand beter doorlatbaar zijn voor lood.

In Nederland neemt een volwassene gemiddeld 300 μg/d tot zich via voedsel en drinkwater. De biologische beschikbaarheid na ingestie is ongeveer 10%\(^{6,9,10}\). De totaal opgenomen hoeveelheid door ingestie bedraagt dan 30 μg/d\(^{11}\).

De buitenluchttconcentratie van anorganisch lood komt in Nederland neer op gemiddeld 0.1 μg/m\(^3\). Deze concentratie is gemeten in verschillende steden. Overigens spreekt het voor zich dat deze buitenluchtcconcentratie sterk afhankelijk is van de omgeving waarin gemeten wordt. De biologische beschikbaarheid van lood na inhalatie is 30-50%\(^{6,12,13}\). Deze biolo-gische beschikbaarheid is sterk afhankelijk van de partikelsgrootte. Daarbij moet opgemerkt worden dat depositie van grotere partikels in de bovenste luchtwegen kan leiden tot secundaire ingestie. De totaal opgenomen hoeveelheid anorganisch lood door inhalatie bedraagt voor een volwassene ongeveer 1 μg/d\(^{11}\). Voor kinderen met een kleiner ademvolume, ligt dit getal iets lager.

Anorganisch lood wordt niet door een intacte huid geresorbeerd\(^{14}\). Dit in tegenstelling tot organische loodverbindingen. Lipofiele stoffen als tetraethylloed en loodnaftaleen kunnen de huid wel penetreren.

Distributie
Globaal gezien verdeelt lood zich in het menselijk lichaam over drie compartimenten, te weten: het bloed, de weke delen en het botcompartiment.

In het bloed bevindt het lood zich voornamelijk in de erytrocyten. De hoeveelheid lood in bloed is ongeveer 4% van de totale "body burden". De verblijftijd van lood in bloed is relatief kort; de halfwaardetijd bedraagt circa 30 dagen.

De "weke delen" is een vrij algemeen begrip, dat onderverdeeld kan worden in een aantal
organen, zoals het centraal zenuwstelsel, de nieren en de lever. De uitwisseling met andere organen verloopt hieruit wat trager dan vanuit het bloed. De halfwaardetijd uit de weke delen is ongeveer 30 tot 40 dagen.

Lood stapelt zich snel in het bot met als gevolg dat daar dan ook het belangrijkste deel van de "body burden" terug te vinden is, ongeveer 94%. In tegenstelling tot wat vaak vermeld wordt, is lood uit dit compartiment wel uitwisselbaar met bloed\textsuperscript{(15)}, zij het dat deze uitwisseling erg traag geschiedt. Voor bot zijn in de literatuur halfwaardetijden tot 30 jaar gemeld. Het derde of het botcompartment is in de literatuur lange tijd enigszins omstreden geweest omdat er geen duidelijk mathematisch bewijs bestaat voor een tri-exponentieel (dus naast het bloed en de zachte weefsels nog een derde compartiment) verloop van de bloedloodconcentratie (PbB). Op dit moment is er echter een 'general-agreement' over het bestaan van de drie compartimenten\textsuperscript{(10,12)}. Deze conclusie is mede gebaseerd op het feit dat na stopzetting van de blootstelling de 'decline' in de PbB-tijd grafiek veel langer doorloopt dan op grond van een 2-compartmenten model verwacht kan worden. Er moet dus een derde compartiment zijn waaruit lood zeer traag vrijkomt.

Uitscheiding
De uitscheiding van lood geschiedt voor circa 70-80% renaal. Daarnaast wordt 8% uitgescheiden via nagels, haren en zweet. De uitscheiding via de lever bedraagt 15%, hetgeen via het maag-darmkanaal het lichaam verlaat.
3. DE ONTWIKKELING VAN HET MODEL

3.1 Methode

In de zeventiger jaren beschreef Rabinowitz\(^9,10\) een klinisch onderzoek waarbij vijf gezonde vrijwilligers een bepaalde hoeveelheid lood toegediend kregen. Aan de hand van radio-isotopen werd het verloop van lood in het lichaam gevolgd, waarbij duidelijk werd dat lood zich in het menselijk lichaam over drie compartimenten verdeelde. Het hierop door Rabinowitz ontwikkelde model is echter op een aantal punten discutabel, waarvan de belangrijkste is het gebruik van zogenaamde ‘Turn-over’ constanten in het model. Het ‘Turn-over’ concept wordt veelal gebruikt om de kinetiek van endocriene stoffen te beschrijven en gaat ervan uit dat er constant een bepaalde hoeveelheid stof, in dit geval dus lood, in het lichaam aanwezig is. Deze constante hoeveelheid wordt in stand gehouden door een gelijke opname (aanmaak, vgl. endocriene stoffen) en eliminatie. In een "steady-state"-situatie zal de hoeveelheid lood in een compartiment niet veranderen. Ook zal er in deze situatie een constante hoeveelheid lood gedistribueerd en uitgescheiden worden. Omdat de hoeveelheid lood die gedistribueerd wordt constant is, is dit feitelijk een nulde orde constante. Met andere woorden, in een "steady-state"-situatie is een ‘Turn-over’ constante een nulde orde constante, die uitgedrukt wordt in hoeveelheid per tijdseenheid. Het zal duidelijk zijn dat het verloop van een loodintoxicatie niet beschreven kan worden met een "steady-state"-situatie en daarmee met het gebruik van nulde orde constanten. Omdat het aannemelijk is dat de hoeveelheid lood die gedistribueerd wordt afhankelijk is van de hoeveelheid lood in het compartiment waaruit het vrijkomt, is getracht eerste orde constanten in het model te verwerken. Het duurde tot 1983 voordat een verbeterde versie van het biokinetisch model voor lood in de literatuur verscheen\(^16\). Kneip\(^6\) introduceerde een meer complex lineair multi-compartmenteel model gebaseerd op de gegevens van chronische expositie van kinderen aan lood.

Voor het in dit rapport ontwikkelde model is de volgende werkwijze gehanteerd:
Met waarden uit de bestaande literatuur\(^8,9,10,17,18,19,20,21,22,23\) zijn de waarden van de distributie- en uitscheidingsconstanten berekend. Dit berekenen wordt ‘fitten’ genoemd en gebeurt door middel van iteraties.
Wanneer de distributie- en uitscheidingsconstanten in het model bekend zijn, kunnen bij bekende blootstelling de verschillende bloedloodwaarden en andere hoeveelheden berekend worden. Dit wordt ‘simuleren’ genoemd.
Zowel het ‘fitten’ als de simulaties zijn uitgevoerd met behulp van twee programma’s, te weten: Ph edsim, copyright MediWare B.V. 1993 en MW-Pharm pharmacokinetische analysis in clinical pharmacy version 3.0 copyright MediWare 1991.
3.2 Ontwikkeling

In eerste instantie is, aan de hand van het verloop van de bloedloodconcentratie in de tijd, bekend uit de literatuur, een model ontwikkeld bestaande uit drie compartimenten en met eerste orde distributie- en uitscheidingsconstanten. Hierbij is met name gebruik gemaakt van gegevens gepubliceerd door Rabinowitz\textsuperscript{(9,10)} en Manton\textsuperscript{(24)}. De drie compartimenten stonden voor: een bloedcompartiment, een botcompartiment en een compartiment bestaande uit "zachte weefsels". Het aldus verkregen model bleek bij de uitwerking toch niet de gehele kinetiek te beschrijven, daarom werd gepoogd met behulp van een vier compartimenten model de kinetiek beter te beschrijven. Dit vier compartimenten model, geïntroduceerd door Kneip\textsuperscript{(8)}, was beter te "fitten" met de PbB-tijd grafieken, waardoor absorptie, distributie en uitscheiding beter te beschrijven waren. Echter de klaring van lood bleek bij het gebruik van dit model en uitgaande van een bloedvolume van 5 liter (gebaseerd op het absolute bloedvolume) vergeleken met de literatuur\textsuperscript{(17,20,25)} extreem hoog te zijn. Zoals gebruikelijk in de kinetiek kan er beter uitgegaan worden van een fictief volume, omdat het verdelingsvolume mede bepaald wordt door factoren als eiwitbinding, stapeling in erytrocyten etc. Proefondervindelijk bleek bij invoer van een fictief volume van 10 liter voor het bloedcompartiment de klaring overeen te komen met de werkelijke klaring van lood.

Vervolgens is met behulp van dit model uitgaande van eerder gepubliceerde gegevens\textsuperscript{(26,27,28)} het verloop van loodintoxicaties in kaart gebracht. Tevens zijn in de literatuur\textsuperscript{(25,29)} gepubliceerde waarden omtrent behandelingen van een chronische loodintoxicatie met DMSA met behulp van dit model verder uitgewerkt. Uiteindelijk hebben deze bewerkingen geleid tot het hierna beschreven model.

3.3 Beschrijving van het model

Grafisch weergegeven ziet het model er als volgt uit:

Verklaring van de figuur:

- C1 = Het bloedcompartiment.
- C2 = Het botcompartiment
- C3 = Het levercompartiment
- C4 = Het niercompartiment

De vakken Urine en Gal zijn geen compartimenten maar "containers" waarin wordt uitgescheiden, zodat de hoeveelheden lood die uitgescheiden worden in deze "containers" ingevoerd en berekend kunnen worden.

\[ I_1 = \text{een absorptie constante, waarin zowel inhalatie als ingestie zijn verwerkt, van } K_s = 0,23 \text{ d}^{-1} \]
De distributieconstanten, waarbij de getallen achter de K staan voor de verschillende compartimenten, dus $K_{12}$ staat voor de distributieconstante van compartiment 1 (bloed) naar compartiment 2 (bot):

- $K_{12} = 0,11 \text{ d}^{-1}$ ($K_{\text{blood-bot}}$)
- $K_{21} = 1,73 \times 10^{-3} \text{ d}^{-1}$ ($K_{\text{bot-blood}}$)
- $K_{13} = 0,1 \text{ d}^{-1}$ ($K_{\text{blood-liver}}$)
- $K_{31} = 3,0 \times 10^{-2} \text{ d}^{-1}$ ($K_{\text{liver-blood}}$)
- $K_{14} = 3,0 \times 10^{-2} \text{ d}^{-1}$ ($K_{\text{blood-kidney}}$)
- $K_{41} = 7,0 \times 10^{-2} \text{ d}^{-1}$ ($K_{\text{kidney-blood}}$)

De uitscheidingsconstanten:

- $K_{15} = 2,0 \times 10^{-2} \text{ d}^{-1}$ ($K_{\text{blood-urine}}$)
- $K_{37} = 3,5 \times 10^{-3} \text{ d}^{-1}$ ($K_{\text{liver-gal}}$)

Compartment bloed

Na opname van lood uit de omgeving, door inhalatie of ingestie, komt lood na absorptie in het bloedcompartiment terecht. Dit compartiment is het centrale compartiment van waaruit het lood gedistribueerd wordt. De hoeveelheid lood in dit compartiment is afhankelijk van de veranderingen in de andere compartimenten. Lood dient altijd in
volbloed bepaald te worden, omdat lood zich voornamelijk in de erytrocyten bevindt. Het volume in dit compartiment wordt op een fictieve waarde van 10 liter gesteld. Omdat het bloedvolume bekend is, kan er in dit compartiment met concentraties gewerkt worden. Het bloed is overigens het enige compartiment met een bekend volume en alleen hier mag dan ook met concentraties als grootheden gewerkt worden.

De renale excretie vindt direct vanuit het bloedcompartiment plaats. Met een volume van 10 liter is de renale klaring Cl = 0,2 liter per dag, gebaseerd op een eliminatieconstante van \( K_{\text{blood-urine}} = 0,02 \). Opvallend is dat de \( K_{\text{blood-bot}} (K_{12} = 0,11 \text{ d}^{-1}) \) veel groter is dan de \( K_{\text{blood-urine}} (K_{15} = 2,0e^{-2} \text{ d}^{-1}) \). Dit wil zeggen dat lood sneller naar bot distribueert dan dat het uitgescheiden wordt.

**Compartment bot**

In het voorgestelde model distribueert het lood relatief snel van het bloed naar het bot \( (K_{12} = 0,11 \text{ d}^{-1}) \) en relatief langzaam van het bot naar het bloed \( (K_{21} = 0,00173 \text{d}^{-1}) \).

Deze langzame \( K_{\text{bot-blood}} \) geeft aan dat lood moeilijk uit bot vrijkomt. Kinderen hebben een snellere opname in het botcompartiment. De distributieconstante \( K_{\text{bot-blood}} (K_{12}) \) bij kinderen blijkt veel groter te zijn dan bij volwassenen (respectievelijk \( K = 0,34 \text{ en } K = 0,11 \)) terwijl de constante \( K_{\text{bot-blood}} (K_{21}) \) gelijk blijft.

**Compartment "weke delen"**


De verfijning heef plaatsgevonden door het "zachte weefsel" in twee compartimenten op te delen:

- compartiment nieren, met een eigen input en output van en naar het bloed-compartiment,
- compartiment lever, met een eigen input en output van en naar het bloed-compartiment, en een uitscheidingsconstante naar de gal.

Het compartiment dat nu voor de nieren staat, is in de praktijk ook voor te stellen als een fictief orgaan en zou net zo goed het centraal zenuwstelsel (CZS) kunnen zijn. Er moet dan rekening worden gehouden met het feit dat de distributieconstanten voor zo'n fictief compartiment onbekend zijn.

Hoewel de snelheidsconstanten van bloed naar het zachte weefsel vergelijkbaar zijn met de \( K_{\text{blood-bot}} \), zal de cumulatie in het zachte weefsel minder zijn, omdat de snelheidscon-
stanten van het zachte weefsel naar het bloed veel groter zijn dan de $K_{\text{weef-t-bloed}}$. Met andere woorden lood distribueert snel naar het zachte weefsel, maar komt daar ook weer snel uit vrij.

Vanuit het zachte weefsel wordt via de lever een deel van het lood uitgescheiden. Eventuele andere uitscheidingsroutes zoals zweet en haar zijn gemakshalve verdisconteerd in deze galuitscheiding, omdat zij relatief een geringe bijdrage hebben in de totale uitscheiding van lood.
4. RESULTATEN

4.1 *Standaard*situatie

Gemiddeld heeft een volwassen Nederlander een netto opname van 31 μg lood/d\(^{(11)}\).

Bij verschillende keuringen voor militaire dienst werd een gemiddelde PbB = 100 μg/l vastgesteld\(^{(11,30)}\). Daarom wordt deze waarde als reëel voorkomende situatie gebruikt bij berekeningen waarbij van het hier beschreven model gebruik gemaakt wordt.

De urineklaring verloopt met een snelheid van \(K_{15} = 2. e^{-2}\) per dag en is bij dit evenwicht dus 1.996.e\(^{-2}\) mg/d. De hepatische klaring gebeurt met een snelheid van \(K_{37} = 3.5. e^{3}\) per dag en bedraagt bij dit evenwicht 1.04.e\(^{2}\) mg/d.

Volgens het ontwikkelde model zou dit voor een gezonde volwassene het volgende betekenen:

in de loop der jaren is er een evenwichtssituatie ontstaan, waarbij er in de verschillende compartimenten een bepaalde hoeveelheid lood is opgenomen. Met nadruk wordt hier het woord evenwicht genoemd. Dit geeft aan dat het geen vaste hoeveelheden zijn, maar dat dit een dynamisch geheel betreft waarbij een constante distributie plaatsvindt van en naar de verschillende compartimenten.

In de uitgangssituatie van dit evenwicht, de situatie gesteld voor de gezonde Nederlander, zal zich in het bloed 1.0 mg lood bevinden. Met het gestelde bloedvolume van 10 liter geeft dit een PbB van 100 μg/l. Met het model kan men dan berekenen dat het niercompartment 0.44 mg lood bevat, het levercompartment 3.1 mg en het botcompartment 63 mg.

In *Figuur 2* is het verloop van de hoeveelheden lood in de verschillende compartimenten weergegeven gedurende een periode van 0 tot 120 dagen. Het betreft hier de bovenbeschreven ‘standaardsituatie’ geldend voor een gezonde volwassene Nederlander. Op dag 120 is de blootstelling aan lood stopgezet en is uitgegaan van de theoretische situatie dat er geen enkele absorptie meer optreedt.

Uit *Figuur 2* is de hoeveelheid lood in de verschillende compartimenten af te lezen, evenals de bloedloodconcentratie (PbB).

Tot dag 120 lopen alle lijnen vrijwel horizontaal. De totale hoeveelheid lood in het lichaam zal gedurende deze tijd praktisch gelijk blijven. De bloedloodconcentratie (PbB) ligt om en nabij 100 μg/l en in deze evenwichtssituatie blijft de PbB ook voor zeer lange tijd praktisch gelijk. Ditzelfde geldt voor de hoeveelheden in de andere compartimenten. Dehoeveelheid lood die geabsorbeerd wordt (31 μg/d) is vrijwel gelijk aan de
hoeveelheid lood die uitgescheiden wordt (30 μg/d).
Als na dag 120 de blootstelling is stopgezet zal de hoeveelheid lood in het bloedcompartiment aanvankelijk het snelst dalen, gevolgd door de hoeveelheden in de compartimenten van lever en nier. De hoeveelheid lood in het botcompartiment vermindert als gevolg van de relatief kleine snelheidsconstante $K_{\text{bot-blood}}$ ($K_{21}$) zo weinig dat het in de grafiek vrijwel niet te zien is.
Opgemerkt moet worden dat de hoeveelheid lood in het niercompartiment minder snel afneemt dan verwacht zou worden bij deze eerste orde constanten. Blijkbaar wordt er een nieuw evenwicht ingesteld. Ook in het bloedcompartiment evenals in het levercompartiment blijven de hoeveelheden "lang" erg hoog. Dit fenomeen kan worden verklaard uit het feit dat het botcompartiment langzaam lood afgeeft aan de rest van het systeem, waardoor deze compartimenten strikt genomen weer enigszins "gevuld" worden en de totale hoeveelheden in de andere compartimenten slechts zeer langzaam afnemen.

4.2 Chronisch verhoogde blootstelling

Bij een chronisch verhoogde blootstelling is per definitie de absorptie iets hoger voor langere tijd. In het volgende voorbeeld (Figuur 3) is de dagelijkse inname verhoogd tot 5
mg, welke 120 dagen voortduret. Na 120 dagen is de blootstelling stopgezet en daarmee de absorptie.

![Graph showing the amount of lead in the different compartments over time.](image)

**Figuur 3**   **Stijging van de hoeveelheden lood in de verschillende compartimenten bij een dagelijkse inname van 5 mg**

Uit **Figuur 3** is de hoeveelheid lood in de verschillende compartimenten af te lezen, evenals de bloedloodconcentratie (PbB).

Tijdens de blootstelling (tot dag 120) nemen de hoeveelheden in alle compartimenten toe. Duidelijk is ook dat er snel grote hoeveelheden lood naar het bot distribueren. De hoeveelheid lood in bot stijgt in deze 120 dagen durende blootstelling van 63 mg naar 94 mg. Opvallend is dat de hoeveelheid in het botcompartment na stopzetting van de blootstelling nog steeds stijgt tot een waarde van 100 mg op dag 163.

Na het beëindigen van de blootstelling op dag 120 nemen de hoeveelheden in de bloed-, nier- en levercompartimenten af en na enige tijd stelt zich een nieuw evenwicht in. Door de relatief hoge $K_{blood}$ en de relatief nog hoge concentraties in de andere compartimenten en doordat de uitscheiding uit het botcompartment traag is, zal na stopzetting van de blootstelling de hoeveelheid lood in het botcompartment aanvankelijk nog toenemen en daarna slechts traag afnemen.
Omdat de hoeveelheid in het bot relatief ten opzichte van de rest van het systeem zo groot is, zal \textit{ondanks de trage afgifte- de afgifte groot genoeg zijn om de rest van het systeem "gevuld" te houden. Het is immers een eerste orde constante en met de grote hoeveelheid in het compartiment zal ondanks de trage constante $K_{bot\text{-}blood}$ toch een behoorlijke hoeveelheid lood aan het systeem afgegeven kunnen worden. (Een "slow-release" principe van het botcompartiment)

De hoeveelheid lood die uit het botcompartiment geëlimineerd wordt, is ten opzichte van de totale hoeveelheid in het botcompartiment zeer gering. Daarom zal het botcompartiment bij benadering voor lange tijd in een steady-state situatie verkeren. In een steady-state situatie kan de "Turn-over"-snelheid (deze is in een steady state situatie hetzelfde als de eleminatiesnelheid) berekend worden met $K_e=R/A_e$ met $K$ als distributieconstante, $R$ de eleminatiesnelheid uit het botcompartiment gegeven als een nulde orde constante en $A$ de hoeveelheid in het desbetreffende compartiment. Het botcompartiment geeft dan in de hier geschetste situatie 0.162 mg/d aan de rest van het systeem af; dit is ongeveer 5 keer meer dan de normale dagelijkse inname.

4.3 Behandeling door middel van chelatietherapie

De enige behandelingsmogelijkheid van een chronisch verhoogde loodbelasting bestaat, naast het doen beëindigen van de blootstelling, uit het chelen van de loodmoleculen met een zogenaamde chelator, chelatietherapie genoemd. Een chelator is een organische verbinding die zware metalen bindt door er een wateroplosbaar complex mee te vormen. Dit complex kan dan door de nieren worden uitgescheiden.

Er zijn in het verleden verschillende stoffen als chelator voor lood gebruikt, waaronder dimercaprol (BAL), EDTA en ook het minder effectieve penicillamine. Tegenwoordig komt dimercaptosuccimeracid (DMSA of 'succimer') steeds meer op de voorgrond te staan als chelator voor lood.

Succimer is een stof die oraal toegediend kan worden. Het heeft een halfwaardetijd van 48 uur en zal de renale klaring van lood versnellen. Door zijn structuur heeft DMSA een grote affiniteit voor zachte metalen zoals lood en veel minder voor essentiële mineralen zoals koper, ijzer of zink.

DMSA verdeelt zich voornamelijk over plasma. Dit betekent dat het DMSA zich voornamelijk in het eerste compartiment zal bevinden. Het bloedcompartiment is dan ook vrijwel de enige plaats waar DMSA het lood complexeert. Hieruit volgt onmiddellijk dat de versnelde uitscheiding van het lood ten gevolge van chelatie met DMSA vanuit het eerste of bloedcompartiment plaatsvindt.

Deze versnelde uitscheiding wordt in het model voorgesteld als een extra uitschei-
dingsconstante vanuit het bloedcompartiment (naast de renale uitscheidingsconstante $K_{15}$). Deze extra uitscheidingsconstante ($K_{16}$) is gekoppeld aan een container, zodat de als gevolg van de behandeling uitgescheiden hoeveelheid lood gevolgd kan worden (Figuur 4). Door de behandeling met DMSA (eigenlijk met iedere chelator) wordt het lood in het bloedcompartiment sneller uitgescheiden.

Deze versnelde uitscheiding uit het bloedcompartiment zou ook door dialyse kunnen geschieden. Dialyseren is een techniek om ongewenste stoffen versneld uit het eerste compartiment te elimineren. De snelheid waarmee dit gebeurt is te beschrijven met een dialyseconstante.

\[ \text{Figuur 4} \quad \text{Het model met een extra uitscheidingsconstante voor de simulatie van een chelatiebehandeling} \]

De uitscheidingsconstante behorende bij de chelatiebehandeling wordt weergegeven door de volgende formule: $F = 1 - e^{-kt}$, waarbij $F$ de fractie onttrokken lood is, $k$ de snelheid waarmee dat gebeurt ($K_{16}$) en $t$ de tijd waarin dat gebeurt. Als in vijf dagen de bloedconcentratie 90% daalt, kan uit de formule $F = 1 - e^{-kt}$ de constante $K$ berekend worden; $K = 0.46$ per dag.

Uit de literatuur\(^{17}\) blijkt dat door middel van chelatietherapie (30mg/kg/d oraal DMSA)
de bloedloodconcentratie in 5 dagen 72% kan dalen. De gemiddelde renale uitscheiding 
over de eerste 24-uur tijdens de chelatie is dan 28,6 keer hoger dan de 24-uurs 
uitscheiding zonder chelatietherapie. Met de theoretisch berekende dialyseconstante (K = 
0.46) bleken deze hoge uitscheidingswaarden niet te kunnen worden benaderd. 
Om de gemeten waarden uit de literatuur te kunnen simuleren in het ontwikkelde model 
dient een uitscheidingsconstante van $K_{16} = 1.1$ te worden gekozen. De uitscheiding in de 
eerste 48 uur van de behandeling is dan 25.3 maal hoger dan in de 48 uur voor de 
chelatie behandeling, terwijl de PbB met 77.4% daalt.

De daling van de loodconcentratie in het bloedcompartiment verstoort het bestaande 
evenwicht, omdat het bloedcompartiment na de therapie vrijwel geen lood meer bevat, 
terwijl de andere compartimenten nog gevuld zijn. Het lood zal uit deze compartimenten 
gemobiliseerd worden, met weer een toename van de hoeveelheid lood in het 
bloedcompartiment, totdat zich een nieuw evenwicht ingesteld heeft. Daar het 
bloedcompartiment slechts 4% van de totale lichaamshoeveelheid bevat zal de hoeveelheid 
lood in de andere compartimenten nauwelijks dalen (zie Figuur 5).
**Figuur 5**  
Verloop van de PbB met (onderste lijn) en zonder (bovenste lijn) behandeling

Op het tijdstip $t = 120$ dagen is chelatietherapie gegeven waarop de bloedloodconcentratie daalt (onderste lijn).

Na verloop van tijd is de bloedloodconcentratie echter weer nagenoeg gelijk aan de concentratie die zonder chelatietherapie bereikt zou zijn (bovenste lijn).

Uit de organen van de zachte weefsels wordt tijdens de behandeling ook lood onttrokken. Dit gebeurt, omdat de snelheidsconstanten $K_{1i}$ en $K_{4i}$ relatief groot zijn en al tijdens de behandeling zal het lood gaan redistribueren naar het bloed. Het vrijgekomen lood uit de compartimenten lever en nier wordt ook weer door het DMSA in het eerste compartiment gecheleerd (zie *Figuur 6*).
Figuur 6  Verloop van de PbB en de hoeveelheid lood in het niercompartiment met (onderste lijn) en zonder (bovenste lijn) behandeling

Uit Figuur 6 is de hoeveelheid lood met (onderste lijn) en zonder chelatietherapie af te lezen, evenals de bloedloodconcentratie met (onderste lijn) en zonder chelatietherapie.

Uit bot wordt tijdens de behandeling maar een marginale hoeveelheid onttrokken (zie Figuur 7). Dit komt doordat de $K_{bot-blood}$ klein is, veel kleiner dan b.v. $K_{niern-blood}$, dus tijdens de behandeling zal het lood uit het bot in beperkte mate naar het bloed distribueren. De hoeveelheid lood die wel uit bot onttrokken wordt is ten opzichte van de totale hoeveelheid lood in bot zeer gering.
Figuur 7 Verloop van de PbB en de hoeveelheid lood in het botcompartiment met (onderste lijn) en zonder (bovenste lijn) chelatiebehandeling

In Figuur 7 zijn de PbB en de hoeveelheid lood in het botcompartiment met (onderste lijnen) en zonder chelatiebehandeling weergegeven. Duidelijk wordt dat de hoeveelheid lood door de behandeling onttrokken uit het botcompartiment nihil is. Dit is ongelukkig omdat juist de grootste hoeveelheid lood zich in het botcompartiment bevindt en het botcompartiment juist bepalend is voor de totale 'body load'. In het theoretische geval dat het eerste, derde en vierde compartiment (bloed, lever en nieren) geheel loodvrij gemaakt worden als gevolg van de chelatie behandeling, zou in dit gunstigste geval 6% van de totale hoeveelheid lood in het lichaam aanwezig, onttrokken kunnen worden. Het lood uit het botcompartiment zal na de chelatie therapie redistribueren over de andere compartimenten. Na de chelatie behandelingen zal de bloedloodconcentratie stijgen tot een niveau dat nauwelijks afwijkt van het niveau zonder behandeling.
4.4 Andere benadering (AUC)

Tot nu toe zijn voor het bloedcompartiment de variabelen concentratie (PbB) en totale hoeveelheid gebruikt, en voor de andere compartimenten uitsluitend de totale hoeveelheid. Dit laatste omdat er voor deze compartimenten geen gegevens bekend zijn over het volume.

Het is mogelijk om in plaats van met de hoeveelheid in de verschillende compartimenten te werken met het begrip "area under the curve" (AUC) in de verschillende compartimenten. De AUC is de berekende oppervlakte onder de concentratie-tijd curve. De AUC geeft informatie over de totale hoeveelheid van een stof in een compartiment en het verschil in hoeveelheid stof per tijdseenheid in het compartiment. Met de AUC kan op een andere manier in beeld worden gebracht hoe de relatieve belasting, met en zonder behandeling, er in een bepaald compartiment uitziet (Figuur 8).

<table>
<thead>
<tr>
<th>TIJD [dagen]</th>
<th>AUC nier</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>83</td>
<td>20000</td>
</tr>
<tr>
<td>120</td>
<td>40000</td>
</tr>
<tr>
<td>166</td>
<td>60000</td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Figuur 8 AUC van het niercompartiment, met (onderste lijn) en zonder (bovenste lijn) chelaatetherapie
5. DISCUSSIE


Een chronische loodbelasting kan aanleiding geven tot intoxicatieverschijnselen, doordat het botcompartiment, dat aanvankelijk snel lood heeft opgenomen, langzaam het lood aan de rest van het lichaam afgeeft, waarna het lood in de effectororganen schade kan aanrichten.

Het belangrijkste verschil tussen een acute en een chronische loodbelasting is in kinetisch opzicht dan ook de hoeveelheid lood in het botcompartiment, dat bij chronische expositie vele malen groter is dan bij acute expositie. Bij een acute intoxicatie wordt de hoeveelheid lood in het bloed bepaald door de hoeveelheid die is ingenomen. Theoretisch zou (wanneer er in het verleden nog nooit contact met lood is geweest) het botcompartiment nog helemaal leeg kunnen zijn. Het botcompartiment speelt ten aanzien van de toelevering van lood aan het effectororgaan een ondergeschikte rol ten opzichte van de inname.

De snelheid waarmee de hoeveelheid lood in het botcompartiment toeneemt, is afhankelijk van de dagelijkse inname. Bij een chronische blootstelling is voor de uiteindelijke hoogte van de bloedloodconcentraties na verloop van tijd de dagelijkse absorptie van minder belang.

Onder dezelfde omstandigheden is er bij kinderen een grotere botopslag, terwijl de hoeveelheid lood in bloed geringer is dan bij volwassenen. Dit noopt bij kinderen tot extra voorzichtigheid bij de interpretatie van bloedlooduitslagen en het verbinden van conclusies hieraan. Na chronische blootstelling is het instellen van een chelatiebehandeling bij kinderen hierdoor nog minder succesvol.

Uit de resultaten van de simulaties blijkt dat na een chronische loodexpositie, de bloedloodconcentratie na chelatietherapie terugkomt op het niveau vergelijkbaar met het niveau op hetzelfde tijdstip zonder behandeling. Met andere woorden: na instellen van een nieuw evenwicht zal na de chelatiebehandeling de bloedloodconcentratie nauwelijks lager zijn dan de bloedloodconcentratie zonder behandeling. Verschillende richtlijnen voor de behandeling van een chronische loodintoxicatie suggereren dat bij overschrijding van bepaalde bloedloodconcentraties een chelatiebehandeling geïndiceerd is, ongeacht het klinisch beeld, dus ook bij asymptomatische patienten. Vooral bij kinderen wordt door sommigen dit beleid geadviseerd. Aan de hand van het in deze studie ontwikkelde model
kan bij deze richtlijnen een kritische kanttekening geplaatst worden. Het model maakt
inzichtelijk dat na iedere chelatietherapie de bloedloodconcentratie zal stijgen tot vrijwel
hetzelfde niveau als wanneer niet behandeld zou worden. De zin van chelatietherapie om
de bloedloodconcentratie effectief te reduceren valt dan ook ernstig te betwijfelen.
De behandeling van een chronische loodintoxicatie dient te geschieden op geleide van het
klinisch beeld en niet op geleide van grenswaarden voor de bloedloodconcentratie. Hierbij
moet altijd een afweging gemaakt worden tussen de ernst van de symptomen en de
nadelige effecten van de chelatiebehandeling. Het nut van chelatiebehandeling ligt in het
feit dat met cheleren een orgaan kortstondig onlast kan worden van lood. Deze tijd kan
dan net voldoende zijn voor herstel van bijvoorbeeld de nierfunctie of verminderd van
neuropsychiatrische verschijnselen in geval van een loodencephalopathie. Men moet dan
rekening houden met het feit dat deze onlasting kortstondig is. Een veelvuldig herhalen
van de chelatietherapie lijkt hiervoor een oplossing, maar de bijwerkingen van DMSA
kunnen een beperking vormen voor de continuïteit van de behandeling\(^{04,33}\).
De standaardisituation die in dit rapport gesteld is, kan in het individuele geval sterk
variëren, omdat de expositie aan lood sterk kan verschillen van individu tot individu
[woonomgeving (vliegveld, snelweg), drinkwatergebied, leefgrond (oude industrieter-
reinen) en dergelijke].
Ook de constanten die in het ontwikkelde model gebruikt zijn, kunnen in een individueel
geval afwijken door bepaalde fysiologische of pathologische processen. Processen die
leiden tot een verhoogd botmetabolisme (zoals acidose of hyperparathyroïdie) kunnen
bijvoorbeeld een hogere afgifte van bot naar bloed teweer brengen.

Wanneer bij een persoon een loodintoxicatie wordt vermoed, zullen in het algemeen de
Free Erythrocyte Protoporfyrine (FEP) of Zinc Protoporfyrine (ZPP) waarde en de
bloedloodconcentratie (PbB) bepaald worden. De PbB kan ingevuld worden in het in dit
rapport ontwikkelde model. De FEP kan gebruikt worden als indicatie voor de inmiddels
ontwikkelde lichaamsbelasting. Voor het volgen van de patiënt in de tijd heeft de FEP-
waarde minder waarde. Als eenmaal bekend is dat er een verhoogde
loodlichaamsbelasting is, zal ook de FEP verhoogd blijven omdat de FEP afhankelijk is
van de totale lichaamsbelasting. De FEP-waarde is een diagnostische parameter bij het
eerste consult. Om de loddbelasting van de patiënt te monitoren zou een betrouwbare
methode voor de bepaling van lood in bot ontwikkeld dienen te worden.
Een klinisch (vrijwilligers) onderzoek, van personen die in het verleden een chronisch
verhoogde loddbelasting hebben gehad, is wenselijk om het model nader te evalueren en
de "weke delen" beter te definiëren. In dit klinisch onderzoek kan dan tevens de invloed
van chelatietherapie op de blokkade van de haemsynthese door lood worden bestudeerd.
Zo kan het nut van DMSA-behandeling, als kortstondige onlasting voor een orgaan (in
dit geval het bloed) gemeten worden aan de hand van de FEP-waarde.
Te overwegen valt ook om in het kader van een dergelijk onderzoek een experiment uit te
voeren waarbij zowel DMSA als EDTA gegeven worden; DMSA om lood uit zacht weefsel en bloed "te trekken", EDTA om lood uit bot "te trekken". Uit dierexperimenten\(^{(23)}\) blijkt dat de combinatie in ieder geval meer uitscheiding van lood in urine geeft. De vraag is nu of de extra bijdrage van de combinatie, ten opzichte van DMSA alleen, wel genoeg lood uit het bot haalt om de lichaamsbelasting efficiënt te doen dalen. In de nu ter beschikking staande literatuur en de gedane klinische onderzoeken c.q. behandelingen zijn de patiënten na de chelatiebehandeling niet lang genoeg gevolgd om het redistributieproces volledig in beeld te brengen. Bij eventueel volgende behandelingen met chelatoren zouden de variabelen langer vervolgd dienen te worden, zo mogelijk zelfs jaren.
LITERATUUR

1. Nater J.P.
   De loden last van de romeinse tijd.
   Arts en auto, 56, 1535-1541

2. Goldman L.R., Carra J.
   JAMA 1994; 272(4): 315-316

3. Needleman H.L., Gatsonis C.A.
   Low level lead exposure and the IQ of children, a Meta-analysis of modern studies.
   JAMA 1990; 263(5): 673-678

4. Hegger C., Savelkoul T.J.F., Meulenberg J.
   Vergiftiging door lood.

5. Werken met lood; het loodbesluit
   Voorburg: Directoraat-generaal van de Arbeid van het Ministerie van Sociale Zaken en werkgelegenheid, 1988; P-170-1

   De gezondheidkundige betekenis van het loodgehalte in bloed.
   Ned Tijdschr Geneeskd 1987; 122(22): 793-798

7. Al-Saleh I.A.S.
   The biochemical and clinical consequences of lead poisoning.

   Biokinetic Modelling for mammalian lead metabolism.
   Neurotoxicology 1983; 4(3): 189-192

9. Rabinowitz M.B., Wetherill G.W., Kopple J.D.
   Kinetic analysis of lead metabolism in healthy humans.
   J Clin Invest 1976; 58: 260-270
10. Rabinowitz M.B., Wetherhill G.W., Kopple J.D. 
Lead metabolism in the normal human. Stable isotope studies. 
Science 1973; 182(16): 725-727

11. Krasowski M., Doelman P. 
Lood in milieu en voeding in Nederland. 
Rapport coördinatie-commissie voor de metingen van radioactiviteit en 
 xenobiotische stoffen, 1990

12. World Health Organization 

13. Putnam R.D. 
Review of toxicology of inorganic lead. 
Am Ind Hyg Assoc J 1986; 47(11): 700-703

14. Ellenhorn M.J., Barceloux D.G. 
Medical Toxicology; Diagnosis and Treatment of Human Poisoning. 
New York, NY, USA/Amsterdam, The Netherlands; Elseviers Science Publishing Co. 1988; 1st ed.: 1030-42

15. Smith D.R. 
Stable isotopic tracers of lead mobilized by DMSA Chelation in low lead exposed rats 

16. Mushak P. 
New directions in de toxicokinetics of human lead exposure. 
Neurotoxicology 1993; 14(2-3): 29-42

17. Mann K.V., Travers J.D. 
Succimer, an oral lead chelator. 
Clin Pharm 1991; 10

18. Rabinowitz M.B. 
Toxicokinetics of bone lead. 
Environ Health Perspect 1991; 91: 33-37
Hemolytic anemia associated with lead poisoning from shotgun pellets and the 
response to succimer treatment. 
Am J Hematol 1993; 44: 280-283

20. Tutunji M.F., Mahasneh Q.M. 
Disappearance of heme metabolites following chelation therapy with DMSA. 
Clin Tox 1994; 32(3): 267-276

The treatment of lead poisoning from gunshot wounds with succimer. 

22. Manton W.I. 
Editorial comment. 

23. Liebelt E.L., Shannon M., Grefa W. 
Efficacy of oral DMSA therapy for low-level childhood plumbism. 

24. Manton W.I., Thal E.R. 
Lead Poisoning from retained missiles, an experimental study. 

Chronic lead poisoning treated with dimercaptosuccinic acid. 
Pharmacol Toxicol 1991; 68: 266-269

Reducing bone lead content by chelation treatment in chronic lead poisoning: An 
in vivo X-Ray and bone biopsy study. 
Environ Res 1989; 48: 70-75

S., Mattsson S. 
Kinetics of lead in bone and blood after end of occupational exposure. 
Pharmacol Toxicol 1991; 69: 477-484
28. Linden M.A., Manton W.I., Stewart R.M., Thal E.R., Feit H.
Lead poisoning from retained bullets.

29. Chisolm J.J.
Bal, EDTA, DMSA and DMPS in the treatment of lead poisoning in children.

Loodbelasting van scherpschutters. Een onderzoek naar gezondheidsrisico's bij
leden van de scherpschuttervereniging "Tilburg".
Rapport van de GGD-midden Brabant, 1994

31. Cory-Slechta D.
Mobilization of lead over the course of DMSA chelation therapy and long term
efficacy.
JAMA 1988; 246

32. Dreisbach R.H., Robertson W.O.
Handbook of poisoning.
Apleton and Lange, California 1987

33. Tandon S.K., Singh S, Jain V.K.
Efficacy of combined chelation in lead intoxication.