

National Institute
for Public Health
and the Environment

Report 601714006/2009
C.T.A. Moermond | E.H.W. Heugens

Environmental risk limits for
monochlorophenols, 4-chloro-3-
methylphenol and aminochlorophenol

RIVM Report 601714006/2009

Environmental risk limits for monochlorophenols, 4-chloro-3-methylphenol and aminochlorophenol

C.T.A. Moermond
E.H.W. Heugens

Contact:
Caroline Moermond
Expertise Centre for Substances
caroline.moermond@rivm.nl

This investigation has been performed by order and for the account of Directorate-General for Environmental Protection, Sustainable Production Directorate (DP), within the framework of the project 'Standard setting for other relevant substances within the WFD'.

© RIVM 2009

Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication.

Abstract

Environmental risk limits for monochlorophenols, 4-chloro-3-methylphenol and aminochlorophenol

The National Institute for Public Health and the Environment (RIVM) has derived Environmental Risk Limits (ERLs) for 2-, 3- and 4-monochlorophenol, 4-chloro-3-methylphenol and aminochlorophenol in fresh and marine surface waters. The ERLs represent environmental concentrations of a substance offering different levels of protection to man and ecosystems. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the final environmental quality standard.

Four different ERLs are distinguished in the Netherlands: a concentration at which effects are considered negligible (NC); a concentration at which no harmful effects are to be expected (maximum permissible concentration, MPC); a maximum acceptable concentration for ecosystems specifically for short-term exposure (MAC_{eco}), and a concentration at which possible serious effects are to be expected (serious risk concentration, SRC_{eco}). Based on a preliminary screening of monitoring data, there is no indication that any of the newly derived ERLs is exceeded.

RIVM used the methodology as required by the European Water Framework Directive for derivation and selection of the ERLs. Potential risks for humans as well as effects on the aquatic ecosystem are taken into account.

The environmental quality standards are to be set by the Steering Committee for Substances. The ERLs as presented in this report are thus preliminary values that do not have an official status.

This report is part of a series. ERLs for 2,4-dichlorophenol and trichlorophenols are reported separately.

Key words:

environmental risk limits, monochlorophenols, 4-chloro-3-methylphenol, aminochlorophenol, maximum permissible concentration

Rapport in het kort

Milieurisicogrenzen voor monochloorfenolen, 4-chloor-3-methylfenol en aminochloorfenol

Het RIVM heeft milieurisicogrenzen voor zoet en zout oppervlaktewater afgeleid voor monochloorfenolen, 4-chloor-3-methylfenol en aminochloorfenol. Deze dienen als advieswaarden voor de Nederlandse Interdepartementale Stuurgroep Stoffen. De stuurgroep stelt de uiteindelijke milieukwaliteitsnormen vast.

Milieurisicogrenzen zijn maximale concentraties van een stof in het milieu om mens en ecosysteem op verschillende niveaus te beschermen tegen nadelige effecten. Nederland onderscheidt hierbij vier milieurisicogrenzen: een niveau waarbij het risico verwaarloosbaar wordt geacht (VR), een niveau waarbij geen schadelijke effecten zijn te verwachten (maximaal toelaatbaar risiconiveau, MTR), de maximaal aanvaardbare concentratie voor ecosystemen, specifiek voor kortdurende blootstelling (MAC_{eco}) en een niveau waarbij mogelijk ernstige effecten voor ecosystemen zijn te verwachten (ER_{eco}). De nu afgeleide milieurisicogrenzen lijken op basis van een eerste vergelijking met monitoringsgegevens niet te worden overschreden.

Het RIVM heeft de afleiding en selectie van de milieurisicogrenzen uitgevoerd volgens de methodiek die is voorgeschreven door de Europese Kaderrichtlijn Water. Hierbij is zowel rekening gehouden met mogelijke risico's voor de mens als met eventuele effecten op het ecosysteem.

Omdat de uiteindelijke milieukwaliteitsnormen worden vastgesteld door de Nederlandse Interdepartementale Stuurgroep Stoffen, zijn de milieurisicogrenzen zoals afgeleid in dit rapport voorlopige waarden zonder officiële status.

Dit rapport is onderdeel van een serie. De milieurisicogrenzen voor 2,4-dichloorfenol en trichloorfenolen zijn in afzonderlijke rapporten opgenomen.

Trefwoorden:

milieurisicogrenzen, monochloorfenolen, 4-chloor-3-methylfenol, aminochloorfenol, maximaal toelaatbaar risiconiveau

Preface

The goal of this report is to derive risk limits that protect both man and the environment. This is done in accordance with the methodology of the Water Framework Directive (WFD) that is incorporated in the methodology for the project 'International and National Environmental Quality Standards for Substances in the Netherlands' (INS), following the Guidance for the derivation of environmental risk limits within the INS framework (Van Vlaardingen and Verbruggen, 2007).

Acknowledgements

Thanks are due to J.M.C. Appelman, M.Sc., who was contact person at the Ministry of Housing, Spatial Planning and the Environment (VROM-DP) and to Dr. M.P.M. Janssen who is program coordinator for the derivation of ERLs within the RIVM.

The results of the present report have been discussed in the scientific advisory group INS (WK INS). The members of this group are acknowledged for their contribution.

Contents

Summary	13	
1	Introduction	15
1.1	Project framework	15
1.2	Selection of substances	15
2	Methods	17
2.1	Data collection, evaluation and selection	17
2.2	Derivation of ERLs	17
2.2.1	Drinking water	17
2.2.2	MAC _{eco, marine}	18
2.2.3	Toxic unit approach	18
3	Derivation of environmental risk limits	19
3.1	2-chlorophenol	19
3.1.1	Substance identification, physico-chemical properties, fate and human toxicology	19
3.1.2	Trigger values	21
3.1.3	Aquatic toxicity data	22
3.1.4	Derivation of Environmental Risk Limits	23
3.1.5	Sediment toxicity data	24
3.1.6	Comparison of derived ERLs with monitoring data	24
3.2	3-chlorophenol	25
3.2.1	Substance identification, physico-chemical properties, fate and human toxicology	25
3.2.2	Trigger values	27
3.2.3	Aquatic toxicity data	27
3.2.4	Derivation of Environmental Risk Limits	28
3.2.5	Sediment toxicity data	30
3.2.6	Comparison of derived ERLs with monitoring data	30
3.3	4-chlorophenol	31
3.3.1	Substance identification, physico-chemical properties, fate and human toxicology	31
3.3.2	Trigger values	33
3.3.3	Aquatic toxicity data	33
3.3.4	Derivation of Environmental Risk Limits	35
3.3.5	Sediment toxicity data	36
3.3.6	Comparison of derived ERLs with monitoring data	37
3.4	4-chloro-3-methylphenol	37
3.4.1	Identity	37
3.4.2	Trigger values	39
3.4.3	Aquatic toxicity data	39
3.4.4	Derivation of Environmental Risk Limits	40
3.4.5	Sediment toxicity data	42
3.4.6	Comparison of derived ERLs with monitoring data	42

3.5	Aminochlorophenol	42
3.5.1	Substance identification, physico-chemical properties, fate and human toxicology	42
3.5.2	Trigger values	43
3.5.3	Aquatic toxicity data	44
3.5.4	Derivation of Environmental Risk Limits	44
3.5.5	Comparison of derived ERLs with monitoring data	45
4	Conclusions	47
References		49
Appendix 1. Information on bioconcentration		51
Appendix 2. Detailed aquatic toxicity data		54
Appendix 3. References used in the appendices.		54

Summary

Environmental risk limits (ERLs) are derived using ecotoxicological, physico-chemical, and human toxicological data. They represent environmental concentrations of a substance offering different levels of protection to man and ecosystems. It should be noted that the ERLs are scientifically derived values. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs) from these ERLs. ERLs should thus be considered as preliminary values that do not have an official status.

In this report, the risk limits negligible concentration (NC), maximum permissible concentration (MPC), maximum acceptable concentration for ecosystems (MAC_{eco}), and serious risk concentration for ecosystems (SRC_{eco}) are derived for monochlorophenols, aminochlorophenol and 4-chloro-3-methylphenol in water. No risk limits were derived for the sediment compartment because the trigger values to derive such risk limits were not reached.

For the derivation of the MPC and MAC_{eco} for water, the methodology used is in accordance with the Water Framework Directive. This methodology is based on the Technical Guidance Document on risk assessment for new and existing substances and biocides (European Commission, 2003), and is incorporated in the guidance for the project 'International and National Environmental Quality Standards for Substances in the Netherlands' (Van Vlaardingen and Verbruggen, 2007). An overview of the derived ERLs is given in Table 1.

It should be noted that due to the mode of action of the monochlorophenols (narcosis), and the fact that 2-, 3- and 4-chlorophenol often occur together, the use of the toxic unit approach is recommended for the assessment of water quality. The toxic unit approach assumes that compounds that act similar, have concentration additive toxicity. This means that the sum of the ratio between measured concentration and risk limits for all monochlorophenols should not exceed 1. A preliminary screening of monitoring data indicates that concentrations are always below the detection limits. Since detection limits are much lower than the newly derived ERLs, it is not likely that the ERLs are exceeded.

Table 1 Derived MPC, MAC_{eco}, NC, and SRC_{eco} values for monochlorophenols, 4-chloro-3-methylphenol and aminochlorophenol (in µg/L).

	Unit	MPC	MAC_{eco}	NC	SRC_{eco}
2-chlorophenol					
Freshwater	µg/L	35	1.1×10^2	0.35	1.2×10^4
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	3.5	11	3.5×10^{-2}	1.2×10^4
3-chlorophenol					
Freshwater	µg/L	4.0	4.0×10^2	4.0×10^{-2}	1.4×10^3
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	0.4	40	4.0×10^{-3}	1.4×10^3
4-chlorophenol					
Freshwater	µg/L	16	89	0.16	3.6×10^3
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	3.2	18	3.2×10^{-2}	3.6×10^3
4-chloro-3-methylphenol					
Freshwater	µg/L	6.4	64	6.4×10^{-2}	3.7×10^2
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	0.64	6.4	6.4×10^{-3}	3.7×10^2
Aminochlorophenol					
Freshwater	µg/L	n.d. ^b	n.d. ^b	n.d. ^b	n.d. ^b
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	n.d. ^b	n.d. ^b	n.d. ^b	n.d. ^b

^a n.a. = not applicable.

^b n.d. = not derived due to lack of data

1 Introduction

1.1 Project framework

In this report, environmental risk limits (ERLs) for surface water (freshwater and marine) are derived for monochlorophenols, 4-chloro-3-methylphenol and aminochlorophenol for the project ‘Standard setting for other relevant substances within the WFD’, which is closely related to the project INS (International and national environmental quality standards for substances in the Netherlands). The following ERLs are considered:

- negligible concentration (NC) – concentration at which effects to ecosystems are expected to be negligible and functional properties of ecosystems must be safeguarded fully. It defines a safety margin which should exclude combination toxicity. The NC is derived by dividing the MPC (see next bullet) by a factor of 100.
- maximum permissible concentration (MPC) – concentration in an environmental compartment at which:
 1. no effect to be rated as negative is to be expected for ecosystems;
 - 2a no effect to be rated as negative is to be expected for humans (for non-carcinogenic substances);
 - 2b for humans no more than a probability of 10^{-6} per year of death can be calculated (for carcinogenic substances). Within the scope of the Water Framework Directive, a probability of 10^{-6} on a life-time basis is used.Within the scope of the Water Framework Directive the MPC is specifically referring to long-term exposure.
- maximum acceptable concentration (MAC_{eco}) – concentration protecting aquatic ecosystems for effects due to short-term exposure or concentration peaks.
- serious risk concentration (SRC_{eco}) – concentration at which possibly serious ecotoxicological effects are to be expected.

The results presented in this report have been discussed by the members of the scientific advisory group for the INS-project (WK-INS). It should be noted that the Environmental Risk Limits (ERLs) in this report are scientifically derived values, based on (eco)toxicological, fate and physico-chemical data. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs). ERLs should thus be considered as preliminary values that do not have any official status.

1.2 Selection of substances

ERLs are derived for monochlorophenols, 4-chloro-3-methylphenol and aminochlorophenol (Table 2), which are selected by the Netherlands in the scope of the Water Framework Directive (WFD; 2000/60/EC). The derivation of environmental risk limits for dichlorophenols and trichlorophenols will be reported in separate reports (Moermond and Heugens, 2009ab).

Table 2. Selected compounds.

Compound	CAS number
2-chlorophenol	95-57-8
3-chlorophenol	108-43-0
4-chlorophenol	106-48-9
4-chloro-3-methylphenol	59-50-7
aminochlorophenol	95-85-2

2 Methods

2.1 General

The methodology for the data selection and derivation of ERLs is described in detail in Van Vlaardingen and Verbruggen (2007), further referred to as the ‘INS-Guidance’. This guidance is in accordance with the guidance of the Fraunhofer Institute (FHI; Lepper, 2005) and prepared within the context of the WFD.

The process of ERL-derivation contains the following steps: data collection, data evaluation and selection, and derivation of the ERLs on the basis of the selected data. Specific items will be discussed below.

2.2 Data collection, evaluation and selection

In accordance with the WFD, data of existing evaluations were used as a starting point. An on-line literature search was performed on TOXLINE (literature from 1985 to 2001) and Current Contents (literature from 1997 to 2007). In addition to this, all potentially relevant references in the RIVM e-tox base and EPA’s ECOTOX database were checked.

Ecotoxicity studies were screened for relevant endpoints (i.e. those endpoints that have consequences at the population level of the test species). All ecotoxicity and bioaccumulation tests were then thoroughly evaluated with respect to the validity (scientific reliability) of the study. A detailed description of the evaluation procedure is given in the INS-Guidance (section 2.2.2 and 2.3.2).

After data collection and validation, toxicity data were combined into an aggregated data table with one effect value per species according to section 2.2.6 of the INS-Guidance. When for a species several effect data were available, the geometric mean of multiple values for the same endpoint was calculated where possible. Subsequently, when several endpoints were available for one species, the lowest of these endpoints (per species) is reported in the aggregated data table.

2.3 Derivation of ERLs

2.3.1 Drinking water

The INS-Guidance includes the MPC for surface waters intended for the abstraction of drinking water ($MPC_{dw, water}$) as one of the MPCs from which the lowest value should be selected as the general MPC_{water} (see INS-Guidance, section 3.1.6 and 3.1.7). According to the proposal for the daughter directive Priority Substances, however, the derivation of the AA-EQS (= MPC) should be based on direct exposure, secondary poisoning, and human exposure due to the consumption of fish. Drinking water was not included in the proposal and is thus not guiding for the general MPC_{water} value. The exact way of implementation of the $MPC_{dw, water}$ in the Netherlands is at present under discussion within the framework of the ‘AMvB Kwaliteitseisen en Monitoring Water’. No policy decision has been taken yet, and the $MPC_{dw, water}$ is therefore presented as a separate value in this report. The MPC_{water} is thus

derived considering the individual MPCs based on direct exposure ($MPC_{eco, water}$), secondary poisoning ($MPC_{sp, water}$) or human consumption of fishery products ($MPC_{hh food, water}$); the need to derive the latter two depends on the characteristics of the compound. Although the $MPC_{dw, water}$ is not taken into account for the derivation of the MPC_{water} , it is used for the derivation of the groundwater risk limit, MPC_{gw} .

2.3.2 $MAC_{eco, marine}$

In this report, the $MAC_{eco, marine}$ value is based on the $MAC_{eco, water}$ value when acute toxicity data for at least two specific marine taxa are available, using an additional assessment factor of 5 when acute toxicity data for only one specific marine taxon is available and an additional assessment factor of 10 when no acute toxicity data is available for specific marine taxa (analogous to the derivation of the MPC according to Van Vlaardingen and Verbruggen, 2007). It has to be noted that this procedure is currently not agreed upon. Therefore, the $MAC_{eco, marine}$ value needs to be re-evaluated once an agreed procedure is available.

2.3.3 Toxic unit approach

Due to the mode of action of the monochlorophenols (narcosis), and the fact that these compounds often occur together, the use of the toxic unit approach is recommended. The toxic unit approach assumes that compounds that act similar, have concentration additive toxicity. This means that the sum of the ratio between measured concentration and risk limits for all monochlorophenols should not exceed 1.

3 Derivation of environmental risk limits

3.1 2-chlorophenol

3.1.1 Substance identification, physico-chemical properties, fate and human toxicology

3.1.1.1 Identity

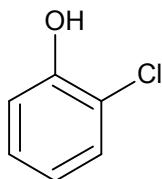


Figure 1. Structural formula of 2-chlorophenol.

Table 3. Identification of 2-chlorophenol.

Parameter	Result
Chemical name	2-chlorophenol
Common/other name	o-chlorophenol
CAS number	95-57-8
EC number	202-433-2
Annex I index number	604-008-00-0
SMILES code	Oc(c(ccc1)Cl)c1

3.1.1.2 Use

The main use of chlorophenols in general, is as an intermediate for manufacturing pesticides, biocides, dyes and pharmaceuticals (Muller, 2008), but they have also been used as mothproofing agents, miticides, germicides, algicides, fungicides, biocides, and wood preservatives (National Pollutant Inventory, 2005).

3.1.1.3 Physico-chemical properties

Table 4. Physico-chemical properties of 2-chlorophenol. Bold values are used for ERL derivation.

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	128.56		
Water solubility	[mg/L]	24650	20 °C; recommended by reference	Mackay et al., 2000
		28500	20 °C	EC, 2000
		5170	EpiWin	US EPA, 2007
pK_a	[-]	8.49	Recommended by reference	Mackay et al., 2000
		8.35	Recommended by reference	BioByte, 2006
		8.48	25 °C	EC, 2000
$\log K_{ow}$	[-]	2.17	Recommended by reference	Mackay et al., 2000
		2.15	Recommended by reference	BioByte, 2006
		2.15	calculated	BioByte, 2006
		2.15		EC, 2000
		2.16	EpiWin	US EPA, 2007
$\log K_{oc}$	[-]	3.64	Geomean of recommended sediment values	Mackay et al., 2000
		2.25	Calculated using $\log K_{ow} = 2.15$	According to Sabljic et al., 1995
		2.65	EpiWin	US EPA, 2007
Vapour pressure	[Pa]	132	25 °C; recommended by reference	Mackay et al., 2000
		133	12.1 °C	EC, 2000
		18.0	EpiWin	US EPA, 2007
Melting point	[°C]	9.0	Recommended by reference	Mackay et al., 2000
		9.3		EC, 2000
		8.7		Muller, 2008
		28.6	EpiWin	US EPA, 2007
Boiling point	[°C]	175-176	Recommended by reference	Mackay et al., 2000
		175		EC, 2000
		203		Muller, 2008
		174.5	EpiWin	US EPA, 2007
Henry's law constant	[Pa.m ³ /mol]	0.6884	Calculated by Mackay	Mackay et al., 2000
		0.448	EpiWin	US EPA, 2007

3.1.1.4 Behaviour in the environment

Table 5. Selected environmental properties of 2-chlorophenol.

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life	DT50 [d]	No hydrolysis		
Photolysis half-life	DT50 [h]	0.38	313 nm	Mackay et al., 2000
Biodegradation	DT50 [d]	16.8	Sludge	Mackay et al., 2000
		55.2	Polluted river water	Mackay et al., 2000
Relevant metabolites		Unknown		

Biodegradation of chlorophenols must be induced, because the antimicrobial activities of these products require that the bacteria adapt. Biodegradation is rapid when adapted bacteria are present (Muller, 2008).

3.1.1.5 Bioconcentration and biomagnification

Bioaccumulation data for 2-chlorophenol are tabulated in Table 6. Details on experimental data are included in Appendix 1.

Table 6. Overview of bioaccumulation data for 2-chlorophenol.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	14-29	Calculated using $\log K_{\text{ow}} = 2.17$	EC, 2000 According to Veith et al., 1979
		14		
BMF	[kg/kg]	1	Default value for compounds with BCF < 2000 L/kg.	

3.1.1.6 Human toxicological threshold limits and carcinogenicity

2-chlorophenol is not classified as a possible carcinogen, and has the following R-phrases: R20/21/22; R50/53. The TDI for 2,4-dichlorophenol of 3 $\mu\text{g}/\text{kg}_{\text{bw}}/\text{day}$ (U.S. EPA, 1986) was considered to be valid for all mono-, di-, tri-, and tetrachlorophenol compounds (Baars et al., 2001).

3.1.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Table 7. 2-chlorophenol: collected properties for comparison to MPC triggers.

Parameter	Value	Unit	Method/Source	Derived at section
Log $K_{\text{p,susp-water}}$	2.64	[-]	$K_{\text{OC}} \times f_{\text{OC,susp}}^1$	K_{OC} : 3.1.1.3
BCF	14-29	[L/kg]		3.1.1.5
BMF	1	[kg/kg]		3.1.1.5
Log K_{ow}	2.15	[-]		3.1.1.3
R-phrases	R20/21/22; R50/53	[-]		3.1.1.6
A1 value	1	[$\mu\text{g}/\text{L}$]	Mandatory for phenols	
DW standard	-	[$\mu\text{g}/\text{L}$]		

¹ $f_{\text{OC,susp}} = 0.1 \text{ kg}_{\text{OC}}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

- 2-chlorophenol has a $\log K_{\text{p,susp-water}} < 3$; derivation of $\text{MPC}_{\text{sediment}}$ is not triggered.
- 2-chlorophenol has a $\log K_{\text{p,susp-water}} < 3$; expression of the $\text{MPC}_{\text{water}}$ as $\text{MPC}_{\text{susp, water}}$ is not required.
- 2-chlorophenol has a BCF < 100 L/kg; assessment of secondary poisoning is not triggered.
- 2-chlorophenol is not classified as a possible carcinogen and does not have a BCF $\geq 100 \text{ L/kg}$ combined with relevant R-phrases. Therefore, an $\text{MPC}_{\text{water}}$ for human health via food (fish) consumption ($\text{MPC}_{\text{hh food, water}}$) does not have to be derived.
- For 2-chlorophenol, no compound-specific A1 value or Drinking Water value is available from Council Directives 75/440, EEC and 98/83/EC, respectively. Therefore, the general mandatory A1 value for phenols applies.

3.1.3 Aquatic toxicity data

3.1.3.1 Toxicity data

An overview of the selected freshwater toxicity data for 2-chlorophenol is given in Table 8. Marine toxicity data are given in Table 9. Detailed toxicity data for 2-chlorophenol are tabulated in Appendix 2.

Table 8. 2-chlorophenol: selected freshwater toxicity data for ERL derivation.

Chronic ^a Taxonomic group	NOEC/EC10 (mg/L)	Acute ^a Taxonomic group	L(E)C50 (mg/L)
Bacteria	170	Bacteria	476 ^d
Bacteria	217	Bacteria	28
Bacteria	48	Bacteria	122 ^e
Algae	42 ^b	Bacteria	122
Macrophyta	0.35^c	Bacteria	167
Crustacea	0.5	Algae	170 ^f
Pisces	2.5	Algae	70
		Algae	85 ^g
		Protozoa	60 ^h
		Macrophyta	1.1ⁱ
		Crustacea	5.9
		Crustacea	4.8 ^j
		Crustacea	6.9
		Pisces	12
		Pisces	8.2 ^k
		Pisces	10
		Pisces	17
		Pisces	12 ^l
		Pisces	7.1 ^m
		Pisces	6.6
		Amphibia	122

^a For detailed information see Appendix 2. Bold values are used for ERL-derivation.

^b Preferred endpoint (growth rate) for *Scenedesmus subspicatus*.

^c Most sensitive endpoint (frond number) for *Salvinia minima*.

^d Preferred endpoint (growth) for *Bacillus subtilis*.

^e Most sensitive endpoint (specific growth rate) for *Escherichia coli*.

^f Preferred endpoint (growth rate), for *Chlorella vulgaris*.

^g Preferred endpoint (growth rate), for *Scenedesmus subspicatus*.

^h Geometric mean of 84.9, 36.7, and 68.0, parameter population growth for *Tetrahymena pyriformis*.

ⁱ Most sensitive endpoint (frond number) for *Salvinia minima*.

^j Most relevant exposure duration (48 h), parameter mortality/immobility for *Daphnia magna*.

^k Geometric mean of 10, 6.6, 8.1, and 8.4 mg/L, parameter mortality for *Lepomis macrochirus*.

^l Most relevant exposure duration (96 h), geometric mean of 11, 13, 14.5, 11.6, 9.4, and 13.8 mg/L; parameter mortality for *Pimephales promelas*.

^m Most sensitive pH (6), parameter mortality for *Poecilia reticulata*.

Table 9. 2-chlorophenol: selected marine toxicity data for ERL derivation.

Chronic ^a Taxonomic group	NOEC/EC10 (mg/L)	Acute ^a Taxonomic group	L(E)C50 (mg/L)
<i>No data</i>		Bacteria	27 ^b
		Pisces	6.6 ^c
		Pisces	6.6

^a For detailed information see Appendix 2.

^b Most relevant exposure duration (15-30 min), geometric mean of 33.8, 37.9, 28.5, 43.4, and 9.3 mg/L, parameter bioluminescence for *Vibrio fischeri*.

^c Geometric mean of 6.99 and 6.29 mg/L, parameter mortality for *Platichthys flesus*.

3.1.3.2 Treatment of fresh- and saltwater toxicity data

Following Lepper (2005), freshwater and marine datasets can be combined if it can not be shown that marine species are more sensitive than freshwater species. Endpoints for both bacteria and fish are in the range of those observed for freshwater species. Thus, freshwater and marine datasets are combined.

3.1.4 Derivation of Environmental Risk Limits

3.1.4.1 Derivation of MPC_{water} and MPC_{marine}

MPC_{eco, water} and MPC_{eco, marine}

Acute toxicity data are available for seven taxonomic groups, amongst which algae, crustacea (*Daphnia*) and fish. Thus, the base set is complete. Chronic toxicity data are available for algae, macrophyta, crustacea and fish. The lowest NOEC for MPC derivation is 0.35 mg/L for the macrophyte *Salvinia minima*.

For the freshwater environment, an assessment factor of 10 can be used on the lowest NOEC, which results in an MPC_{eco, water} of $0.35 / 10 = 0.035$ mg/L = 35 µg/L.

No chronic toxicity data are available for specific marine taxa. With an assessment factor of 100 the MPC_{eco, marine} becomes $0.35 / 100 = 3.5 \times 10^{-3}$ mg/L = 3.5 µg/L.

MPC_{sp, water} and MPC_{sp, marine}

2-chlorophenol has a BCF < 100 L/kg, thus assessment of secondary poisoning is not triggered.

MPC_{hh food, water}

Derivation of MPC_{hh food, water} for 2-chlorophenol is not triggered (Table 7).

MPC_{dw, water}

The MPC_{dw, water} is 1 µg/L according to the general A1 value for phenols.

Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. However, the derivation of MPC_{hh food, water} and MPC_{sp, water} was not triggered. Thus, the general MPCs are based on ecotoxicity (MPC_{eco, water} and MPC_{eco, marine}) which results in an MPC_{water} of 35 µg/L and an MPC_{marine} of 3.5 µg/L.

3.1.4.2 Derivation of MAC_{eco}

The base set is complete. LC50s are available for a large number of taxa. However, because the insects are missing and there are no reasons to assume that they are less sensitive than other taxa, the requirements to perform an SSD are not met. For informative reasons, an SSD was calculated, which resulted in a HC5 of 1.8 mg/L.

The lowest LC50 is 1.1 mg/L for the macrophyte *Salvelina minima*. Given the following arguments:

- the bioconcentration factor is lower than 100 L/kg;
- the mode of action (narcosis) is non-specific;
- the variation is not too high in view of the large number of data;

an assessment factor of 10 is used and the $MAC_{eco, water}$ becomes $1.1 / 10 = 0.11 \text{ mg/L} = 110 \mu\text{g/L}$.

For the marine environment, no additional specific marine taxa are present and thus an additional assessment factor of 10 is used. The $MAC_{eco, marine}$ becomes $11 \mu\text{g/L}$.

3.1.4.3 Derivation of NC

The NC is derived by dividing the final MPC by a factor of 100.

$$NC_{water} = 0.35 \mu\text{g/L}$$

$$NC_{marine} = 3.5 \times 10^{-2} \mu\text{g/L}$$

3.1.4.4 Derivation of SRC_{eco}

The geometric mean of all chronic data is 11.8 mg/L. These data are normally distributed (significant at all levels using the Anderson-Darling test for normality). Because more than three NOECs are available, no comparison has to be made with the geometric mean of the acute data. The $SRC_{eco, water}$ and $SRC_{eco, marine}$ are set at $11.8 \text{ mg/L} = 1.2 \times 10^4 \mu\text{g/L}$.

3.1.5 Sediment toxicity data

The $K_{p, \text{susp-water}}$ of 2-chlorophenol is below the trigger value of 3, therefore, ERLs are not derived for sediment.

3.1.6 Comparison of derived ERLs with monitoring data

An overview of the derived ERLs is given in Table 10.

Table 10. Derived MPC, MAC_{eco} , NC, and SRC_{eco} values for 2-chlorophenol (in $\mu\text{g/L}$).

ERL	Unit	MPC	MAC_{eco}	NC	SRC_{eco}
Freshwater ^a	$\mu\text{g/L}$	35	1.1×10^2	0.35	1.2×10^4
Drinking water ^a	$\mu\text{g/L}$	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	$\mu\text{g/L}$	3.5	11	3.5×10^{-2}	1.2×10^4

^a n.a. = not applicable.

Due to the mode of action of the monochlorophenols (narcosis), and the fact that these compounds often occur together, the use of the toxic unit approach is recommended. The toxic unit approach assumes that compounds that act similar, have concentration additive toxicity. This means that the sum of the ratio between measured concentration and risk limits for all monochlorophenols combined should not exceed 1.

Monitoring data for the Rhine from the years 2001-2006, obtained from RIWA (Association of River Waterworks), show that at all sampling occasions and locations, the concentration of 2-chlorophenol in water was below detection limits (0.02 – 0.5 µg/L).

3.2 3-chlorophenol

3.2.1 Substance identification, physico-chemical properties, fate and human toxicology

3.2.1.1 Identity

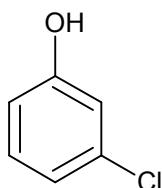


Figure 2. Structural formula of 3-chlorophenol.

Table 11. Identification of 3-chlorophenol.

Parameter	Result
Chemical name	3-chlorophenol
Common/other name	m-chlorophenol
CAS number	108-43-0
EC number	203-582-6
Annex I index number	604-008-00-0
SMILES code	Oc(ccc1Cl)c1

3.2.1.2 Use

The main use of chlorophenols in general, is as an intermediate for manufacturing pesticides, biocides, dyes and pharmaceuticals (Muller, 2008), but they have also been used as mothproofing agents, miticides, germicides, algicides, fungicides, biocides, and wood preservatives (National Pollutant Inventory, 2005).

3.2.1.3 Physico-chemical properties

Table 12. Physico-chemical properties of 3-chlorophenol. Bold values are used for ERL derivation.

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	128.56		
Water solubility	[mg/L]	22000	25 °C; Recommended by reference	Mackay et al., 2000
		2600	EpiWin	US EPA, 2007
pK_a	[-]	8.85	Recommended by reference	Mackay et al., 2000
		9.11	Recommended by reference	BioByte, 2006
$\log K_{ow}$	[-]	2.50	Recommended by reference	Mackay et al., 2000
		2.50	Recommended by reference	BioByte, 2006
		2.48	calculated	BioByte, 2006
		2.16	EpiWin	US EPA, 2007
$\log K_{oc}$	[-]	2.48	Calculated using $\log K_{ow} = 2.50$	According to Sabljic et al., 1995
		2.64	EpiWin	US EPA, 2007
Vapour pressure	[Pa]	35	25 °C; solid; selected from ref's	Mackay et al., 2000
		41.99	25 °C; liquid; selected from ref's	Mackay et al., 2000
		18.0	EpiWin	US EPA, 2007
Melting point	[°C]	33	Recommended by reference	Mackay et al., 2000
		32.8		Muller, 2008
		28.6	EpiWin	US EPA, 2007
Boiling point	[°C]	214	Recommended by reference	Mackay et al., 2000
		203		Muller, 2008
		216	EpiWin	US EPA, 2007
Henry's law constant	[Pa.m ³ /mol]	0.2045	Calculated by Mackay	Mackay et al., 2000
		0.892	EpiWin	US EPA, 2007

3.2.1.4 Behaviour in the environment

Table 13. Selected environmental properties of 3-chlorophenol.

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life	DT50 [d]	No hydrolysis		
Photolysis half-life	DT50 [hr]	0.25	Aqueous solutions	Mackay et al., 2000
Biodegradability	DT50 [d]	30	Sediment from a farm stream; 20 °C	Mackay et al., 2000
Relevant metabolites		Unknown		

Biodegradation of chlorophenols must be induced, because the antimicrobial activities of these products require that the bacteria adapt. Biodegradation is rapid when adapted bacteria are present (Muller, 2008).

3.2.1.5 Bioconcentration and biomagnification

Bioaccumulation data for 3-chlorophenol are tabulated in Table 14. Details on experimental data are included in Appendix 1.

Table 14. Overview of bioaccumulation data for 3-chlorophenol.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	17.8		Butte et al., 1987
BMF	[kg/kg]	1	Default value for compounds with BCF < 2000 L/kg.	

3.2.1.6 Human toxicological threshold limits and carcinogenicity

3-chlorophenol is not classified as a possible carcinogen and has the following R-phrases: R20/21/22; R50/53. The TDI for 2,4-dichlorophenol of 3 µg/kg_{bw}/day (U.S. EPA, 1986) was considered to be valid for all mono-, di-, tri-, and tetrachlorophenol compounds (Baars et al., 2001).

3.2.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Table 15. 3-chlorophenol: collected properties for comparison to MPC triggers.

Parameter	Value	Unit	Method/Source	Derived at section
Log $K_{p,\text{susp-water}}$	1.48	[-]	$K_{OC} \times f_{OC,\text{susp}}^1$	K_{OC} : 3.2.1.3
BCF	17.8	[L/kg]		3.2.1.5
BMF	1	[kg/kg]		3.2.1.5
Log K_{ow}	2.50	[-]		3.2.1.3
R-phrases	R20/21/22; R50/53	[-]		3.2.1.6
A1 value	1	[µg/L]	Mandatory for phenols	
DW standard	-	[µg/L]		

¹ $f_{OC,\text{susp}} = 0.1 \text{ kg}_{OC}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

- 3-chlorophenol has a $\log K_{p,\text{susp-water}} < 3$; derivation of MPC_{sediment} is not triggered.
- 3-chlorophenol has a $\log K_{p,\text{susp-water}} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.
- 3-chlorophenol has a BCF < 100 L/kg; assessment of secondary poisoning is not triggered.
- 3-chlorophenol is not classified as a possible carcinogen, has a BCF < 100 L/kg and does not have any relevant R-phrases. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{hh food, water}) does not have to be derived.
- For 3-chlorophenol, no compound-specific A1 value or Drinking Water value is available from Council Directives 75/440, EEC and 98/83/EC, respectively. Therefore, the general mandatory A1 value for phenols applies.

3.2.3 Aquatic toxicity data

3.2.3.1 Toxicity data

An overview of the selected freshwater toxicity data for 3-chlorophenol is given in Table 16. Marine toxicity data are given in Table 17. Detailed toxicity data for 3-chlorophenol are tabulated in Appendix 2.

Table 16. 3-chlorophenol: selected freshwater toxicity data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (mg/L)	Taxonomic group	L(E)C50 (mg/L)
Bacteria	32	Bacteria	83 ^c
Pisces	6.0^b	Bacteria	22
		Bacteria	35
		Bacteria	9.4
		Algae	38 ^d
		Protozoa	21 ^e
		Crustacea	9.8
		Crustacea	12
		Crustacea	16
		Crustacea	5.6
		Pisces	15
		Pisces	5.5
		Pisces	6.4 ^f

^a For detailed information see Appendix 2. Bold values are used for ERL-derivation.

^b Most sensitive endpoint, parameter malformations for *Cyprinus carpio*.

^c Preferred endpoint (growth) for *Bacillus subtilis*.

^d Geometric mean of 32.3 and 45.6, parameter cell density for *Chlorella vulgaris*.

^e Geometric mean of 17.3, 36.7, and 14.1, parameter population growth for *Tetrahymena pyriformis*.

^f Most sensitive pH (6.1 and 7.3), parameter mortality for *Poecilia reticulata*.

Table 17. 3-chlorophenol: selected marine toxicity data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (mg/L)	Taxonomic group	L(E)C50 (mg/L)
No data		Bacteria	12 ^b
		Pisces	4.0

^a For detailed information see Appendix 2. Bold values are used for ERL-derivation.

^b Most relevant exposure duration (15-30 min), parameter bioluminescence for *Vibrio fischeri*.

3.2.3.2 Treatment of fresh- and saltwater toxicity data

Following Lepper (2005), freshwater and marine datasets can be combined if it can not be shown that marine species are more sensitive than freshwater species. The endpoints for marine bacteria and fish are in the same range as those for freshwater species. Thus, freshwater and marine datasets are combined.

3.2.4 Derivation of Environmental Risk Limits

3.2.4.1 Derivation of MPC_{water} and MPC_{marine}

MPC_{eco, water} and MPC_{eco, marine}

Acute toxicity data are available for 5 taxonomic groups, amongst which algae, crustacea (*Daphnia*) and fish. Thus, the base set is complete. Chronic data for bacteria may not be used for MPC derivation (Lepper, 2005), but are included in the aggregated data table because they can be used for SRC derivation. Thus, for MPC derivation chronic toxicity data are only available for fish, with one NOEC

of 6.0 mg/L for *Cyprinus carpio*. However, this value is higher than the lowest LC50 (4.0 mg/L for the marine fish *Platichthys flesus*).

This means that an assessment factor of 1000 should be used on the lowest LC50, which results in an $MPC_{\text{eco, water}} = 4 / 1000 = 4 \times 10^{-3} \text{ mg/L} = 4 \mu\text{g/L}$.

No chronic toxicity data are available for specific marine taxa. Thus, with an assessment factor of 10000 the $MPC_{\text{eco, marine}} = 4 / 10000 = 4 \times 10^{-4} \text{ mg/L} = 0.4 \mu\text{g/L}$.

MPC_{sp, water} and MPC_{sp, marine}

3-chlorophenol has a BCF < 100 L/kg, thus assessment of secondary poisoning is not triggered.

MPC_{hh food, water}

Derivation of MPC_{hh food, water} for 3-chlorophenol is not triggered (Table 15).

MPC_{dw, water}

The MPC_{dw, water} is 1 $\mu\text{g/L}$ according to the general A1 value for phenols.

Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. However, the derivation of MPC_{hh food, water} and MPC_{sp, water} was not triggered. Thus, the general MPCs are based on ecotoxicity (MPC_{eco, water} and MPC_{eco, marine}) which results in an MPC_{water} of 4 $\mu\text{g/L}$ and an MPC_{marine} of 0.4 $\mu\text{g/L}$.

3.2.4.2 Derivation of MAC_{eco}

The base set is complete. LC50s are available for 5 taxa.

The lowest LC50 is 4 mg/L for the marine fish *Platichthys flesus*. Given the following arguments:

- the bioconcentration factor is lower than 100 L/kg;
- the mode of action (narcosis) is non-specific;
- the variation is not too high in view of the large number of data;
- given the presumed mode of toxic action, delayed mortality will most likely be limited for fish;

an assessment factor of 10 is used and the $MAC_{\text{eco, water}} = 4 / 10 = 0.4 \text{ mg/L} = 400 \mu\text{g/L}$.

For the marine environment, no additional specific marine taxa are present and thus an additional assessment factor of 10 is used. The $MAC_{\text{eco, marine}} = 40 \mu\text{g/L}$.

3.2.4.3 Derivation of NC

The NC is derived by dividing the final MPC by a factor of 100.

$$\begin{aligned} NC_{\text{water}} &= 4.0 \times 10^{-2} \mu\text{g/L} \\ NC_{\text{marine}} &= 4.0 \times 10^{-3} \mu\text{g/L} \end{aligned}$$

3.2.4.4 Derivation of SRC_{eco}

Two NOECs are available, the geometric mean of which is 13.8 mg/L. The geometric mean of all acute data is also 13.8 mg/L. These data are normally distributed (significant at all levels using the Anderson-Darling test for normality). Because the geometric mean of the acute data divided by 10 is smaller than the geometric mean of the NOECs, the SRC_{eco} is calculated using the geometric mean of the acute data

with an assessment factor of 10. Thus, the $SR_{eco, water}$ and $SR_{eco, marine}$ are set at $13.8 / 10 = 1.4 \text{ mg/L} = 1.4 \times 10^3 \mu\text{g/L}$.

3.2.5 Sediment toxicity data

The $\log K_{p, \text{susp-water}}$ of 3-chlorophenol is below the trigger value of 3, therefore, ERLs are not derived for sediment.

3.2.6 Comparison of derived ERLs with monitoring data

An overview of the derived ERLs is given in Table 18.

Table 18. Derived MPC, MAC_{eco} , NC, and SR_{eco} values for 3-chlorophenol (in $\mu\text{g/L}$).

ERL	Unit	MPC	MAC_{eco}	NC	SR_{eco}
Freshwater	$\mu\text{g/L}$	4.0	4.0×10^2	4.0×10^{-2}	1.4×10^3
Drinking water	$\mu\text{g/L}$	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	$\mu\text{g/L}$	0.4	40	4.0×10^{-3}	1.4×10^3

^a n.a. = not applicable.

Due to the mode of action of the monochlorophenols (narcosis), and the fact that these compounds often occur together, the use of the toxic unit approach is recommended. The toxic unit approach assumes that compounds that act similar, have concentration additive toxicity. This means that the sum of the ratio between measured concentration and risk limits for all monochlorophenols combined should not exceed 1.

Monitoring data for the Rhine from the years 2001-2006, obtained from RIWA (Association of River Waterworks), shows that at all sampling occasions and locations, the concentration of 3-chlorophenol in water was below detection limits (0.02 – 0.5 $\mu\text{g/L}$).

3.3 4-chlorophenol

3.3.1 Substance identification, physico-chemical properties, fate and human toxicology

3.3.1.1 Identity

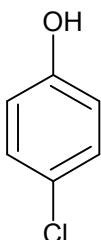


Figure 3. Structural formula of 4-chlorophenol.

Table 19. Identification of 4-chlorophenol.

Parameter	Result
Chemical name	4-chlorophenol
Common/other name	p-chlorophenol
CAS number	106-48-9
EC number	203-402-6
Annex I index number	604-008-00-0
SMILES code	Oc(ccc(c1)Cl)c1

3.3.1.2 Use

The main use of chlorophenols in general, is as an intermediate for manufacturing pesticides, biocides, dyes and pharmaceuticals (Muller, 2008), but they have also been used as mothproofing agents, miticides, germicides, algicides, fungicides, biocides, and wood preservatives (National Pollutant Inventory, 2005).

3.3.1.3 Physico-chemical properties

Table 20. Physico-chemical properties of 4-chlorophenol. Bold values are used for ERL derivation.

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	128.56		
Water solubility	[mg/L]	27000 27100 3220	Recommended by reference 20 °C EpiWin	Mackay et al., 2000 EC, 2000 US EPA, 2007
pK_a	[-]	9.18 9.40 9.38	Recommended by reference Recommended by reference 20 °C	Mackay et al., 2000 BioByte, 2006 EC, 2000
$\log K_{ow}$	[-]	2.4 2.39 2.48 2.39 2.16	Recommended by reference Recommended by reference calculated EpiWin	Mackay et al., 2000 BioByte, 2006 BioByte, 2006 EC, 2000 US EPA, 2007
$\log K_{oc}$	[-]	2.41 2.39 2.64	Calculated using $\log K_{ow} = 2.39$ EpiWin	According to Sabljic et al., 1995 US EPA, 2007
Vapour pressure	[Pa]	20 30.13 133 18.0	25 °C; solid; Recommended by reference 25 °C; liquid; Recommended by reference 49.8 °C EpiWin	Mackay et al., 2000 Mackay et al., 2000 EC, 2000 US EPA, 2007
Melting point	[°C]	43 43 42.8 28.6	Recommended by reference EpiWin	Mackay et al., 2000 EC, 2000 Muller, 2008 US EPA, 2007
Boiling point	[°C]	220 217 217 203	Recommended by reference EpiWin	Mackay et al., 2000 EC, 2000 Muller, 2008 US EPA, 2007
Henry's law constant	[Pa.m ³ /mol]	0.0952 0.718	Calculated by Mackay EpiWin	Mackay et al., 2000 US EPA, 2007

3.3.1.4 Behaviour in the environment

Table 21. Selected environmental properties of 4-chlorophenol.

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life	DT50 [d]	No hydrolysis		
Photolysis half-life	DT50 [hr]	28-99		Mackay et al., 2000
Biodegradability	DT50 [d]	3-20	In water	Mackay et al., 2000
Relevant metabolites		Unknown		

Biodegradation of chlorophenols must be induced, because the antimicrobial activities of these products require that the bacteria adapt. Biodegradation is rapid when adapted bacteria are present (Muller, 2008).

3.3.1.5 Bioconcentration and biomagnification

Bioaccumulation data for 4-chlorophenol are tabulated in Table 22. Detailed bioaccumulation data for 4-chlorophenol are tabulated in Appendix 1.

Table 22. Overview of bioaccumulation data for 4-chlorophenol.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	6-52		EC, 2000
		22	Calculated using $\log K_{ow} = 2.4$	According to Veith et al., 1979
BMF	[kg/kg]	1	Default value for compounds with $BCF < 2000$ L/kg.	

3.3.1.6 Human toxicological threshold limits and carcinogenicity

4-chlorophenol is not classified as a possible carcinogen and has the following R-phrases: R20/21/22; R50/53. The TDI for 2,4-dichlorophenol of 3 $\mu\text{g}/\text{kg}_{\text{bw}}/\text{day}$ (U.S. EPA, 1986) was considered to be valid for all mono-, di-, tri-, and tetrachlorophenol compounds (Baars et al., 2001).

3.3.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Table 23. 4-chlorophenol: collected properties for comparison to MPC triggers.

Parameter	Value	Unit	Method/Source	Derived at section
Log $K_{p,\text{susp-water}}$	1.41	[-]	$K_{OC} \times f_{OC,\text{susp}}^1$	K_{OC} : 3.3.1.3
BCF	6-52	[L/kg]		3.3.1.5
BMF	1	[kg/kg]		3.3.1.5
Log K_{ow}	2.39	[-]		3.3.1.3
R-phrases	R20/21/22; R50/53	[-]		3.3.1.6
A1 value	1	[\mathbf{\mu}\text{g}/\text{L}]	Mandatory for phenols	
DW standard	-	[\mathbf{\mu}\text{g}/\text{L}]		

¹ $f_{OC,\text{susp}} = 0.1 \text{ kg}_{OC}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

- 4-chlorophenol has a $\log K_{p,\text{susp-water}} < 3$; derivation of MPC_{sediment} is not triggered.
- 4-chlorophenol has a $\log K_{p,\text{susp-water}} < 3$; expression of the MPC_{water} as MPC_{susp, water} is not required.
- 4-chlorophenol has a BCF < 100 L/kg; assessment of secondary poisoning is not triggered.
- 4-chlorophenol does not have any relevant R-phrases. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{hh food, water}) does not have to be derived.
- For 4-chlorophenol, no compound-specific A1 value or Drinking Water value is available from Council Directives 75/440, EEC and 98/83/EC, respectively. Therefore, the general mandatory A1 value for phenols applies.

3.3.3 Aquatic toxicity data

3.3.3.1 Toxicity data

An overview of the selected freshwater toxicity data for 4-chlorophenol is given in Table 24. Marine toxicity data are given in Table 25. Detailed toxicity data for 4-chlorophenol are tabulated in Appendix 2.

Table 24. 4-chlorophenol: selected freshwater toxicity data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (mg/L)	Taxonomic group	L(E)C50 (mg/L)
Bacteria	53	Bacteria	107 ^g
Bacteria	133	Bacteria	23
Bacteria	96	Bacteria	117 ^h
Algae	13	Bacteria	12
Algae	1.7 ^b	Algae	39
Algae	5.8 ^c	Algae	29
Cnidaria	0.76	Algae	19 ⁱ
Cnidaria	9.9	Algae	17
Rotifera	20	Protozoa	37
Crustacea	0.20 ^d	Fungi	145
Crustacea	0.30 ^e	Fungi	63
Pisces	0.16^f	Cnidaria	45
		Cnidaria	32
		Crustacea	9
		Crustacea	3.9 ^j
		Crustacea	3.5
		Pisces	5.6 ^k
		Pisces	3.8
		Pisces	3.8
		Pisces	1.9
		Pisces	8.9
		Pisces	4.6 ^l
		Pisces	7.8 ^m
		Pisces	4.5
		Amphibia	63

^a For detailed information see Appendix 2. Bold values are used for ERL-derivation.

^b Preferred endpoint (growth rate) for *Pseudokirchneriella subcapitata*.

^c Preferred endpoint (growth rate) for *Scenedesmus subspicatus*.

^d Most sensitive endpoint (mortality) for *Ceriodaphnia dubia*.

^e Most sensitive endpoint (mean brood size) for *Daphnia magna*.

^f Most sensitive endpoint (larval weight) for *Oncorhynchus mykiss*.

^g Preferred endpoint (growth) for *Bacillus subtilis*.

^h Preferred endpoint (growth rate); geometric mean of 107 and 129 mg/L for *Escherichia coli*.

ⁱ Preferred endpoint (growth rate); geometric mean of 38 and 10 mg/L for *Pseudokirchneriella subcapitata*.

^j Most relevant exposure duration (48 h), geometric mean of 4.1, 2.5, 4.8, 6, 4.4, and 2.5 mg/L; parameter mortality/immobility for *Daphnia magna*.

^k Most relevant exposure duration (96 h), parameter mortality for *Danio rerio*.

^l Geometric mean of 4, 3.8, 5, and 6.11 mg/L; parameter mortality for *Pimephales promelas*.

^m Most sensitive pH (6), geometric mean of 7.8 and 7.7 mg/L; parameter mortality for *Poecilia reticulata*.

Table 25. 4-chlorophenol: selected marine toxicity data for ERL derivation.

Chronic^a		Acute^a	
Taxonomic group	NOEC/EC10 (mg/L)	Taxonomic group	L(E)C50 (mg/L)
Bacteria	3.2	Bacteria	3.9
Algae	0.32	Algae	51
Algae	0.39 ^b	Algae	7.7
Crustacea	19	Algae	7.7 ^c
Mollusca	3	Algae	12 ^d
		Mollusca	0.89^e
		Annelida	13
		Crustacea	49 ^f
		Crustacea	21
		Crustacea	21
		Pisces	5.4
		Pisces	1.9
		Pisces	5

^a For detailed information see Appendix 2. Bold values are used for ERL-derivation.

^b Lowest endpoint, parameter cell volume for *Skeletonema costatum*.

^c Preferred endpoint (growth) for *Nitzschia closterium*.

^d Most sensitive endpoint, parameter cell volume for *Skeletonema costatum*.

^e Most relevant exposure duration (48 h), parameter mortality for *Octopus pallidus*.

^f Geometric mean of 59.7 and 40.3 mg/L, parameter mortality for *Mesidotea entomon*.

3.3.3.2 Treatment of fresh- and saltwater toxicity data

Following Lepper (2005), freshwater and marine datasets can be combined if it can not be shown that marine species are more sensitive than freshwater species. Marine toxicity data for the individual taxa are in the range of freshwater toxicity data and results from the t-test show that datasets are not different ($p = 0.12$ for the acute data and $p = 0.34$ for the chronic data). Thus, freshwater and marine datasets are combined.

3.3.4 Derivation of Environmental Risk Limits

3.3.4.1 Derivation of MPC_{water} and MPC_{marine}

MPC_{eco, water} and MPC_{eco, marine}

Acute toxicity data are available for 10 taxonomic groups, amongst which algae, crustacea (Daphnia) and fish. Thus, the base set is complete. Chronic are available for 7 taxonomic groups. Data for bacteria may not be used for MPC derivation (Lepper, 2005), but are included in the aggregated data table because they can be used for SRC derivation. The lowest NOEC is 0.16 mg/L for the fish *Oncorhynchus mykiss*.

This means that an assessment factor of 10 should be used on the lowest NOEC, which results in an MPC_{eco, water} of $0.16 / 10 = 1.6 \times 10^{-2}$ mg/L = 16 µg/L.

Chronic toxicity data are available for one specific marine taxon (the mollusc *Octopus pallidus*). With an assessment factor of 50 the MPC_{eco, marine} becomes $0.16 / 50 = 3.2 \times 10^{-3}$ mg/L = 3.2 µg/L.

MPC_{sp, water} and MPC_{sp, marine}

4-chlorophenol has a BCF < 100 L/kg, thus assessment of secondary poisoning is not triggered.

MPC_{hh food, water}

Derivation of MPC_{hh food, water} for 4-chlorophenol is not triggered (Table 23).

MPC_{dw, water}

The MPC_{dw, water} is 1 µg/L according to the general A1 value for phenols.

Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. However, the derivation of MPC_{hh food, water} and MPC_{sp, water} was not triggered. Thus, the general MPCs are based on ecotoxicity (MPC_{eco, water} and MPC_{eco, marine}) which results in an MPC_{water} of 16 µg/L and an MPC_{marine} of 3.2 µg/L.

3.3.4.2 Derivation of MAC_{eco}

The base set is complete. LC50s are available for 10 taxa. The lowest LC50 is 0.89 mg/L for the marine mollusc *Octopus pallidus*.

Because data for insects and macrophytes are missing and there are no reasons to assume that they are less sensitive than other taxa, the requirements to perform an SSD are not met. For informative reasons, an SSD was calculated, which resulted in a HC5 of 1.6 mg/L.

Given the following arguments:

- the bioaccumulation factor is lower than 100;
- the mode of action (narcosis) is non-specific;
- the variation is not too high in view of the large number of data;

an assessment factor of 10 is used and the MAC_{eco, water} becomes $0.89 / 10 = 0.089$ mg/L = 89 µg/L.

For the marine environment, one additional specific marine taxon is present (mollusca) and an additional assessment factor of 5 is used. The MAC_{eco, marine} then becomes 18 µg/L.

3.3.4.3 Derivation of NC

The NC is derived by dividing the final MPC by a factor of 100.

$$NC_{water} = 0.16 \text{ µg/L}$$

$$NC_{marine} = 0.032 \text{ µg/L}$$

3.3.4.4 Derivation of SRC_{eco}

The geometric mean of all chronic data is 3.6 mg/L. These data are normally distributed (significant at all levels using the Anderson-Darling test for normality). Because more than three NOECs are available, no comparison has to be made with the geometric mean of the acute data. The SRC_{eco, water} and SRC_{eco, marine} are set at $3.6 \text{ mg/L} = 3.6 \times 10^3 \text{ µg/L}$.

3.3.5 Sediment toxicity data

The log $K_{p, \text{susp-water}}$ of 4-chlorophenol is below the trigger value of 3, therefore, ERLs are not derived for sediment.

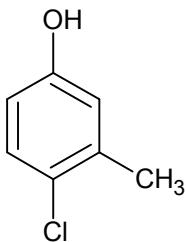
3.3.6 Comparison of derived ERLs with monitoring data

An overview of the derived ERLs is given in Table 26.

Table 26. Derived MPC, MAC_{eco}, NC, and SRC_{eco} values for 4-chlorophenol (in µg/L).

ERL	Unit	MPC	MAC _{eco}	NC	SRC _{eco}
Freshwater	µg/L	16	89	0.16	3.6×10^3
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	3.2	18	3.2×10^{-2}	3.6×10^3

^a n.a. = not applicable.


Due to the mode of action of the monochlorophenols (narcosis), and the fact that these compounds often occur together, the use of the toxic unit approach is recommended. The toxic unit approach assumes that compounds that act similar, have concentration additive toxicity. This means that the sum of the ratio between measured concentration and risk limits for all monochlorophenols combined should not exceed 1.

Monitoring data for the Rhine from the years 2001-2006, obtained from RIWA (Association of River Waterworks), shows that at all sampling occasions and locations, the concentration of 4-chlorophenol in water was below detection limits (0.02 – 0.5 µg/L).

3.4 4-chloro-3-methylphenol

3.4.1 Identity

3.4.1.1 Substance identification, physico-chemical properties, fate and human toxicology

Figure 4. Structural formula of 4-chloro-3-methylphenol.

Table 27. Identification of 4-chloro-3-methylphenol.

Parameter	Result
Chemical name	4-chloro-3-methylphenol
Common/other name	4-chloro-m-cresol
Commercial names	Aptal, Raschitk, Attafact, Baktol, Baktolan, Candaseptic, Chlorocresol, Ottafect, Parmatol, Parol, PCMC, Peritonan, Prevento 1 cmk, Preventol CMK, Raschit
CAS number	59-50-7
EC number	200-431-6
Annex I Index number	604-014-00-3
SMILES code	Oc(ccc(c1C)Cl)c1

3.4.1.2 Use

The main use of 4-chloro-3-methylphenol is as a pesticide, bactericide and preserving agent.

3.4.1.3 Physico-chemical properties

Table 28. Physico-chemical properties of 4-chloro-3-methylphenol. Bold values are used for ERL derivation.

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	142.59		
Water solubility	[mg/L]	3600-4000 699	EpiWin Recommended by reference	EC, 2000 US EPA, 2007
pK_a	[-]	9.59		BioByte, 2006
$\log K_{ow}$	[-]	3.10 3.10 2.98 3.10 2.70	Recommended by reference calculated	Mackay et al., 2000 BioByte, 2006 BioByte, 2006 EC, 2000
$\log K_{oc}$	[-]	2.85 2.86	EpiWin Calculated using $\log K_{ow} =$ 3.10	US EPA, 2007 According to Sabljic et al., 1995
Vapour pressure	[Pa]	6.67 ca. 8 5.40	25 °C 20 °C EpiWin	Mackay et al., 2000 EC, 2000 US EPA, 2007
Melting point	[°C]	66-68 63-66 36.2		Mackay et al., 2000 EC, 2000 US EPA, 2007
Boiling point	[°C]	235 235-239 222	EpiWin	Mackay et al., 2000 EC, 2000 US EPA, 2007
Henry's law constant	[Pa.m ³ /mol]	0.253 1.10 0.28	20 °C; calculated EpiWin 20 °C; calculated	Mackay et al., 2000 US EPA, 2007 Mackay et al., 2000

3.4.1.4 Behaviour in the environment

No data is known on hydrolysis, photolysis, biodegradability and relevant metabolites of 4-chloro-3-methylphenol.

3.4.1.5 Bioconcentration and biomagnification

An overview of the bioaccumulation data for 4-chloro-3-methylphenol is given in Table 29. Detailed bioaccumulation data for 4-chloro-3-methylphenol are tabulated in Appendix 1.

Table 29. Overview of bioaccumulation data for 4-chloro-3-methylphenol.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	120 16	Muscles Whole body	Jennings et al., 1996 Ramos et al., 1998
BCF (mollusc)	[L/kg]	38 16		Jennings et al., 1996 Ramos et al., 1998
BMF	[kg/kg]	1	Default value for compounds with BCF < 2000 L/kg.	

3.4.1.6 Human toxicological threshold limits and carcinogenicity

4-chloro-3-methylphenol is not classified as a possible carcinogen by IARC and has the following R-phrases: R21/22; R41; R43; R50. A RfD of 100 µg/kg_{bw}/day (NSF International, 2002) can be used as an ADI.

3.4.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Table 30. 4-chloro-3-methylphenol: collected properties for comparison to MPC triggers.

Parameter	Value	Unit	Method/Source	Derived at section
Log $K_{p,\text{susp-water}}$	1.85	[-]	$K_{\text{OC}} \times f_{\text{OC,susp}}^1$	K_{OC} : 3.4.1.3
BCF	16	[L/kg]		3.4.1.5
BMF	1	[kg/kg]		3.4.1.5
Log K_{ow}	3.10	[-]		3.4.1.3
R-phrases	R21/22; R41; R43; R50	[-]		3.4.1.6
A1 value	1	[µg/L]	Mandatory for phenols	
DW standard	-	[µg/L]		

¹ $f_{\text{OC,susp}} = 0.1 \text{ kg}_{\text{OC}}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

- 4-chloro-3-methylphenol has a $\log K_{p,\text{susp-water}} < 3$; derivation of MPC_{sediment} is not triggered.
- 4-chloro-3-methylphenol has a $\log K_{p,\text{susp-water}} < 3$; expression of the MPC_{water} as MPC_{susp., water} is not required.
- 4-chloro-3-methylphenol has a BCF < 100 L/kg; assessment of secondary poisoning is not triggered.
- 4-chloro-3-methylphenol is not classified as a possible carcinogen, has a BCF < 100 L/kg and no relevant R-phrases. Therefore, an MPC_{water} for human health via food (fish) consumption (MPC_{hh food, water}) does not have to be derived.
- For 4-chloro-3-methylphenol, no compound-specific A1 value or Drinking Water value is available from Council Directives 75/440, EEC and 98/83/EC, respectively. Therefore, the general mandatory A1 value for phenols applies.

3.4.3 Aquatic toxicity data

3.4.3.1 Toxicity data

An overview of the selected freshwater toxicity data for 4-chloro-3-methylphenol is given in Table 31 and marine toxicity data is given in Table 32. Detailed toxicity data for 4-chloro-3-methylphenol are tabulated in Appendix 2.

Table 31. 4-chloro-3-methylphenol: selected freshwater toxicity data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (mg/L)	Taxonomic group	L(E)C50 (mg/L)
Algae	2.3	Algae	15
Algae	4.7	Algae	4.2
Crustacea	1.3	Protozoa	23
		Mollusca	14
		Crustacea	3.7
		Crustacea	3.3
		Crustacea	1.7 ^b
		Crustacea	3.1
		Pisces	2.4
		Pisces	0.92
		Pisces	5.9 ^c
		Pisces	6.7
		Pisces	1.3

^a For detailed information see Appendix 2. Bold values are used for ERL-derivation.

^b Most relevant exposure duration (48 h), geometric mean of 1.5 and 2 mg/L, parameter mortality/immobility for *Daphnia magna*.

^c Geometric mean of 5.72, 7.38, 4.05, 5.47, and 7.56 mg/L, parameter mortality for *Pimephales promelas*.

Table 32. 4-chloro-3-methylphenol: selected marine toxicity data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (mg/L)	Taxonomic group	L(E)C50 (mg/L)
<i>No data</i>		Bacteria	0.64^b

^a For detailed information see Appendix 2. Bold values are used for ERL-derivation.

^b Most relevant exposure duration (15-30 min), geometric mean of 1.8, 0.95, 0.29, and 0.34 mg/L; parameter bioluminescence for *Vibrio fischeri*.

3.4.3.2 Treatment of fresh- and saltwater toxicity data

Following Lepper (2005), freshwater and marine datasets can be combined if it cannot be shown that marine species are more sensitive than freshwater species. Data for marine algae and crustacea are in the range of freshwater data. Thus, freshwater and marine datasets are combined.

3.4.4 Derivation of Environmental Risk Limits

3.4.4.1 Derivation of MPC_{water} and MPC_{marine}

MPC_{eco, water} and MPC_{eco, marine}

Acute toxicity data are available for six taxonomic groups, amongst which algae, crustacea (*Daphnia*) and fish. Thus, the base set is complete. Chronic are available for algae and crustacean, not for fish. The lowest NOEC is 1.3 mg/L for the crustacea *Daphnia magna*. However, the lowest LC50 of 0.64 mg/L for *Vibrio fischeri* is lower than the lowest NOEC.

With NOECs for two taxa, and an LC50 lower than the NOECs, an assessment factor of 100 should be used on the LC50. This results in an MPC_{eco, water} of $0.64 / 100 = 6.4 \times 10^{-3}$ mg/L = 6.4 µg/L.

No chronic toxicity data are available for specific marine taxa. With an assessment factor of 1000 the $MPC_{eco, marine}$ becomes $0.64 / 1000 = 6.4 \times 10^{-4} \text{ mg/L} = 0.64 \mu\text{g/L}$.

$MPC_{sp, water}$ and $MPC_{sp, marine}$

4-chloro-3-methylphenol has a BCF < 100 L/kg, thus assessment of secondary poisoning is not triggered.

$MPC_{hh \text{ food, water}}$

Derivation of $MPC_{hh \text{ food, water}}$ for 4-chloro-3-methylphenol is not triggered (Table 30).

$MPC_{dw,water}$

The $MPC_{dw,water}$ is 1 $\mu\text{g/L}$ according to the general A1 value for phenols.

Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. However, the derivation of $MPC_{hh \text{ food, water}}$ and $MPC_{sp, water}$ was not triggered. Thus, the general MPCs are based on ecotoxicity ($MPC_{eco, water}$ and $MPC_{eco, marine}$) which results in an MPC_{water} of 6.4 $\mu\text{g/L}$ and MPC_{marine} of 0.64 $\mu\text{g/L}$.

3.4.4.2 Derivation of MAC_{eco}

The base set is complete. LC50s are available for six taxa. The lowest LC50 is 0.64 mg/L for the bacterium *Vibrio fischeri*.

Given the following arguments:

- the bioaccumulation factor is lower than 100;
- the mode of action (narcosis) is non-specific;
- the variation is not too high in view of the large number of data;

an assessment factor of 10 is used and the $MAC_{eco, water}$ becomes $0.64 / 10 = 0.064 \text{ mg/L} = 64 \mu\text{g/L}$.

For the marine environment, no specific marine taxa are present and an additional assessment factor of 10 should be used. The $MAC_{eco, marine}$ then becomes 6.4 $\mu\text{g/L}$.

3.4.4.3 Derivation of NC

The NC is derived by dividing the final MPC by a factor of 100.

$$NC_{water} = 6.4 \times 10^{-2} \mu\text{g/L}.$$

$$NC_{marine} = 6.4 \times 10^{-3} \mu\text{g/L}.$$

3.4.4.4 Derivation of SRC_{eco}

Three chronic NOECs are available from two different taxa, with a geometric mean of 2.4 mg/L.

Because NOECs are available for only two taxa, a comparison has to be made with the geometric mean of the acute data (3.7 mg/L). Because the geometric mean of the acute data divided by 10 is smaller than the geometric mean of the NOECs, the SRC_{eco} is based on the geometric mean of the acute data with an assessment factor of 10. The $SRC_{eco, water}$ and $SRC_{eco, marine}$ are set at $3.7 / 10 = 0.37 \text{ mg/L} = 3.7 \times 10^{-2} \mu\text{g/L}$.

3.4.5 Sediment toxicity data

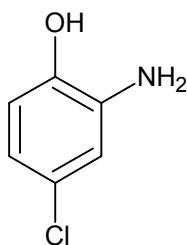
The $K_{p, \text{susp-water}}$ of 4-chloro-3-methylphenol is below the trigger value of 3, therefore, ERLs are not derived for sediment.

3.4.6 Comparison of derived ERLs with monitoring data

An overview of the derived ERLs is given in Table 33.

Table 33. Derived MPC, MAC_{eco} , NC, and SRC_{eco} values for 4-chloro-3-methylphenol (in $\mu\text{g/L}$).

ERL	Unit	MPC	MAC_{eco}	NC	SRC_{eco}
Freshwater	$\mu\text{g/L}$	6.4	64	6.4×10^{-2}	3.7×10^2
Drinking water	$\mu\text{g/L}$	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	$\mu\text{g/L}$	0.64	6.4	6.4×10^{-3}	3.7×10^2


^a n.a. = not applicable.

Monitoring data for the Rhine from the years 2004 and 2006, obtained from RIWA (Association of River Waterworks), shows that at all sampling occasions and locations, the concentration of 4-chloro-3-methylphenol in water was below detection limits (0.01 – 0.15 $\mu\text{g/L}$).

3.5 Aminochlorophenol

3.5.1 Substance identification, physico-chemical properties, fate and human toxicology

3.5.1.1 Identity

Figure 5. Structural formula of aminochlorophenol.

Table 34. Identification of aminochlorophenol.

Parameter	Result
Chemical name	aminochlorophenol
CAS number	95-85-2
EC number	202-458-9
SMILES code	Oc(c(N)cc(c1)Cl)c1

3.5.1.2 Physico-chemical properties

Table 35. Physico-chemical properties of aminochlorophenol. Bold values are used for ERL derivation.

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	143.57		
Water solubility	[mg/L]	2300	EpiWin	US EPA, 2007
pK _a	[-]	Unknown		
log K _{OW}	[-]	1.81 1.71 1.24	Recommended by reference calculated EpiWin	BioByte, 2006 BioByte, 2006 US EPA, 2007
log K _{OC}	[-]	2.04 2.08	Calculated using log K _{OW} = 1.81 EpiWin	According to Sabljic et al., 1995 US EPA, 2007
Vapour pressure	[Pa]	0.188	EpiWin	US EPA, 2007
Melting point	[°C]	69.8	EpiWin	US EPA, 2007
Boiling point	[°C]	270	EpiWin	US EPA, 2007
Henry's law constant	[Pa.m ³ /mol]	0.0117	EpiWin	US EPA, 2007

3.5.1.3 Behaviour in the environment

No data is known on hydrolysis, photolysis, biodegradability and relevant metabolites of 4-chloro-3-methylphenol.

3.5.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for aminochlorophenol is given in Table 36. No experimental bioaccumulation data are available.

Table 36. Overview of bioaccumulation data for aminochlorophenol.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	6.9	Calculated using log K _{OW} = 1.81	According to Veith et al., 1979
BMF	[kg/kg]	1	Default value for compounds with log K _{OW} < 4.5	

3.5.1.5 Human toxicological threshold limits and carcinogenicity

Aminochlorophenol is not classified as a carcinogenic compound and does not have any R-phrases. No ADI was found in the relevant databases.

3.5.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Table 37. Aminochlorophenol: collected properties for comparison to MPC triggers.

Parameter	Value	Unit	Method/Source	Derived at section
Log $K_{p,\text{susp-water}}$	1.04	[-]	$K_{\text{OC}} \times f_{\text{OC,susp}}^1$	K_{OC} : 3.5.1.2
BCF	6.9	[L/kg]		3.5.1.4
BMF	1	[kg/kg]		3.5.1.4
Log K_{ow}	1.81	[-]		3.5.1.2
R-phrases	No R-phrases	[-]		3.5.1.5
A1 value	1	[\mu\text{g/L}]	Mandatory for phenols	
DW standard	-	[\mu\text{g/L}]		

¹ $f_{\text{OC,susp}} = 0.1 \text{ kg}_{\text{OC}}/\text{kg}_{\text{solid}}$ (European Commission (Joint Research Centre), 2003).

- aminochlorophenol has a $\log K_{p,\text{susp-water}} < 3$; derivation of $\text{MPC}_{\text{sediment}}$ is not triggered.
- aminochlorophenol has a $\log K_{p,\text{susp-water}} < 3$; expression of the $\text{MPC}_{\text{water}}$ as $\text{MPC}_{\text{susp, water}}$ is not required.
- aminochlorophenol has a $\log K_{\text{ow}} < 3$; assessment of secondary poisoning is not triggered.
- aminochlorophenol does not have an R-classification. Therefore, an $\text{MPC}_{\text{water}}$ for human health via food (fish) consumption ($\text{MPC}_{\text{hh food, water}}$) does not have to be derived.
- For aminochlorophenol, no compound-specific A1 value or Drinking Water value is available from Council Directives 75/440, EEC and 98/83/EC, respectively. Therefore, the general mandatory A1 value for phenols applies.

3.5.3 Aquatic toxicity data

3.5.3.1 Toxicity data

An overview of the selected freshwater toxicity data for aminochlorophenol is given in Table 38. There are no marine toxicity data for aminochlorophenol. Detailed toxicity data for aminochlorophenol are tabulated in Appendix 2.

Table 38. Aminochlorophenol: selected freshwater toxicity data for ERL derivation.

Chronic ^a Taxonomic group	NOEC/EC10 (mg/L)	Acute ^a Taxonomic group	L(E)C50 (mg/L)
No data		Bacteria	33

^a For detailed information see Appendix 2.

3.5.4 Derivation of Environmental Risk Limits

3.5.4.1 Derivation of $\text{MPC}_{\text{water}}$ and $\text{MPC}_{\text{marine}}$

$\text{MPC}_{\text{eco, water}}$ and $\text{MPC}_{\text{eco, marine}}$

Only one LC50 is available, 33 mg/L for the bacteria *Escherichia coli*. This means that the base set is not complete. Environmental risk limits based on ecotoxicity data cannot be derived.

$\text{MPC}_{\text{sp, water}}$ and $\text{MPC}_{\text{sp, marine}}$

Aminochlorophenol has a BCF < 100 L/kg, thus assessment of secondary poisoning is not triggered.

MPC_{hh food, water}

Derivation of MPC_{hh food, water} for aminochlorophenol is not triggered (Table 37).

MPC_{dw,water}

The MPC_{dw,water} is 1 µg/L according to the general A1 value for phenols.

Selection of the MPC_{water} and MPC_{marine}

In the Fraunhofer document (Lepper, 2005) it is prescribed that the lowest MPC value should be selected as the general MPC. The derivation of MPC_{hh food, water} and MPC_{sp, water} was not triggered, while derivation of the MPC based on ecotoxicity (MPC_{eco, water} and MPC_{eco, marine}) is not possible. The MPC_{water} and MPC_{marine} cannot be derived.

3.5.4.2 Derivation of MAC_{eco}

Derivation of the MAC_{eco} is not possible.

3.5.4.3 Derivation of NC

Derivation of NCs is not possible.

3.5.4.4 Derivation of SRC_{eco}

Derivation of the SRC_{eco} is not possible.

3.5.5 Comparison of derived ERLs with monitoring data

No ERLs could be derived. Monitoring data for the Rhine from the year 2005, obtained from RIWA (Association of River Waterworks), shows that at all sampling occasions and locations, the concentration of aminochlorophenol in water was below detection limits (0.5 µg/L).

4 Conclusions

In this report, the risk limits negligible concentration (NC), maximum permissible concentration (MPC), maximum acceptable concentration for ecosystems (MAC_{eco}), and serious risk concentration for ecosystems (SRC_{eco}) are derived for monochlorophenols, 4-chloro-3-methylphenol and aminochlorophenol in water. No risk limits were derived for the sediment compartment because the trigger values to derive such risk limits were not reached.

The ERLs that were obtained are summarised in the table below. Please note that for the three monochlorophenols, due to the mode of action (narcosis) and the fact that these compounds often occur together, the use of the toxic unit approach is recommended. The toxic unit approach assumes that compounds that act similar, have concentration additive toxicity. This means that the sum of the ratio between measured concentration and risk limits for the three monochlorophenols combined should not exceed 1.

Table 39. Derived MPC, MAC_{eco}, NC, and SRC_{eco} values (in µg/L).

	Unit	MPC	MAC _{eco}	NC	SRC _{eco}
2-chlorophenol					
Freshwater	µg/L	35	1.1×10^2	0.35	1.2×10^4
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	3.5	11	3.5×10^{-2}	1.2×10^4
3-chlorophenol					
Freshwater	µg/L	4.0	4.0×10^2	4.0×10^{-2}	1.4×10^3
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	0.4	40	4.0×10^{-3}	1.4×10^3
4-chlorophenol					
Freshwater	µg/L	16	89	0.16	3.6×10^3
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	3.2	18	3.2×10^{-2}	3.6×10^3
4-chloro-3-methylphenol					
Freshwater	µg/L	6.4	64	6.4×10^{-2}	3.7×10^2
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	0.64	6.4	6.4×10^{-3}	3.7×10^2
Aminochlorophenol					
Freshwater	µg/L	n.d. ^b	n.d. ^b	n.d. ^b	n.d. ^b
Drinking water	µg/L	1	n.a. ^a	n.a. ^a	n.a. ^a
Marine water	µg/L	n.d. ^b	n.d. ^b	n.d. ^b	n.d. ^b

^a n.a. = not applicable.

^b n.d. = not derived due to lack of data

References

Baars AJ, Theelen RMC, Janssen PJCM, Hesse JM, van Apeldoorn ME, Meijerink MCM, Verdam L, Zeilmaker MJ. 2001. Re-evaluation of human-toxicological maximum permissible risk levels. Bilthoven, the Netherlands: National Institute for Public Health and the Environment (RIVM). Report no. 711701025.

BioByte. 2006. BioLoom [computer program]. version 1.0 (ClogP 4.0). Claremont, CA, USA: BioByte Corporation.

Butte W, Willig A, Zuake G-P. 1987. Bioaccumulation of phenols in zebrafish determined by a dynamic flow through test. QSAR in Environmental Toxicology II: 43-53.

European Commission (European Chemical Bureau). 2000. IUCLID (International Uniform Chemical Information Database) on CD-ROM. European Chemicals Bureau, Ispra, Italy.

European Commission (Joint Research Centre). 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Ispra, Italy: European Chemicals Bureau, Institute for Health and Consumer Protection. Report no. EUR 20418 EN/2.

IARC. 1999. Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 71. Re-Evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. International Agency for Research on Cancer, Lyon, France.

Jennings JG, De Nys R, Charlton TS, Duncan MW, Steinberg PD. 1996. Phenolic compounds in the nearshore waters of Sydney, Australia. Mar Freshw Res 47: 951-959.

Lepper P. 2005. Manual on the Methodological Framework to Derive Environmental Quality Standards for Priority Substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). 15 September 2005 (unveröffentlicht) ed. Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology.

Mackay D, Shiu WY, Ma KC. 2000. Physical-chemical properties and environmental fate. Handbook. Chapman and Hall/ CRCnetBase.

Moermond CTA, Heugens EHW. 2009a. Environmental risk limits for trichlorophenols. Bilthoven, the Netherlands: National Institute for Public Health and the Environment (RIVM). Report no. 601714005.

Moermond CTA, Heugens EHW. 2009b. Environmental risk limits for 2,4-dichlorophenol. Bilthoven, the Netherlands: National Institute for Public Health and the Environment (RIVM). Report no. 601714007.

Muller F. 2008. Chlorophenols. In: Ullmann's Encyclopedia of Industrial Chemistry. John Wiley & Sons, Inc. (<http://mrw.interscience.wiley.com/emrw/3527-306730/home/>; feb 08).

National Pollutant Inventory. 2005. Department of the environment, water, heritage and the arts, Australia. (<http://www.npi.gov.au/database/substance-info/profiles/90.html#common>; feb 08).

NSF International. 2002. p-chloro-m-cresol. CAS # 59-50-7. Oral Risk Assessment Document.

Ramos EU, Vermeer C, Vaes WHJ, Hermens JLM. 1998. Acute toxicity of polar narcotics to three aquatic species (*Daphnia magna*, *Poecilia reticulata* and *Limnaea stagnalis*) and its relation to hydrophobicity. Chemosphere 37: 633-650.

Sabljic A, Güsten H, Verhaar H, Hermens J. 1995. QSAR modelling of soil sorption. Improvements and systematics of log Koc versus log Kow correlations. Chemosphere 31: 4489-4514.

Tomlin CDS. 2002. e-Pesticide Manual 2002-2003 (Twelfth edition) Version 2.2. British Crop Protection Council.

US EPA.1986. Health Effects Assessment for Selected Chlorinated Phenols. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Emergency and Remedial Response, Washington, DC.

US EPA. 2007. EPI Suite™ [computer program]. version 3.2. Washington, DC, U.S.A.: U.S. Environmental Protection Agency (EPA) Office of Pollution Prevention Toxics and Syracuse Research Company (SRC).

Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of the project 'International and National Environmental Quality Standards for Substances in the Netherlands' (INS). Bilthoven, the Netherlands: National Institute for Public Health and the Environment (RIVM). Report no. 601782001.

Veith GD, DeFoe DL, Bergstedt BV. 1979. Measuring and estimating the bioconcentration factor of chemicals in fish. *J Fish Res* 36, 1040-1048.

Appendix 1. Information on bioconcentration

Table A1.1 Bioconcentration data for 2-chlorophenol.

Species	Species properties	Substance purity [%]	Analysed	Test type	Test water	pH	Hardness CaCO ₃ [mg/L]	Temp. [°C]	Exp. time	Exp. concn. [mg/L]	BCF [L/kg]	BCF type	Calculation method	Ri	Notes	Reference
<i>Carassius auratus</i>	2.2 g	100	deriv GC/ECD (not in water)	S	tw	6		20-21	5 h	5	3.7	whole body	Cbiota/Cw	3	3	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 g	100	deriv GC/ECD (not in water)	S	tw	8		20-21	5 h	5	3.8	whole body	Cbiota/Cw	3	3	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 g	100	deriv GC/ECD (not in water)	S	tw	10		20-21	5 h	5	0.6	whole body	Cbiota/Cw	3	3	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2 g		colorimetric	R				20	12- 24 h	20	6.4	whole body	Cbiota/Cw	3	4	Kobayashi et al., 1979
<i>Cyprinus carpio</i>								25	42 d	0.004	16 - 29			2	1,5	EC, 2000
<i>Cyprinus carpio</i>								25	42 d	0.04	14 - 24			2	1,5	EC, 2000
<i>Lepomis macrochirus</i>	0.37-0.95 g; 25-35 mm		LSC	CF	nw	6.3- 7.9	35	16±1	28 d	0.00918	214	whole body ww	Cbiota/Cw	3	6	Barrows et al., 1980; Veith et al., 1980; EC, 2000
<i>Pimephales promelas</i>	0.68±0.3g; 4.4±2.5% lipid	>99	HPLC-UV	S	am	6.2		18.0-18.4	1.1 - 5.9 h	36.5	4.6	LBB	Cbiota/Cw	3	7	Van Wezel and Opperhuizen, 1995
fish											214	whole body	Cbiota/Cw	4	2	Lu et al., 2000

Notes:

- 1 Original source: Rhone-Poulenc Chimie Courbevoie Cedex, 1992
- 2 Review article; specific references per compound not specified
- 3 Exposure duration is short, equilibrium might not be fully reached; aqueous concentration presumably not measured
- 4 Exposure duration is short; aqueous concentration presumably not measured
- 5 According to OECD 305C
- 6 total 14C concentration; BCF thus includes possible metabolites
- 7 Lethal body burdens

Table A1.2 Bioconcentration data for 3-chlorophenol.

Species	Species properties	Substance Analysed purity [%]	Test type	Test water	pH	Hardness CaCO ₃ [mg/L]	Temp. [°C]	Exp. time	Exp. concn. [mg/L]	BCF [L/kg]	BCF type	Calculation method	Ri	Notes	Reference
Unspecified															
Pisces															
<i>Brachydanio rerio</i>	2.9 - 3.5 cm; 3-5% lipids	Deriv-GLC-ECD	CF	tw	7.6-8.0		25	50 + 100 h ?	0.98	17.8	whole body ww	k1/k2	1	3,4	Butte et al., 1987
<i>Carassius auratus</i>	2.2 g	100	deriv GC/ECD (not in water)	S	tw	6	20-21	5 h	5	10	whole body	Cbiota/Cw	3	5	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 g	100	deriv GC/ECD (not in water)	S	tw	8	20-21	5 h	5	9.7	whole body	Cbiota/Cw	3	5	Kishino and Kobayashi, 1995
<i>Carassius auratus</i> fish	2.2 g	100	deriv GC/ECD (not in water)	S	tw	10	20-21	5 h	5	2	whole body	Cbiota/Cw	3	5	Kishino and Kobayashi, 1995
										17.8	whole body	Cbiota/Cw	4	1	Lu et al., 2000
										17.8			4	1	Park & Lee, 1993

Notes:

- 1 Review; original reference not clear but probably Butte
- 2 Mentioned in review that metabolic transformation does not occur.
- 3 According to OECD 305E test protocol
- 4 Seems well performed, but not all data presented.
- 5 Exposure duration is short, equilibrium might not be fully reached; aqueous concentration presumably not measured

Table A1.3 Bioconcentration data for 4-chlorophenol.

Species	Species properties	Substance Analysed purity [%]	Test type	Test water	pH	Hardness CaCO ₃ [mg/L]	Temp. [°C]	Exp. time	Exp. concn. [mg/L]	BCF [L/kg]	BCF type	Calculation method	Ri	Notes	Reference
Pisces															
<i>Carassius auratus</i>	2.2 g	100	deriv GC/ECD (not in water)	S	tw	6	20-21	5 h	3	7.6	whole body	Cbiota/Cw	3	2	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 g	100	deriv GC/ECD (not in water)	S	tw	8	20-21	5 h	3	6.9	whole body	Cbiota/Cw	3	2	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 g	100	deriv GC/ECD (not in water)	S	tw	10	20-21	5 h	3	3.1	whole body	Cbiota/Cw	3	2	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2 g		colorimetric	R			20	12-24 h	10	10.1	whole body	Cbiota/Cw	3	2	Kobayashi et al., 1979
<i>Cyprinus carpio</i>							25	42 d	0.004	11 - 52			2	1,3	EC, 2000
<i>Cyprinus carpio</i>							25	42 d	0.04	6 - 18			2	1,3	EC, 2000
<i>Pimephales promelas</i>	0.68±0.3g; 4.4±2.5% lipid	>99	HPLC-UV	S	am	6.2	18.0-18.4	1.1 - 5.9 h	36.5	9.8214286	LBB	Cbiota/Cw	3	4	Van Wezel and Opperhuizen, 1995

Notes:

- 1 Original source: Rhone-Poulenc Chimie Courbevoie Cedex, 1979
- 2 Exposure duration is short, equilibrium might not be fully reached; aqueous concentration presumably not measured
- 3 According to OECD 305C
- 4 Lethal body burdens

Table A1.4 Bioconcentration data for 4-chloro-3-methylphenol.

Species	Species properties	Substance purity [%]	Analysed	Test type	Test water	pH	Hardness CaCO ₃ [mg/L]	Temp. [°C]	Exp. time	Exp. concn. [mg/L]	BCF [L/kg]	BCF type	Calculation method	Ri	Notes	Reference
Mollusca																
<i>Lymnaea stagnalis</i>	2-3 mo old	99	SPME	R	tw	8.0-8.3		21-24	96 h		15.6	ww	LBB x EC50	2	1	Urrestarazu Ramos et al., 1998
<i>Mytilus edulis</i>	obtained from fish market	ag	GC-MS	R	seawater			15	7 d	0.1	37.75	soft tissue body ww		2	4	Jennings et al, 1996
Pisces																
<i>Cyprinus carpio</i>								25	42 d	0.002	2.2 - 11			4	2,5	EC, 2000
<i>Cyprinus carpio</i>								25	42 d	0.02	6.7 - 13			4	2,5	EC, 2000
<i>Poecilia reticulata</i>	2-3 mo old ♀; 1.8 cm and 69 mg	99	SPME	R	tw	8.0-8.3		20-25	96 h		15.5	whole body ww	LBB x EC50	2	1	Urrestarazu Ramos et al., 1998
<i>Trachurus novaezelandiae</i>	caught in Sidney Harbour	ag	GC-MS	R	seawater			21	7 d	0.1	120.8	muscles ww		2	3,4	Jennings et al, 1996

Notes

1 Calculated using values for LBB and EC50; Whole body without shell and gut

2 Source: Bayer AG Leverkusen,

3 no bioconcentration detected in the liver

4 steady state was reached after 40 hours

2 According to MITI/OECD guidelines

No data were available for bioconcentration of aminochlorophenol.

Appendix 2. Detailed aquatic toxicity data

Table A2.1 Acute toxicity of 2-chlorophenol to freshwater organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
Pure culture	isolated from lab. act. sludge			98	am			A	30 - 60 min	EC50	dehydrogenase act.	> 500	4	1,37	Liu, 1985
Pure culture	isolated from lab. act. sludge			98	am			B	30 - 60 min	EC50	dehydrogenase act.	130	4	1,37	Liu, 1985
Pure culture	isolated from lab. act. sludge			98	am			C	30 - 60 min	EC50	dehydrogenase act.	125	4	1,37	Liu, 1985
Pure culture	isolated from adapted act. sludge			98	am			E	30 - 60 min	EC50	dehydrogenase act.	170	4	1,37	Liu, 1985
Pure culture	isolated from adapted act. sludge			98	am			F	30 - 60 min	EC50	dehydrogenase act.	> 500	4	1,37	Liu, 1985
Pure culture	isolated from Lake Erie sediment			98	am			G	30 - 60 min	EC50	dehydrogenase act.	> 500	4	1,37	Liu, 1985
Pure culture	grown in medium with phenol as pure carbon source	N	S		am	7.2	ca. 20 (room temp.)		exp. growth phase	EC50	growth on phenol	114	3		Banerjee, 1987
<i>Bacillus</i> sp.	isolated from act. sludge, cell age 18 - 20 h					21			30 min	EC50	dehydrogenase act.	700	2	2	Liu et al., 1982
<i>Bacillus subtilis</i>					7.2					EC50	spore germination	72.2	4	3,38	Yasuda et al., 1982
<i>Bacillus subtilis</i>		N	S		am	37	0.17	log. growth phase	EC50	growth		476	2		Ogawa et al., 1991
<i>Burkholderia RASC c2</i>	<i>lux</i> -marked, Gram-negative	N	S	≥ 98	am	7.1	25		20 min	EC50	bioluminescence	28.3	2	3	Boyd et al., 2001
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	EC50	specific growth rate	122	2		Cenci et al., 1987
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	EC50	dehydrogenase act.	512	2		Cenci et al., 1987
<i>Pseudomonas fluorescens</i>	isolated from soil, <i>lux</i> -marked, Gram-negative	N	S	≥ 98	am	7.1	25		20 min	EC50	bioluminescence	122	2	3,4	Boyd et al., 2001
<i>Pseudomonas</i> I	able to grow on benzoate	N	S		am		30			EC19	oxygen uptake rate	424	2,39		Huang and Tseng, 1996
<i>Pseudomonas</i> II	isolated from soil, able to grow on phenol	N	S		am		30			EC63.3	oxygen uptake rate	424	2,39		Huang and Tseng, 1996
<i>Salmonella typhimurium</i>	TA98				am	6.6	37		30 min	EC50	specific growth rate	411	3	5	Pill et al., 1991
<i>Spirochaeta aurantia</i>	ATCC 25082				am	7	30		30 min	EC50	specific growth rate	167	2		Pill et al., 1991
Algae															
<i>Chlorella pyrenoidosa</i>			S			7			72 h	EC50	chlorophyll reduction	96	4		Huang and Gloyna, 1968 and Jones, 1971. In: Krijgsheld and van der

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg /L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
															Gen, 1986
<i>Chlorella vulgaris</i>	ca. 7.5 x 10 ⁶ cells/mL				am		36.5		6 h	EC50	cell density	97.5	2	6,7	Kramer and Trümper, 1986
<i>Chlorella vulgaris</i>	ca. 7.5 x 10 ⁶ cells/mL				am		36.5		6 h	EC50	cell density	126	2	7,8	Kramer and Trümper, 1986
<i>Chlorella vulgaris</i>	5E+04 cells/mL	N	S		am		21 ± 1		96 h	EC50	growth rate	170	2		Shigeoka et al., 1988
<i>Pseudokirchneriella subcapitata</i>	5E+04 cells/mL	N	S		am		21 ± 1		96 h	EC50	growth rate	70	2		Shigeoka et al., 1988
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		48 h	EC50	biomass (AUC)	50	2		Kühn and Pattard, 1990
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		48 h	EC50	growth rate	85	2		Kühn and Pattard, 1990
Protozoa															
<i>Tetrahymena pyriformis</i>	strain GL-C, ca. 2500 cells/mL from logarithmic growing culture	N	S		am	7.35	27 ± 1	75	40 h	EC50	population growth (density)	84.9	2	9	Schultz et al., 1996
<i>Tetrahymena pyriformis</i>	strain GL-C		S	≥ 95	am		28		60 h	EC50	growth	36.7	2	9	Schultz, 1987a
<i>Tetrahymena pyriformis</i>									48 h	EC50	population growth (density)	68.0	2	9	Schultz, 1986
<i>Tetrahymena pyriformis</i>	ca. 36000 cells/mL, in log phase	N	S	≥ 95	am	7.35	27 ± 1		48 h	EC50	population growth (density)	67.5	4*	9	Schultz et al., 1990
<i>Tetrahymena pyriformis</i>			S						60 h	EC50	population growth (density)	68.0	4*	9	Schultz et al., 1986
<i>Tetrahymena pyriformis</i>	2500 cells/mL, in log-phase	N	S	≥ 95	am	7.35	27 ± 1		48 h	EC50	population growth (density)	68.0	4*		Bryant and Schultz, 1994
Macrophyta															
<i>Salvinia minima</i>	collected in field				am		25		7 d	EC50	growth (fwt)	19.7	2	10	Gallardo et al., 1998
<i>Salvinia minima</i>	collected in field				am		25		7 d	EC50	growth (dwt)	19.8	2	10	Gallardo et al., 1998
<i>Salvinia minima</i>	collected in field				am		25		7 d	EC50	frond number	1.08	2	10,11	Gallardo et al., 1998
Cnidaria															
<i>Hydra vulgaris</i>	adult									LOEC	maternal toxicity	0.088	4	12,40	Fu et al., 1990
<i>Hydra vulgaris</i>	adult	N	R	purified prior to use	am	7			92 h	LOEC	tulip stage	100	2	13	Mayura et al., 1991
Crustacea															
<i>Ceriodaphnia dubia</i>	< 24 h old	Y	S				23 ± 1		48 h	EC50	immobility	9.93	2	37	Mulhall, 1997. In: Warne and Westbury, 1999
<i>Daphnia</i>									24 h	EC50			10-35	4	Devillers, 1984. In: Bazin et al., 1987
<i>Daphnia carinata</i>	< 24 h old	Y	S				20 ± 1		48 h	EC50	immobility	5.89	2		Azim, 1998. In: Warne and Westbury, 1999
<i>Daphnia magna</i>	< 24 h old		S		am				24 h	LC50	mortality	23.8	2	10,14,15	LeBlanc et al., 1988
<i>Daphnia magna</i>	< 24 h old	N	S	≥ 80%	rw	7.4 - 9.4	22 ± 1	173 ± 13	48 h	LC50	mortality	2.6	2	14	LeBlanc, 1980
<i>Daphnia magna</i>	< 24 h old	N	S	≥ 80%	rw	7.4 - 9.4	22 ± 1	173 ± 13	48 h	NOEC	mortality	1	2	14	LeBlanc, 1980
<i>Daphnia magna</i>						8.25 - 8.35			24 h	EC50	immobility	21.5	2	16	Trapido et al., 1997

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg /L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Daphnia magna</i>		Y	Sc	ag	nw				24 h	EC50	immobility	8	2		Bazin et al., 1987
<i>Daphnia magna</i>	≤ 24 h old	Y			am	8.0 ± 0.2	25 ± 1	250	24 h	EC50	immobility	6.3	2	17	Kühn et al., 1989a
<i>Daphnia magna</i>	(<24 h old)		S		nw		18 ± 1		48 h	LC50	mortality	7.4	2		Kopperman et al., 1974
<i>Daphnia magna</i>		N	S		am		20	250	24 h	EC50	immobility	23	2	18	Knie et al., 1983
<i>Daphnia magna</i>		Y	Sc		rw	5.2	20 ± 2	250 ± 25	24 h	EC50	immobility	11.7	3	41	Tissot et al., 1985
<i>Daphnia magna</i>	(<24 h old)	Y	Sc		nw		18 ± 1		48 h	EC50	immobility	3.91	2		Keen and Baillod, 1985
<i>Daphnia magna</i>	6 - 24 h old	N	S	> 95	am		22 ± 1		24 h	EC50	immobility	14.4	2		Zhao et al., 1995
<i>Daphnia magna</i>	< 72 h old	N	S	> 95%	rw	7.8 - 8.2	20 ± 1	200	24 h	EC50	immobility	18.0	2	19	Devillers and Chambon, 1986
<i>Daphnia magna</i>	<24h	N	S		rw	8	25	150	48 h	LC50	mortality	5.71	2		Kim et al., 2006
<i>Daphnia magna</i>	<24 h old		S		nw	7.0-8.2	22	154.5	48h	EC50	immobility	6.2	2	20	Randall and Knopp, 1980
<i>Daphnia pulex</i>	12 h old	N	R		nw		20 ± 1		96 h	LC50	mortality	6.9	2		Trabalka and Burke, 1978
Pisces															
<i>Carassius auratus</i>	3.8 - 6.4 cm, 1 - 2 g	N	S, open	practical	5% nw + 95% dw	7.5	25	20 mg/L	96 h	LC50	mortality	12.4	2	21,22	Pickering and Henderson 1966
<i>Carassius auratus</i>	1.0 ± 0.1 g		S	ca. 100	tw	7.0 ± 0.1	27 - 28		5 h	LC50	mortality	92.7	3	42,43	Kishino and Kobayashi, 1996
<i>Carassius auratus</i>	1.0 ± 0.1 g	N	S	ca. 100	tw	7.0 ± 0.1	27 - 28		2.5 h	LC50	mortality	92.6	3	42,43	Kishino and Kobayashi, 1996
<i>Carassius auratus</i>	2.2 ± 0.2 g		S	ca. 100	tw	6	20 - 21		5 h	LC50	mortality	70 - 100	3	23,42,43	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 ± 0.2 g		S	ca. 100	tw	8	20 - 21		5 h	LC50	mortality	100 - 150	3	23,42,43	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 ± 0.2 g		S	ca. 100	tw	10	20 - 21		5 h	LC50	mortality	> 500	3	23,42,43	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2 g		R				20		24 h	LC50	mortality	16	3	44	Kobayashi et al., 1979
<i>Carassius auratus</i>	fingerlings < 10.2 cm					7	12.8	300	24 h	NOEC	mortality	≥ 5	3	24,45	Wood, 1953
<i>Carassius auratus</i>	2 - 4 g						27		8 h	LC50	mortality	36.7	3	10,25,43	Gersdorf and Smith, 1940
<i>Danio rerio</i>	160 - 185 mg	N		> 95	am		22 ± 1		24 h	LC50	mortality	15.17	2		Devillers and Chambon, 1986b
<i>Lepomis macrochirus</i>	3.8 - 6.4 cm, 1 - 2 g	N	S, open	practical	5% nw + 95% dw	7.5	25	20 mg/L	96 h	LC50	mortality	10	2	21,22	Pickering and Henderson 1966
<i>Lepomis macrochirus</i>	0.32 - 1.2 g ww	N	Sc	≥ 80%	am	6.5 - 7.9	21 - 23	32 - 48	96 h	LC50	mortality	6.6	2	14,26	Buccafusco et al. 1981
<i>Lepomis macrochirus</i>	juveniles, 4.2 cm, 2.2 g	Y	R	am		7.6 - 8.5	20	105	48 h	LC50	mortality	8.1	2	27	Lammering and Burbank, 1960
<i>Lepomis macrochirus</i>	fingerlings								96 h	LC50	mortality	8.4	2		Henderson et al., 1961
<i>Lepomis macrochirus</i>	fingerlings < 10.2 cm					7	12.8	300	24 h	NOEC	mortality	≥ 5	3	24,45	Wood, 1953
<i>Lepomis macrochirus</i>	fingerlings								96 h	LC50	mortality	8.4	4*	22	McKee and Wolf, 1963. In: Verschueren, 1983
<i>Lepomis macrochirus</i>	fingerlings, ca. 10 cm	N	S		nw	7.5 - 8.2	13		24 h	NOEC	mortality/obvious distress	≥ 5	3	24,45	Applegate et al., 1957
<i>Leuciscus idus</i>							20	267	48 h	LC50	mortality	8	4	46	Dietz, 1978
<i>Leuciscus idus</i>							20	267	48 h	LC0	mortality	5	4	46	Dietz, 1978
<i>Leuciscus idus melanotus</i>			S			7 - 8	20	267	48 h	LC50	mortality	10.3	2	36	Rübel et al., 1982
<i>Oncorhynchus mykiss</i>									96 h	LC50	mortality	2.6	4		Sletten and Burbank, 1972. in: Krijghseld and Van der Gen, 1986

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg /L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Oncorhynchus mykiss</i>	fingerlings, ca. 10 cm	N	S		nw	7.5 - 8.2	13		13 h	LOEC	mortality/obvious distress	5	3	24,45	Applegate et al., 1957
<i>Oryzias latipes</i>			S				25 ± 2		48 h	LC50	mortality	16.7	2		CITI data. In: EC, 2000
<i>Petromyzon marinus</i>	larvae, 7.6 - 13 cm, collected from the field	N	S		nw	7.5 - 8.2	13		24 h	NOEC	mortality/obvious distress	≥ 5	3	24,45,47	Applegate et al., 1957
<i>Pimephales promelas</i>									96 h	LC50	mortality	12.3	4	28	COMPUTOX database. In: Eldred et al., 1999
<i>Pimephales promelas</i>	30 - 35 d old	Y	F		nw	ca. 7.5	25 ± 2	43.3 - 48.5	96 h	LC50	mortality	11	2	29	Phipps et al., 1981
<i>Pimephales promelas</i>	30 - 35 d old	Y	F		nw	ca. 7.5	25 ± 2	43.3 - 48.5	96 h	LC50	mortality	13	2	30	Phipps et al., 1981
<i>Pimephales promelas</i>	30 - 35 d old	Y	F		nw	ca. 7.5	25 ± 2	43.3 - 48.5	192 h	LC50	mortality	6.3	2	29	Phipps et al., 1981
<i>Pimephales promelas</i>	30 - 35 d old	Y	F		nw	ca. 7.5)	25 ± 2	43.3 - 48.5	192 h	LC50	mortality	6.3	2	30	Phipps et al., 1981
<i>Pimephales promelas</i>	30 - 35 d old	Y	S, open		nw	ca. 7.5	21.6 - 25.4	43.3 - 48.5	48 h	LC50	mortality	9.7	2		Phipps et al., 1981
<i>Pimephales promelas</i>	3.8 - 6.4 cm, 1 - 2 g	N	S, open	practical	5% nw + 95% dw	8.2	25	360 mg/L	96 h	LC50	mortality	14.5	2	21,22	Pickering and Henderson 1966
<i>Pimephales promelas</i>	3.8 - 6.4 cm, 1 - 2 g	N	S, open	practical	5% nw + 95% dw	7.5	25	20 mg/L	96 h	LC50	mortality	11.6	2	21,22	Pickering and Henderson 1966
<i>Pimephales promelas</i>	30 - 35 d		F		nw		25 ± 2	43.3 - 48.5	192 h	LC50	mortality	12.3	4*	31	Hall et al., 1984
<i>Pimephales promelas</i>	28 d, 14.3 mm, 43 mg	Y	F		nw/dtw	7.8	25.4	42.6	96 h	LC50	mortality	9.41	1		Geiger et al., 1988
<i>Pimephales promelas</i>	34 d, 0.069 g	Y	F	rg	nw/dtw	7.47	24.7	44.9	96 h	LC50	mortality	13.8	1		Geiger et al., 1985
<i>Pimephales promelas</i>		Y	F		nw/dtw			96 h	LC50	mortality	11.4	4*		Geiger et al., 1990	
<i>Pimephales promelas</i>	juv. 26 - 34 d, lab.-cultured	Y	CF	> 95	nw	7.8	25	45	96 h	LC50	mortality	9.41	4*	32	Veith and Broderius 1987; Broderius et al. 1995
<i>Poecilia reticulata</i>	6 mo, 1.9 - 2.5 cm, 0.1 - 0.2 g	N	S, open	practical	5% nw + 95% dw	7.5	25	20 mg/L	96 h	LC50	mortality	20.2	2	21,22	Pickering and Henderson 1966
<i>Poecilia reticulata</i>	2 - 3 mo		R		am or rw	6.1	22 ± 1	25	7 or 14 d	LC50	mortality	7.1	2	33	Könemann and Musch 1981
<i>Poecilia reticulata</i>	2 - 3 mo		R		am or rw	7.3	22 ± 1	25	7 or 14 d	LC50	mortality	11.2	2	33	Könemann and Musch 1981
<i>Poecilia reticulata</i>	2 - 3 mo		R		am or rw	7.7 - 7.9	22 ± 1	25	7 or 14 d	LC50	mortality	13.5	2	33	Könemann and Musch 1981
<i>Poecilia reticulata</i>	40 - 60 mg		R			7	26 ± 1		96 h	LC50	mortality	13.8	2		Saarikoski and Viluskela, 1982
<i>Poecilia reticulata</i>	2 - 3 mo old males			rg	tw	7.7 ± 0.1			24 h	LC50	mortality	1.72	4	48	Benoit-Guyod et al., 1984
<i>Poecilia reticulata</i>	just before animals revealed sexual dimorphism	Y	S		tw	7.6 - 8		262	96 h	LC50	mortality	12	2		Dojlido, 1979
<i>Salmo trutta</i>	fingerlings < 10.2 cm					7	12.8	300	6 h	LOEC	mortality	5	3	24	Wood, 1953
<i>Tilapia zilli</i>	2 - 6 cm	N	R	rg		6.6	25 ± 1	215		LC50	mortality	6.5	2	34	Yen et al., 2002
Amphibia															
<i>Rana japonica</i>	tadpoles from eggs collected in the field, 2.5 ± 0.1 cm, 0.09 ± 0.01 g	N	R		nw		22-25		24 h	LC50	mortality	121.6	4	35	Wang et al., 2000

Notes

1 Resazurin reduction procedure: Incubation time is not critical as long as no more than 90 - 95% of the dye in the control is reduced.

2 Dehydrogenase activity represents immediate metabolic activities.

3 Test result is average of three replicates.

4 Soil bacteria which also occurs in water

5 Mutant is more sensitive to toxicants than natural strain.
6 Obtained from extinction measurements at 680 nm
7 Value recalculated from mol/L
8 Obtained from extinction measurements at 750 nm
9 Final DMSO concentration of 0.35 mL DMSO / 50 mL not toxic to Tetrahymena; 8-9 cell cycles
10 LC(E)C50 was calculated with data provided by author using GraphPad Prism 4
11 EC50 is extrapolated value since effects were observed at the lowest test concentration
12 Reported as Minimal Affective Concentration. LOEC recalculated from 0.07 mL/mL (assumingly) using a density of 1.2634 g/mL.
13 Criterion (tulip stage) considered relevant because it preceeds desintegration (mortality).
14 In accordance with U.S. EPA (1975).
15 Ethanol as solvent (< 0.05%).
16 In accordance with Finnish standard SFS 5062.
17 Test result based on measured concentrations, which were > 80% of nominal.
18 In accordance with DIN 38412 Teil 11.
19 Test performed in closed system; test was considered valid when dissolved oxygen concentration \geq 2.27 mg/L which is slightly lower than the oxygen level given in OECD 202 (\geq 3 mg/L).
20 Test performed in accordance with EPA methods; Results based on nominal concentrations
21 Method in accordance with recommendations of American Public Health Association.
22 Result reported as TLm.
23 A 5-h exposure period was chosen, because within this period, no detoxification of the test substance occurred.
24 Reported as time to effect. Only two fish tested.
25 Methods previously described in Gersdorf, 1930
26 Dissolved oxygen concentrations too low (range: 9.7 at start - 0.3 mg/L after 96 h) for a number of the compounds tested). Not clear if this was also the case for this compound.
27 Control solutions were not renewed; analysis in additional vessels
27a According to standard german test methods (1974)
28 COMPUTOX database
29 Replicate 1
30 Replicate 2
31 Unit of endpoint not reported. Unit of endpoint not reported. Assumed that unit is mol/L. In accordance with EPA-660/3-75-009.
32 In accordance with ASTM 1980. Unclear if the LC50 is based on nominal or mean measured concentrations, but recovery of the test substance was > 90% of nominal. Not clear if tested together with phenol or separately
33 Exposure duration (7 or 14 days) not clear; influence of pH on toxicity tested.
34 Test duration not reported, most probably 96 hours.
35 Renewed every 6 hours
36 According to standard test german test methods (1974)
37 Species unknown.
38 Test duration unclear, not enough data
39 Exposure time not reported.
40 Effects, exposure time, methods not reported. Unclear is LOEC is reported in mL/mL.
41 pH too low for Daphnia (6 - 9 is acceptable according to OECD guideline).
42 No control group included (based on dose-response curves given in Kishino and Kobayashi (1995)
43 Exposure duration too short
44 No clear dose-response relationship observed (higher mortality at low test substance concentrations).
45 Too few fish tested.
46 test methods poorly reported
47 Larvae live in freshwater, but length of the fish is rather large for larvae, so this may have been a saltwater fish
48 Unit of LC50 not reported.

Table A2.2 Acute toxicity of 2-chlorophenol to marine organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Salinity [%]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Vibrio fischeri</i>		Y	rg	dw	7				15 min	EC50	bioluminescence	24.7	4	1,8	Shang et al. 2002
<i>Vibrio fischeri</i>		N	S	am		15		21.9	30 min	EC50	bioluminescence	33.8	2	1,2	Ribo and Kaiser, 1983
<i>Vibrio fischeri</i>									20 min	EC50	bioluminescence	102	4	1,9	Lee et al., 1999
<i>Vibrio fischeri</i>		N	S, open	am	6.5 – 7.5	15			5 min	EC50	bioluminescence	18	2	1	Blum and Speece, 1991
<i>Vibrio fischeri</i>								21.9	30 min	EC50	bioluminescence	37.9	2	3	Schüürmann and Segner, 1994. In: Schüürmann et al. 1997
<i>Vibrio fischeri</i>		N		am				21.9		EC50	bioluminescence	48.07	3	1,4,10,11	Kafka et al. 1995
<i>Vibrio fischeri</i>		N	ag	am					15 min	EC50	bioluminescence	28.5	2	1	Ribo and Rogers, 1990
<i>Vibrio fischeri</i>	Y	S	ag			15			10 min	EC50	bioluminescence	34	2	1	Bazin et al., 1987
<i>Vibrio fischeri</i>	N	S				15		21.9	15 min	EC50	bioluminescence	43.37	2		Kafka et al., 1999
<i>Vibrio fischeri</i>										EC50	bioluminescence	1040000	4	1,5	Heck et al., 1992
<i>Vibrio fischeri</i>		N	S				15		5 min	EC50	bioluminescence	21.6	4	1	Mulhall, 1997. In: Warne and Westbury, 1999
<i>Vibrio fischeri</i>					ca. 7	15 ± 0.5		21.9	5 min	EC50	bioluminescence	14	2	1	Aitken et al., 1994
<i>Vibrio fischeri</i>									30 min	EC50	bioluminescence	33.8	4*	1	COMPUTOX database. In: Sixt and Altshuh, 1997
<i>Vibrio fischeri</i>		N	S	am		20			15 min	EC50	bioluminescence	9.31	2	1	Zhao et al., 1993
<i>Vibrio fischeri</i>										EC50	bioluminescence	22.1	4	11	Indorato et al., 1984. In: WHO. 1989.
<i>Vibrio fischeri</i>										EC50	bioluminescence	3.36	4	11	Indorato et al., 1984. In: WHO. 1989.
Crustacea															
<i>Crangon septemspinosa</i>	6.4 – 8.3 cm, 2.4 – 4.5 g	Y	R		nw		10	30	96 h	LC50	mortality	5.3	3	6,12	McLeese et al., 1979
Pisces															
<i>Platichthys flesus</i>	field collected; 56 ± 2.5 g	Y	R	≥ 98		8 ± 0.1	6	5	96 h	LC50	mortality	6.99	2	7,13	Smith et al. 1994
<i>Platichthys flesus</i>	field collected; 56 ± 2.5 g	Y	R	≥ 98		8 ± 0.1	6	5	96 h	LC50	mortality	6.29	2	7,13	Smith et al. 1994
<i>Solea solea</i>	field collected; 45 ± 2.5	Y	R	≥ 98		8 ± 0.1	6	22	96 h	LC50	mortality	6.6	2	7,13	Smith et al. 1994

Notes

- 1 Microtox test.
- 2 Data from 15 and 30 min-exposures are most accurate.
- 3 In accordance with DIN 38412 L34.
- 4 2% 2-propanol was added to the test medium in order to test toxicity of poorly soluble substances.
- 5 Result given as 5.8% of the reaction product mixture.
- 6 Exposure time not fixed (time to lethality experiment). Unclear if LC50 is based on nominal or measured concentrations, but concentrations remained practically constant. 3 shrimp and 3 clams were exposed simultaneously.
- 7 In accordance with OECD 203 (1981). Fish loading exceeds recommended value (34 g/L instead of 1 g/L).
- 8 Unclear if EC50 expressed in mg/L substance or TOC; unclear if test is performed as a mixture toxicity test.
- 9 Unclear which chlorophenol was tested.
- 10 Too high level of solvent (2% 2-propanol)
- 11 Test duration not reported.
- 12 Number of test animals (3) too small
- 13 Fish loading higher than recommended in guideline, but concentrations are measured and control included.

Table A2.3 Chronic toxicity of 2-chlorophenol to freshwater organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Bacillus subtilis</i>		N	S		am		37	0.17	log. growth phase	EC10	growth	170	2	1	Ogawa et al., 1991
<i>Pseudomonas pictorum</i>		N	R		am				96 - 192 h (24 - 48 h per test concentration)	NOEC	growth	1000	3	2,10	Chitra and Chandrakasan, 1996
<i>Pseudomonas</i> I	able to grow on benzoate	N	S		am		30		ca. 20 h	NOEC	growth	217	2		Huang and Tseng, 1996
<i>Escherichia coli</i>	ATCC 23820, labelled with radiolabelled thymidine, cells in stationary growth phase	N	S		am				50 h	NOEC	lysis rate	175	4		Perez-Padilla and Grady, 1998
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	NOEC	maximum growth yield	47.6	2	3	Cenci et al., 1987
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	NOEC	specific growth rate	47.6	2	3	Cenci et al., 1987
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	NOEC	lag time	47.6	2	3,4	Cenci et al., 1987
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	NOEC	dehydrogenase activity	47.6	2	3	Cenci et al., 1987
<i>Pseudomonas</i>										LOEC		30	4	5	Meinck et al., 1970. In: Verschueren, 1983
Algae															
<i>Chlorella pyrenoidosa</i>										LOEC		96	4	5	Jones, 1971. In: Verschueren, 1983
<i>Chlorella pyrenoidosa</i>		N	S		am	7	22		72h	NOEC	chlorophyll/ oxygen production	10	3	11	Huang and Gloyna, 1968
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		48 h	EC10	biomass (AUC)	24	2		Kühn and Pattard, 1990
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		48 h	EC10	growth rate	42	2		Kühn and Pattard, 1990
<i>Scenedesmus</i>										LOEC		60	4	5	Meinck et al., 1970. In: Verschueren, 1983
Protozoa															
<i>Coldopla</i>										LOEC		30	4	5	Meinck et al., 1970. In: Verschueren, 1983
Macrophyta															
<i>Salvinia minima</i>	collected in the field				am		25		7 d	NOEC	growth (fresh weight)	2.5	2		Gallardo et al., 1998
<i>Salvinia minima</i>	collected in the field				am		25		7 d	EC10	growth (fresh weight)	4.67	2	1	Gallardo et al., 1998
<i>Salvinia minima</i>	collected in the field				am		25		7 d	NOEC	growth (dry weight)	2.5	2		Gallardo et al., 1998
<i>Salvinia minima</i>	collected in the field				am		25		7 d	EC10	growth (dry weight)	5.78	2	1	Gallardo et al., 1998
<i>Salvinia minima</i>	collected in the field				am		25		7 d	NOEC	frond number	< 2.5	2	6	Gallardo et al., 1998
<i>Salvinia minima</i>	collected in the field				am		25		7 d	EC10	frond number	0.35	2	1,7	Gallardo et al., 1998

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Crustacea															
<i>Daphnia magna</i>	≤ 24 h old	Y	R		am	8.0 ± 0.2	25 ± 1	250	21 d	NOEC	survival, reproduction rate, time to 1st reproduction	0.5	2	8	Kühn et al., 1989a
Pisces															
<i>Pimephales promelas</i>	embryos	Y	F						until hatching	NOEC	hatching of embryos	≥ 4	2	9	LeBlanc, 1984
<i>Pimephales promelas</i>	larvae	Y	F						30-d post-hatch	EC10	survival	2.46	2	1,9	LeBlanc, 1984
<i>Pimephales promelas</i>	larvae	Y	F						30-d post-hatch	NOEC	length	≥ 4	2	9	LeBlanc, 1984
<i>Pimephales promelas</i>	larvae	Y	F						30-d post-hatch	NOEC	weight	≥ 4	2	9	LeBlanc, 1984

Notes

- 1 EC10 calculated with data provided by author using Graphpad
- 2 Concentrations were tested in a stepwise approach: colonies were exposed to the lowest concentration, if growth was observed, then they were transferred to a higher concentration, etc. NOEC not statistically determined and based on a qualitative endpoint (growth (colonies formed), absence of growth (no colonies formed)). Minimal medium.
- 3 Exposure time not clear.
- 4 Lag time is defined as the time (h) required to attain the mid-point of the growth curve.
- 5 Toxic at reported value; assumed that the LOEC is meant.
- 6 Effects were observed at the lowest tested concentration.
- 7 EC10 is extrapolated value since effects were observed at the lowest test concentration
- 8 Test result based on measured concentrations, which were > 80% of nominal.
- 9 In accordance with US EPA 1972.
- 10 No standard approach (bacteria were not exposed to a range of concentrations, but well-performing colonies were transferred to higher concentrations). NOEC qualitatively and not statistically determined.
- 11 Cell density too high

Table A2.4 Chronic toxicity of 2-chlorophenol to marine organisms.

No data were available for chronic toxicity of 2-chlorophenol to marine organisms.

Table A2.5 Acute toxicity of 3-chlorophenol to freshwater organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
Pure culture	isolated from laboratory activated sludge			98	am			A	30 - 60 min	EC50	dehydrogenase activity	> 500	3	1,2,19	Liu, 1985
Pure culture	isolated from laboratory activated sludge			98	am			B	30 - 60 min	EC50	dehydrogenase activity	54	4	2,20	Liu, 1985
Pure culture	isolated from laboratory activated sludge			98	am			C	30 - 60 min	EC50	dehydrogenase activity	50	4	2,20	Liu, 1985
Pure culture	isolated from adapted activated sludge			98	am			E	30 - 60 min	EC50	dehydrogenase activity	66	4	2,20	Liu, 1985
Pure culture	isolated from adapted activated sludge			98	am			F	30 - 60 min	EC50	dehydrogenase activity	320	4	2,20	Liu, 1985
Pure culture	isolated from Lake Erie sediment			98	am			G	30 - 60 min	EC50	dehydrogenase activity	> 500	4	2,20	Liu, 1985
Pure culture	grown in medium with phenol as pure carbon source	N S			am	7.2	ca. 20 (room temperature)		exponential growth phase	EC50	growth on phenol	154	3	20	Banerjee, 1987
<i>Bacillus</i> sp.	isolated from activated sludge, cell age 18 - 20 h					21			30 min	EC50	dehydrogenase activity	450	2		Liu et al., 1982
<i>Bacillus subtilis</i>		N S			am	37	0.17	logarithmic growth phase	EC50	growth		83.2	2		Ogawa et al., 1991
<i>Burkholderia RASC c2</i>	<i>lux</i> -marked, Gram-negative	N S	≥ 98	am	7.1	25			20 min	EC50	bioluminescence	21.9	2	3	Boyd et al., 2001
<i>Pseudomonas fluorescens</i>	soil and water bacteria, <i>lux</i> -marked, Gram-negative	N S	≥ 98	am	7.1	25			20 min	EC50	bioluminescence	34.7	2	3,4	Boyd et al., 2001
<i>Vibrio qinghaiensis</i> sp. Nov.	strain Q67	N S		am	5-9	22 ± 1	431	20 min	EC50	bioluminescence	9.43	2	5	Ma et al., 1999	
Algae															
<i>Chlorella pyrenoidosa</i>		S			7			72 h	EC50	chlorophyll reduction	14.1	4			Huang and Gloyna, 1968 and Jones, 1971. In: Krijgsheld and van der Gen, 1986
<i>Chlorella vulgaris</i>	ca. 7.5 x 10 ⁶ cells/mL				am	36.5		6 h	EC50	cell density	32.3	2	6,7		Kramer and Trümper, 1986
<i>Chlorella vulgaris</i>	ca. 7.5 x 10 ⁶ cells/mL				am	36.5		6 h	EC50	cell density	45.6	2	7,8		Kramer and Trümper, 1986
<i>Pseudokirchneriella subcapitata</i>	5E+04 cells/mL	N S		am		21 ± 1		96 h	EC50	growth rate	29	2			Shigeoka et al., 1988
Protozoa															
<i>Tetrahymena pyriformis</i>		Y	≥ 95					48 h	EC50	population growth (density)	17.3	2	9,10		Schultz et al. 1996
<i>Tetrahymena pyriformis</i>	strain GL-C	S	≥ 95	am		28		60 h	EC50	growth	36.7	2			Schultz, 1987a
<i>Tetrahymena pyriformis</i>	strain GL-C	N S	> 95	am	7.35	27 ± 1	75	40 h	EC50	population growth (cell density)	17.3	4*	11		Schultz, 1999
<i>Tetrahymena pyriformis</i>	ca. 36000 cells/mL, in log phase	N S	≥ 95	am	7.35	27 ± 1		48 h	EC50	population growth (density)	14.1	2	9		Schultz et al., 1990
<i>Tetrahymena pyriformis</i>	2500 cells/mL, in log-phase	N S	≥ 95	am	7.35	27 ± 1		48 h	EC50	population growth (density)	14.2	4*	9		Bryant and Schultz, 1994
<i>Tetrahymena pyriformis</i>	strain GL-C, ca. 2500	S		am	7.35	27 ± 1		40 h	EC50	population growth	17.3	4*			Schultz et al., 1997

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
	cells/mL from logarithmic growing culture										(density)				
Cnidaria															
<i>Hydra vulgaris</i>	adult	N	R	purified prior to use	am	7			20 h	LOEC	tulip stage	100	2	12	Mayura et al., 1991
Crustacea															
<i>Ceriodaphnia dubia</i>	< 24 h old	Y	S				23 ± 1		48 h	EC50	immobility	9.84	2		Westbury, 1998. In: Warne and Westbury, 1999
<i>Daphnia carinata</i>	< 24 h old	Y	S				20 ± 1		48 h	EC50	immobility	11.88	2		Azim, 1998. In: Warne and Westbury, 1999
<i>Daphnia magna</i>	< 72 h old	N	S	> 95%	rw	7.8 - 8.2	20 ± 1	200	24 h	EC50	immobility	15.8	2	13	Devillers and Chambon, 1986a
<i>Daphnia pulex</i>	< 24 h	N	R		nw		20 ± 1		96 h	LC50	mortality	5.6	2		Trabalka and Burke, 1978
Pisces															
<i>Carassius auratus</i>	1.0 ± 0.1 g		S	ca. 100	tw	7.0 ± 0.1	27 - 28		5 h	LC50	mortality	50	3	14,21,22	Kishino and Kobayashi, 1996b
<i>Carassius auratus</i>	1.0 ± 0.1 g	N	S	ca. 100	tw	7.0 ± 0.1	27 - 28		2.5 h	LC50	mortality	60	3	14,21,22	Kishino and Kobayashi, 1996a
<i>Carassius auratus</i>	2.2 ± 0.2 g		S	ca. 100	tw	6	20 - 21		5 h	LC50	mortality	50	3	14,21,22	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 ± 0.2 g		S	ca. 100	tw	8	20 - 21		5 h	LC50	mortality	50 - 70	3	14,21,22	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 ± 0.2 g		S	ca. 100	tw	10	20 - 21		5 h	LC50	mortality	> 100	3	14,21,22	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	fingerlings < 10.2 cm				7	12.8	300		24 h	NOEC	mortality	5	3	15,23	Hollis and Lennon, 1954
<i>Carassius auratus</i>	2 - 4 g						27		8 h	LC50	mortality	16.3	3	16,17,21,24	Gersdorf and Smith, 1940
<i>Danio rerio</i>	160 - 185 mg	N		> 95	am		22 ± 1		24 h	LC50	mortality	15.33	2		Devillers and Chambon, 1986a
<i>Lepomis macrochirus</i>	fingerlings < 10.2 cm				7	12.8	300		5 h	LOEC	mortality	5	3	15,21,23	Hollis and Lennon, 1954
<i>Lepomis macrochirus</i>	fingerlings, ca. 10 cm	N	S		nw	7.5 - 8.2	13		13 h	LOEC	mortality/obvious distress	5	3	15,21,23	Applegate et al., 1957
<i>Lepomis macrochirus</i>	fingerlings < 10.2 cm				7	12.8	300		5 h	LOEC	mortality	5	3	15,21,23	Hollis and Lennon, 1954
<i>Leuciscus idus</i>						20	267	48 h	LC50	mortality	3	4	25	Dietz, 1978	
<i>Leuciscus idus melanotus</i>			S			7 - 8	20	267	48 h	LC50	mortality	5.5	2	17a	Rubelt et al., 1982
<i>Oncorhynchus mykiss</i>	fingerlings, ca. 10 cm	N	S		nw	7.5 - 8.2	13		13 h	LOEC	mortality/obvious distress	5	3	15,21	Applegate et al., 1957
<i>Petromyzon marinus</i>	larvae, 7.6 - 13 cm, collected from the field	N	S		nw	7.5 - 8.2	13		24 h	NOEC	mortality/obvious distress	≥ 5	3	15,23	Applegate et al., 1957
<i>Poecilia reticulata</i>	2 - 3 mo old males			rg	tw	7.7 ± 0.1			24 h	LC50	mortality	3.47	4	26	Benoit-Guyod et al., 1984
<i>Poecilia reticulata</i>	2 - 3 mo	R			am or rw	6.1	22 ± 1	25	7 or 14 d	LC50	mortality	6.44	2	18,27	Könemann and Musch, 1981
<i>Poecilia reticulata</i>	2 - 3 mo	R			am or rw	7.3	22 ± 1	25	7 or 14 d	LC50	mortality	6.44	2	18,27	Könemann and Musch, 1981
<i>Poecilia reticulata</i>	2 - 3 mo	R			am or rw	7.7 - 7.9	22 ± 1	25	7 or 14 d	LC50	mortality	7.9	2	18,27	Könemann and Musch, 1981
<i>Salvelinus fontinalis</i>	fingerlings < 10.2 cm				7	12.8	300		1 h	LOEC	mortality	5	3	15,21,23	Hollis and Lennon, 1954

Notes

1 Resazurin reduction procedure: Incubation time is not critical as long as no more than 90 - 95% of the dye in the control is reduced.

2 Dose-response relationship at lower concentrations, but lower toxicity at highest concentration.

3 Test result is average of three replicates.

4 Soil bacteria which also occurs in water.
 5 1% DMSO; optimal pH range reported as 5-9, unclear at what pH test was performed. Freshwater microtox test
 6 Obtained from extinction measurements at 680 nm.
 7 Value recalculated from mol/L
 8 Obtained from extinction measurements at 750 nm
 9 Final DMSO concentration of 0.35 mL DMSO / 50 mL not toxic to Tetrahymena.
 10 Unclear if the EC50 is based on nominal or mean measured concentrations. Recovery of the test substance was > 80% of nominal in an abiotic control.
 11 8 - 9 cell cycles
 12 Criterion (tulip stage) considered relevant because it exceeds desintegration (mortality).
 13 Test performed in closed system; test was considered valid when dissolved oxygen concentration ≥ 2.27 mg/L which is slightly lower than the oxygen level given in OECD 202 (≥ 3 mg/L).
 14 A 5-h exposure period was chosen, because within this period, no detoxification of the test substance occurred.
 15 Reported as time to effect. Only two fish tested.
 16 L(E)C50 calculated with data provided by author using graphpad
 17 Methods previously described in Gersdorf, 1930
 17a According to standard german test methods (1974)
 18 Influence of pH on toxicity tested.
 19 EC50 not reliable, see notes. Species unknown.
 20 Species unknown.
 21 Exposure duration too short
 22 No control group included (based on dose-response curves given in Kishino and Kobayashi (1995))
 23 Too few fish tested.
 24 Not enough data
 25 test methods poorly reported
 26 Unit of LC50 not reported.
 27 Exposure duration unclear.

Table A2.6 Acute toxicity of 3-chlorophenol to marine organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Salinity [%]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Vibrio fischeri</i>		N	S		am		15	21.9	30 min	EC50	bioluminescence	14.1	2	1,2	Ribo and Kaiser, 1983
<i>Vibrio fischeri</i>									30 min	EC50	bioluminescence	14.1	4*	1	COMPUTOX database. In: Six and Altschuh, 1997
<i>Vibrio fischeri</i>									20 min	EC50	bioluminescence	102.12	4	1,3	Lee et al., 1999
<i>Vibrio fischeri</i>		N	S, open		am	6.5 - 7.5	15		5 min	EC50	bioluminescence	6.1	2	1	Blum and Speece, 1991
<i>Vibrio fischeri</i>		N	S	ag					30 min	EC50	bioluminescence	7	2	4	Strotmann and Egläser, 1995
<i>Vibrio fischeri</i>		N		ag	am				15 min	EC50	bioluminescence	19.0	2	1	Ribo and Rogers, 1999
<i>Vibrio fischeri</i>		Y		rg	dw	7			15 min	EC50	bioluminescence	9.62	4	1,6	Shang et al. 2002
<i>Vibrio fischeri</i>		N	S				15		5 min	EC50	bioluminescence	10.69	2	1	Westbury, 1998. In: Warne and Westbury, 1999
Pisces															
<i>Platichthys flesus</i>	collected in the field, 56 \pm 2.5 g	Y	R	≥ 98		8 ± 0.1	6	5	96 h	LC50	mortality	3.99	2	5,6	Smith et al., 1994

Notes

1 Microtox test.

2 Data from 15 and 30 min-exposures are most accurate.

3 Unclear which chlorophenol was tested

4 In accordance with DIN 38412, Part 341 (1993).

5 In accordance with OECD 203 (1981). Fish loading exceeds recommended value (34 g/L instead of 1 g/L).

6 Fish loading higher than recommended in guideline, but concentrations are measured and control included.

Table A2.7 Chronic toxicity of 3-chlorophenol to freshwater organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Bacillus subtilis</i>		N	S		am	37	0.17		logarithmic growth phase	EC10	growth	32	2	1	Ogawa et al., 1991
Algae															
<i>Chlorella pyrenoidosa</i>										LOEC		40	4	2	Jones, 1971. In: Verschueren, 1981
<i>Chlorella pyrenoidosa</i>		N	S		am	7	22		72h	NOEC	chlorophyll/ oxygen production	10	3	4	Huang and Gloyna, 1968
Pisces															
<i>Cyprinus carpio</i>	eggs		R		nw	23.5			7d	EC10	hatching	8.63	2	1,3	Trabalka and Burch, 1979
<i>Cyprinus carpio</i>	eggs		R		nw	23.5			7d	EC10	malformations	5.97	2	1,3	Trabalka and Burch, 1979

Notes

- 1 EC10 calculated with data provided by author using Graphpad
- 2 Toxic at reported value; assumed that the LOEC is meant.
- 3 Test water was spring water; reported NOEC = 1 mg/L; LOEC = 10 mg/L
- 4 Cell density too high (1 mg/L)

Table A2.8 Chronic toxicity of 3-chlorophenol to marine organisms.

No data were available for chronic toxicity of 3-chlorophenol to marine organisms.

Table A2.9 Acute toxicity of 4-chlorophenol to freshwater organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
Pure culture	grown in medium with phenol as pure carbon source	N	S		am	7.2	ca. 20 (RT)		exp. growth phase	EC50	growth on phenol	86.9	4	38	Banerjee, 1987
<i>Bacillus</i> sp.	isolated from activated sludge, cell age 18 - 20 h					21			30 min	EC50	dehydrogenase activity	400	2		Liu et al., 1982
<i>Bacillus subtilis</i>				7.2						EC50	spore germination	102	4	1,39	Yasuda et al., 1982
<i>Bacillus subtilis</i>		N	S		am		37	0.17	log. growth phase	EC50	growth	107	2		Ogawa et al., 1991
<i>Burkholderia RASC c2</i>	lux-marked, Gram-negative	N	S	≥ 98	am	7.1	25		20 min	EC50	bioluminescence	23.1	2	1	Boyd et al., 2001
<i>Escherichia coli</i>	K-12, in exponential growth phase	N			am					EC50	growth	165	4	2,40	Heipieper et al., 1991
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	EC50	specific growth rate	107	2	39	Cenci et al., 1987
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	EC50	dehydrogenase activity	206	2	39	Cenci et al., 1987
<i>Escherichia coli</i>	ATCC11775 strain; 10E4 cells/mL	N	S	ag	am		37		7.5h	EC50	growth rate	129	2		Nendza and Seydel, 1990
<i>Escherichia coli</i>	10E4 cells/mL	N	S	ag	am		37		8h, 15 min	EC50	growth rate	131	4*		Nendza and Seydel, 1988
<i>Pseudomonas fluorescens</i>	soil bacteria, lux-marked, Gram-negative	N	S	≥ 98	am	7.1	25		20 min	EC50	bioluminescence	12.2	2	1,3	Boyd et al., 2001
Algae															
<i>Chlorella protothecoides</i>	log growth phase	Y	S				21		72 h	EC50	cell division	38.6	2	4	Stauber et al., 1994. In: Warne and Westbury, 1999.
<i>Chlorella pyrenoidosa</i>			S			7			72 h	EC50	chlorophyll reduction	40	3	41	Huang and Gloyne, 1968 and Jones, 1971. In: Krijgsheld and van der Gen, 1986
<i>Chlorella vulgaris</i>	ca. 7.5 x 10 ⁶ cells/mL				am		36.5		6 h	EC50	cell density	30.8	3	5,39	Kramer and Trümper, 1986
<i>Chlorella vulgaris</i>	ca. 7.5 x 10 ⁶ cells/mL				am		36.5		6 h	EC50	cell density	64.4	3	6,39	Kramer and Trümper, 1986
<i>Chlorella vulgaris</i>	5E+04 cells/mL	N	S		am		21 ± 1		96 h	EC50	growth rate	29	2		Shigeoka et al., 1988
<i>Chlorella vulgaris</i>		Y	S	rg	nw	7.5 - 8.2	19 - 22		96 h	EC50	growth rate	> 0.1	2	7	Gokcen, 1998
<i>Pseudokirchneriella subcapitata</i>			S						96 h	EC50	growth	4.8	4		US EPA, 1980. In: Krijgsheld and Van der Gen 1986.
<i>Pseudokirchneriella subcapitata</i>	5E+04 cells/mL	N	S		am		21 ± 1		96 h	EC50	growth rate	38	2		Shigeoka et al., 1988
<i>Pseudokirchneriella subcapitata</i>	log growth phase	Y	S				21		72 h	EC50	cell division	51.4	2	4	Stauber et al., 1994. In: Warne and Westbury, 1999.
<i>Pseudokirchneriella subcapitata</i>									96 h	EC50		5.01	4	8,43	LeBlanc, 1984.
<i>Pseudokirchneriella subcapitata</i>									72 h	EC50	biomass (AUC)	4	2		CITI data
<i>Pseudokirchneriella subcapitata</i>									72 h	EC50	growth rate	10	2		CITI data
<i>Scenedesmus pannonicus</i>									96 h	EC50	growth	38	4		Adema et al 1982

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Scenedesmus pannonicus</i>									96 h	EC50	growth	10	4		Kuiper, 1992. In: EC, 2000
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		72 h	EC50	biomass (AUC)	8.3	2		Kühn and Pattard, 1990
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		72 h	EC50	growth rate	17	2		Kühn and Pattard, 1990
Protozoa															
<i>Tetrahymena pyriformis</i>									48 h	EC50	population growth	251	4		TerraBase 1999. In: Niculescu et al., 2000
<i>Tetrahymena pyriformis</i>	strain GL-C	Y	S		am	7.3	28		48 h	EC50	population growth (density)	36.7	4*	9,10	Schultz et al., 1989
<i>Tetrahymena pyriformis</i>	strain GL-C		S	≥ 95	am		28		60 h	EC50	growth	36.7	2	9,11	Schultz, 1987a
<i>Tetrahymena pyriformis</i>	strain GL-C	N	S	> 95	am	7.35	27 ± 1	75	40 h	EC50	population growth (cell density)	37.1	4*	12	Schultz, 1999
<i>Tetrahymena pyriformis</i>									40 of 48 h	EC50	growth	36.2	4*		Bearden and Schultz, 1998
<i>Tetrahymena pyriformis</i>	ca. 36000 cells/mL, in log phase	N	S	≥ 95	am	7.35 (initially)	27 ± 1		48 h	EC50	population growth (density)	36.2	4*		Schultz et al., 1990
<i>Tetrahymena pyriformis</i>			S						60 h	EC50	population growth (density)	36.7	4*		Schultz et al., 1995
<i>Tetrahymena pyriformis</i>	2500 cells/mL, in log-phase	N	S	≥ 95	am	7.35	27 ± 1		48 h	EC50	population growth (density)	36.7	4*		Bryant and Schultz, 1994
<i>Tetrahymena pyriformis</i>	strain GL-C, ca. 2500 cells/mL from logarithmic growing culture		S		am	7.35 (initially)	27 ± 1		40 h	EC50	population growth (density)	37.1	4*	13	Schultz et al., 1996
Macrophyta															
<i>Lemna gibba</i>			Y						7 d	EC50	vegetative frond reproduction	23.5	3	14,44	Sharma et al., 1997
<i>Lemna gibba</i> L.	G-3, 5 plants, 15 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of plants	56	3	15,44	Cowgill et al, 1991
<i>Lemna gibba</i> L.	G-3, 5 plants, 15 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of fronds	55	3	15,44	Cowgill et al, 1991
<i>Lemna gibba</i> L.	G-3, 5 plants, 15 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	dry weight	54	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i>		N	S			5.1	25 ± 1		48 h	LC50	mortality (chlorosis)	280	3	16,44	Blackman et al., 1955
<i>Lemna minor</i> L.	clone 6591, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of plants	41	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 6591, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of fronds	35	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 6591, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	dry weight	25	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 7101, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of plants	28	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 7101, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of fronds	30	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 7101, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	dry weight	26	3	15,44	Cowgill et al, 1991

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Lemna minor</i> L.	clone 7120, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of plants	38	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 7120, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of fronds	34	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 7120, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	dry weight	38	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 7136, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of plants	39	15,44	3	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 7136, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	number of fronds	34	3	15,44	Cowgill et al, 1991
<i>Lemna minor</i> L.	clone 7136, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	EC50	dry weight	31	3	15	Cowgill et al, 1991
Fungi															
<i>Pichia</i>	fermentative strain from dinitrification stage of STP	N	S		am	7	22 ± 2		12 h	EC50	growth (turbidity)	145	2	17	Kwasniewska and Kaiser, 1983
<i>Rhodotorula rubra</i>	oxidative strain from shore of Lake Ontario	N	S		am	7	22 ± 2		12 h	EC50	growth (turbidity)	62.5	2	17	Kwasniewska and Kaiser, 1983
<i>Saccharomyces cerevisiae</i>		N	ag		am	3.2	28		16 - 18 h	EC20	fermentation	45	3	18,45	Weber et al., 2000
Cnidaria															
<i>Hydra viridissima</i>	non-budding hydra	Y	S	> 99	tw	7.07 - 7.3	24.2 - 24.8		96 h	LC50	mortality	45	2	19	Pollino and Holdway, 1999
<i>Hydra vulgaris</i>	non-budding hydra	Y	S	> 99	tw	7.07 - 7.3	24.2 - 24.8		96 h	LC50	mortality	32	2	19	Pollino and Holdway, 1999
<i>Hydra vulgaris</i>	adult	N	R	purified prior to use	am	7			4 h	LOEC	tulip stage	100	2	20	Mayura et al., 1991
<i>Hydra vulgaris</i>	adult	N	R	purified prior to use	am	7			92 h	LOEC	mortality (disintegration)	30	2		Mayura et al., 1991
Crustacea															
<i>Ceriodaphnia dubia</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	90 - 110	48 h	LC50	mortality	9	2		Cowgill and Milazzo, 1991
<i>Daphnia magna</i>	< 24 h old	N	S	≥ 80%	rw	7.4 - 9.4	22 ± 1	173 ± 13	48 h	LC50	mortality	4.1	2	21	LeBlanc, 1980
<i>Daphnia magna</i>						8.25 - 8.35			24 h	EC50	immobility	12.81	2	22	Trapido et al., 1997
<i>Daphnia magna</i>	6 - 24 h old	N	S		am	8.0 ± 0.2	20	240	48 h	EC50	immobility	2.5	2	23	Kühn et al., 1989a
<i>Daphnia magna</i>	12 ± 12 h old		S		nw		18 ± 1		48 h	LC50	mortality	4.82	2		Kopperman et al., 1974
<i>Daphnia magna</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	160 - 180	48 h	LC50	mortality	6	2		Cowgill and Milazzo, 1991
<i>Daphnia magna</i>		Y			rw	5.2	20 ± 2	250 ± 25	24 h	EC50	immobility	6.2	3	46	Tissot et al., 1985
<i>Daphnia magna</i>	< 24 h old	N	S	> 98			20 ± 1		48 h	EC50	immobility	6.8	3	24,47	Steinberg et al., 1992
<i>Daphnia magna</i>	< 24 h old	N	S	> 98			20 ± 1		48 h	EC50	immobility	8.78	3	25,47	Steinberg et al., 1992
<i>Daphnia magna</i>	6 - 24 h old	N	Sc	> 95	am		22 ± 1		24 h	EC50	immobility	9.5	2		Zhao et al., 1995
<i>Daphnia magna</i>	< 72 h old	N	S	> 95%	rw	7.8 - 8.2	22 ± 1	200	24 h	EC50	immobility	8.1	2	26	Devillers and Chambon, 1986a
<i>Daphnia magna</i>	< 24 h old	N	S		am				24 h	LC50	mortality	21.2	3	21,27	LeBlanc et al., 1988
<i>Daphnia magna</i>									48 h	EC50		8.9	4		Kuiper, 1982. In: EC, 2000
<i>Daphnia magna</i>	<24h	N	S		rw	8	25 ± 1	150	48 h	LC50	mortality	4.41	2		Kim et al., 2006
<i>Daphnia magna</i>									48 h	LC50	mortality	2.5	2		CITI data
<i>Daphnia pulex</i>	12 h old	N	R		nw		20 ± 1		96 h	LC50	mortality	3.5	2		Trabalka and Burke, 1978
Pisces															
<i>Carassius auratus</i>	1.0 ± 0.1 g		S	ca. 100	tw	7.0 ± 0.1	27 - 28		5 h	LC50	mortality	30.1	3	28,48,49	Kishino and Kobayashi, 1996b

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Carassius auratus</i>	1.0 ± 0.1 g	N	S	ca. 100	tw	7.0 ± 0.1	27 - 28		2.5 h	LC50	mortality	50.0	3	28,48,49	Kishino and Kobayashi, 1996a
<i>Carassius auratus</i>	2.2 ± 0.2 g			ca. 100	tw	6	20 - 21		5 h	LC50	mortality	50-70	3	28,48,49	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2.2 ± 0.2 g			ca. 100	tw	8	20 - 21		5 h	LC50	mortality	50 - 70	3	28,48,49	Kishino and Kobayashi, 1995
<i>Carassius auratus</i>	2 g	R					20		24 h	LC50	mortality	9	3	29	Kobayashi et al., 1979
<i>Carassius auratus</i>	fingerlings < 10.2 cm					7	12.8	300	23 h	LOEC	mortality	5	3	30,50	Wood, 1953
<i>Carassius auratus</i>	2 - 4 g						27		8 h	LC50	mortality	8.26	3	2,31,49	Gersdorf and Smith, 1940
<i>Carassius auratus</i>									8 hr	LC54	mortality	6.3	3	49	Gersdorf and Smit, 1940. In: Krijgsheld and Van der Gen 1986
<i>Carassius auratus</i>		R							25 h	LC50	mortality	3.8	4		Kobayashi et al., 1979. In: Krijgsheld and Van der Gen 1986
<i>Danio rerio</i>									96 h	LC50	mortality	5.6	4		Kuiper, 1982. In: Krijgsheld and Van der Gen 1986
<i>Danio rerio</i>	160 - 185 mg	N	> 95	am		22 ± 1			24 h	LC50	mortality	8.67	2		Devillers and Chambon, 1986a
<i>Danio rerio</i>									96 h	LC50	mortality	5.6	2		Adema et al., 1982
<i>Jordanella floridae</i>	8 d old larvae	N	S/CF	best grade available		7.97	25.1	333	2 h exposure, 96 h test duration	LC50	mortality	> 100	3	32,48	Holdway et al., 1991
<i>Lepomis macrochirus</i>	0.32 - 1.2 g ww	N	S	≥ 80%	am	6.5 - 7.9	21 - 23	32 - 48	96 h	LC50	mortality	3.8	2	33	Buccafusco et al. 1981
<i>Lepomis macrochirus</i>	fingerlings < 10.2 cm					7	12.8	300	5 h	LOEC	mortality	5	3	30,49,50	Wood, 1953
<i>Lepomis macrochirus</i>	fingerlings, ca. 10 cm	N	S		nw	7.5 - 8.2	13		4 h	LOEC	mortality/obvious distress	5	3	30,49,50	Applegate et al., 1957
<i>Leuciscus idus</i>							20	267	48 h	LC50	mortality	3	4	51	Dietz, 1978
<i>Leuciscus idus melanotus</i>		S				7 - 8	20	267	48 h	LC50	mortality	3.8	2	34	Rübel et al., 1982
<i>Oncorhynchus ishawyttscha</i>						7.2 - 7.6			0 - 1 h	LOEC	mortality	10	3	15,49	MacPhee and Ruelle, 1969
<i>Oncorhynchus kisutch</i>						7.2 - 7.6			0 - 1 h	LOEC	mortality	10	3	15,49	MacPhee and Ruelle, 1969
<i>Oncorhynchus mykiss</i>										NOEC		0.0249	4		Hodson, unpublished data. In: McCarty et al. 1985
<i>Oncorhynchus mykiss</i>										LOEC		0.499	4		Hodson, unpublished data. In: McCarty et al. 1985
<i>Oncorhynchus mykiss</i>	4.6 - 6.4 cm, 1.2 - 3.8 g	Y	CF	highest available	tw	7.60 - 8.19	14.1 - 16.5		96 h	LC50	mortality	1.90	2	1,35	Hodson et al., 1984
<i>Oncorhynchus mykiss</i>	fingerlings, ca. 10 cm	N	S		nw	7.5 - 8.2	13		3 h	LOEC	mortality/obvious distress	5	3	30,49,50	Applegate et al., 1957
<i>Oryzias latipes</i>		S					25 ± 2		48 h	LC50	mortality	3.4	4		US EPÁ, 1980. In: EC, 2000
<i>Oryzias latipes</i>									96 h	LC50	mortality	8.9	2		CITI database
<i>Perca flavescens</i>	fingerlings < 10.2 cm					7	12.8	300	1 h	LOEC	mortality	5	3	30,49,50	Wood, 1953
<i>Petromyzon marinus</i>	larvae, 7.6 - 13 cm, collected from the field	N	S		nw	7.5 - 8.2	13		24 h	NOEC	mortality/obvious distress	≥ 5	3	30,50	Applegate et al., 1957
<i>Pimephales promelas</i>									96 h	LC50	mortality	6.15	4		COMPUTOX. In: Eldred et al., 1999
<i>Pimephales promelas</i>	10 - 15-d old fry, 11.6 mg, 9.5 mm	N	Sc	rg	nw	7.2 - 8.5	21 - 23	96 - 125	96 h	LC50	mortality	4	2		Mayes et al., 1983

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Pimephales promelas</i>	30 - 35-d old juveniles, 76.8 mg, 14.9 mm	N	Sc	rg	nw	7.2 - 8.5	21 - 23	96 - 125	96 h	LC50	mortality	3.8	2		Mayes et al., 1983
<i>Pimephales promelas</i>	60 - 100-d old subadults, 391 mg, 28 mm	N	Sc	rg	nw	7.2 - 8.5	21 - 23	96 - 125	96 h	LC50	mortality	5	2		Mayes et al., 1983
<i>Pimephales promelas</i>		Y	F		nw/dtw				96 h	LC50	mortality	6.11	1		Geiger et al., 1990
<i>Poecilia reticulata</i>	40 - 60 mg	Y	R	≥ purissimum grade	dw	5 ± 0.1	26 ± 1	80 - 100	96 h	LC50	mortality	6.30	3	36,53	Saarikoski and Viluksela, 1981
<i>Poecilia reticulata</i>	40 - 60 mg	Y	R	≥ purissimum grade	dw	6 ± 0.1	26 ± 1	80 - 100	96 h	LC50	mortality	7.84	2	36	Saarikoski and Viluksela, 1981
<i>Poecilia reticulata</i>	40 - 60 mg	Y	R	≥ purissimum grade	dw	7 ± 0.1	26 ± 1	80 - 100	96 h	LC50	mortality	8.48	2	36	Saarikoski and Viluksela, 1981
<i>Poecilia reticulata</i>	40 - 60 mg	Y	R	≥ purissimum grade	dw	8 ± 0.1	26 ± 1	80 - 100	96 h	LC50	mortality	8.999	2	36	Saarikoski and Viluksela, 1981
<i>Poecilia reticulata</i>	40 - 60 mg		R			6	26 ± 1		96 h	LC50	mortality	7.75	2		Saarikoski and Viluksela, 1982
<i>Poecilia reticulata</i>	40 - 60 mg		R			7	26 ± 1		96 h	LC50	mortality	8.49	2		Saarikoski and Viluksela, 1982
<i>Poecilia reticulata</i>	40 - 60 mg		R			8	26 ± 1		96 h	LC50	mortality	9.106	2		Saarikoski and Viluksela, 1982
<i>Poecilia reticulata</i>	2 - 3 mo old males		rg	tw	7.7 ± 0.1	20-22	18H		24 h	LC50	mortality	1.16	4	54	Benoit-Guyod et al., 1984
<i>Poecilia reticulata</i>									96 h	LC50	mortality	11	4		Adema et al., 1982
<i>Poecilia reticulata</i>	40 - 60 mg	Y	R		dtw	7	25-27		96 h	LC50	mortality	9.5	2		Salkinoja-Salonen et al., 1981
<i>Ptychochelillus oregonensis</i>						7.2 - 7.6			0 - 1 h	LOEC	sublethal effects	10	3	49,52	MacPhee and Ruelle, 1969. In: Lipnick et al. 1985
<i>Ptychochelillus oregonensis</i>						7.2 - 7.6			17 - 21 h	LOEC	mortality	10	4	49,52	MacPhee and Ruelle, 1969. In: Lipnick et al. 1985
<i>Salmo trutta</i>	fingerlings < 10.2 cm					7	12.8	300	5 h	LOEC	mortality	5	3	30,49,50	Wood, 1953
<i>Tilapia zilli</i>	2 - 6 cm	N	R	rg		6.6	25 ± 1	215		LC50	mortality	4.49	2	55	Yen et al, 2002
Amphibia															
<i>Rana japonica</i>	tadpoles from eggs collected in the field, 2.5 ± 0.1 cm, 0.09 ± 0.01 g	N	R		nw		22-25		24 h	LC50	mortality	63.3	2	37	Wang et al, 2000

Notes

- 1 Test result is average of three replicates.
- 2 Calculated with data provided by author using GraphPad Prism 4.
- 3 Soil bacteria which also occurs in water
- 4 Species was grouped under marine species, but is freshwater alga.
- 5 Obtained from extinction measurements at 680 nm.
- 6 Obtained from extinction measurements at 750 nm.
- 7 Test result based on nominal concentrations; measured concentrations were ≥ 80% of nominal.
- 8 In accordance with US EPA guideline (1975).
- 9 Final DMSO concentration of 0.35 mL DMSO / 50 mL not toxic to Tetrahymena.
- 10 Unclear if the EC50 is based on nominal or mean measured concentrations. Recovery of the test substance was > 80% of nominal in an abiotic control containing a concentration equal to the EC50.
- 11 $\log(1/EC50) = 0.5447$. Method described in Schultz, 1983

12 8 - 9 cell cycles
13 $\log(1/EC50)=0.54$
14 Test result based on measured concentrations, which were probably < 80% of nominal.
15 In accordance with US EPA guidelines.
16 Fronds were considered dead when they were colorless over more than half the surface of the bath
17 Turbidity test. Exposure duration fitted to logarithmic growth
18 The test was performed in minimal medium in order to increase the sensitivity of the yeast cells.
19 In accordance with ASTM E729-88a 1991.
20 Criterion (tulip stage) considered relevant because it precedes desintegration (mortality).
21 In accordance with U.S. EPA (1975).
22 In accordance with Finnish standard SFS 5062.
23 In accordance with DIN 38412, Part II 1982.
24 No dissolved humic material (DHM)
25 5 ppm DHM; 2 h pretest contact time of DHM and test substance.
26 Test performed in closed system; test was considered valid when dissolved oxygen concentration ≥ 2.27 mg/L which is slightly lower than the oxygen level given in OECD 202 (≥ 3 mg/L).
27 Ethanol as solvent (< 0.05%). LC50 calculated from graph using GraphPad Prism 4 but calculation did not converge well.
28 A 5-h exposure period was chosen, because within this period, no detoxification of the test substance occurred.
29 No clear dose-response relationship observed (higher mortality at low test substance concentrations).
30 Reported as time to effect. Only two fish tested.
31 Methods previously described in Gersdorf, 1930
32 A LC50 of 2400 mg/L was reported, which is above the highest tested concentration of 100 mg/L (nominal). Larvae were fed.
33 Dissolved oxygen concentrations too low (range: 9.7 at start - 0.3 mg/L after 96 h) for a number of the compounds tested). Not clear if this was also the case for this compound. In accordance with U.S. EPA 1975.
34 According to standard german test methods (1974)
35 Oxygen concentration may have been low (range of all experiments: 5.6 - 9.4 mg/L O₂ at 14.1 - 16.5 °C). Temperature increased from 15 to 17 °C over 18 h due to failure in temperature control system. Problems with measurement of test substance because of turbidity due to fish waste particles in control.
36 Test result based on measured concentrations, which were $\geq 80\%$ of nominal.
37 Renewed every 6 hours
38 Species unknown.
39 Test duration unclear
40 Exposure time not reported.
41 Too many cells at t=0 (1 g/L)
42 Cell density too high
43 Test criterion not reported (unclear if this is growth rate or biomass).
44 Test substances remained unchanged in abiotic control, but tests with 2,4-dichlorophenol, 2,4,5-trichlorophenol and pentachlorophenol indicate that duckweed can metabolise chlorophenols.
45 Minimal medium and temperature and pH were chosen to induce stress in order to increase the sensitivity of the yeast cells.
46 pH too low for Daphnia (6 - 9 is acceptable according to OECD guideline).
47 > 100 mg/L of organic solvent (120 mg/mL DMSO) was used.
48 No control group included (based on dose-response curves given in Kishino and Kobayashi (1995)
49 exposure time too short
50 Too few fish tested.
51 Test methods poorly reported
52 Endpoint unclear
53 pH 5 may have caused additional stress
54 Unit of LC50 not reported.
55 Test duration not reported but assumed it is 96 hours since renewal took place after 48 hours

Table A2.10 Acute toxicity of 4-chlorophenol to marine organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Salinity [%]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Vibrio fischeri</i>					ca. 7	15 ± 0.5	21.9	5 min	EC50	bioluminescence	0.57	2	1	Aitken et al., 1994	
<i>Vibrio fischeri</i>		N	S		am	15	21.9	15 min	EC50	bioluminescence	9.10	2	1,2	Ribo and Kaiser, 1983	
<i>Vibrio fischeri</i>								3 min	EC50	bioluminescence	143	4	1,3	Lee et al., 1999	
<i>Vibrio fischeri</i>								10 min	EC50	bioluminescence	103	4	1,3	Lee et al., 1999	
<i>Vibrio fischeri</i>								20 min	EC50	bioluminescence	102	4	1,3	Lee et al., 1999	
<i>Vibrio fischeri</i>		N	S, open		am	6.5 - 7.5	15		5 min	EC50	bioluminescence	0.95	2	1	Blum and Speede, 1991
<i>Vibrio fischeri</i>	ahs98 (1.0E+06 cells/mL)				am	20	21.9	30 min	EC50	bioluminescence	45.3	3	4,17,18	Wagner et al., 1989	
<i>Vibrio fischeri</i>									EC50	bioluminescence	58000	4	5	Heck et al., 1992	
<i>Vibrio fischeri</i>		Y		99		15		5 min	EC50	bioluminescence	1.56	2		Kuo, 1999	
<i>Vibrio fischeri</i>		N	S		am	6 - 8.5	room	21.9	30 min	EC50	bioluminescence	35	3	6,19	Hakkila et al., 2004
<i>Vibrio fischeri</i>		N	S		am	6 - 8.5	room	21.9	30 min	EC50	bioluminescence	8.9	2	6,7	Hakkila et al., 2004
<i>Vibrio fischeri</i>		Y	S			15			15 min	EC50	bioluminescence	0.797	2	1	Stauber et al., 1994. In: Warne and Westbury, 1999
<i>Vibrio fischeri</i>		N	S		am	20		15 min	EC50	bioluminescence	4.26	2	1	Zhao et al., 1993	
<i>Vibrio fischeri</i>		Y		rg	dw	7			15 min	EC50	bioluminescence	4.6	4	1,8,20	Shang et al., 2002
Algae															
<i>Dunaliella tertiolecta</i>	log growth phase	Y	S				21		72 h	EC50	cell division	51.4	2		Stauber et al., 1994. In: Warne and Westbury, 1999
<i>Glenodinium halli</i>			tg	nw		20	25	7 d	EC50	cell division	>8	2		Erickson and Freeman, 1978	
<i>Hormosira banksii</i>	gametes from macroalgae collected from the field	N	S		nw	8.1 - 8.2	room (eggs), 15 (sperm)	30 - 34	30 min (gametes) + 2 h fertilisation without toxicant	EC50	fertilisation	3.97 - 8.66	2	9	Gunthorpe et al., 1995
<i>Hormosira banksii</i>			S			7.5	16		2.5 h	EC50	fertilisation	7.71	2		Stauber et al., 1994. In: Warne et al., 1999
<i>Isochrysis galbana</i>			tg	nw		20	25	7 d	EC50	cell division	>8	2		Erickson and Freeman, 1978	
<i>Nitzschia closterium</i>	log growth phase	Y	S			21		72 h	EC50	cell division	7.71	2		Stauber et al., 1994. In: Warne et al., 1999	
<i>Nitzschia closterium</i>	log growth phase	Y	S			21		72 h	EC50	cell division	7.97	2		Stauber et al., 1994. In: Warne et al., 1999	
<i>Nitzschia closterium</i>	log growth phase		S			7.5	21		72 h	EC50	growth	7.71	2		Stauber et al., 1994. In: Warne et al., 1999
<i>Phaeodactylum tricornutum</i>								96 h	EC50	growth	9.6	2		Adema et al., 1982	
<i>Skeletонема costatum</i>			S					96 h	EC50	cell density	3.6	4		US EPA, 1980. In: Krijgsheld and Van der Gen 1986.	
<i>Skeletонема costatum</i>			S					96 h	EC50	chlorophyll reduction	3.3	4*		US EPA, 1980. In: Krijgsheld and Van der Gen 1986.	
<i>Skeletонема costatum</i>	1E+05 cells/mL, strain SKEL		rg	am	8.25	19.9		5 d	EC50	cell density	13.8	2	10	Cowgill and Milazzo, 1989	
<i>Skeletонема costatum</i>	1E+05 cells/mL, strain SKEL		rg	am	8.25	19.9		5 d	EC50	cell volume	11.6	2	10	Cowgill and Milazzo, 1989	
<i>Skeletонема costatum</i>								96 h	EC50		3.27	4	11,21	LeBlanc, 1984	

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Salinity [%]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Skeletonema costatum</i>			tg	nw		20	25	7 d	EC50	cell division	>8	2		Erickson and Freeman, 1978	
<i>Thalassiosira pseudonana</i>			tg	nw		20	25	7 d	EC50	cell division	>8	2		Erickson and Freeman, 1978	
Mollusca															
<i>Octopus pallidus</i>	24 - 96 h post hatch, descending from animals captured in the field	Y	R		nw	7.78 - 7.93	16.2 - 18.5	35.8 - 36.6	24 h	LC50	mortality	1.35	2	12	Long and Holdway, 2002
<i>Octopus pallidus</i>	24 - 96 h post hatch, descending from animals captured in the field	Y	R		nw	7.78 - 7.93	16.2 - 18.5	35.8 - 36.6	48 h	LC50	mortality	0.89	2	12	Long and Holdway, 2002
Annelida															
<i>Platynereis dumerillii</i>	7-d old larvae	N	S	> 99	nw	8.01 - 8.13	19.2 - 20.3	34.85 - 34.95	96 h	LC50	mortality	13.3	2		Palau and Hutchinson, 1998
Crustacea															
<i>Chaetogammarus marinus</i>									96 h	LC50	mortality	4.1	4		Adema et al., 1982
<i>Crangon septemspinosa</i>	6.4 - 8.3 cm length, 2.4 - 4.5 g	Y	R		nw		10	30	96 h	LC50	mortality	4.6	3	13,22	McLeese et al., 1979
<i>Mesidotea entomon</i>	3.8 ± 0.4 cm, 0.9 ± 0.3 g, collected in the field	Y	CF		nw	7.7 ± 0.1	5 ± 0.6	6	96 h	LC50	mortality	59.7	2		Oksama and Kristoffersson, 1979
<i>Mesidotea entomon</i>	3.8 ± 0.4 cm, 0.9 ± 0.3 g, collected in the field	Y	CF		nw	7.7 ± 0.1	10 ± 0.7	6	96 h	LC50	mortality	40.3	2		Oksama and Kristoffersson, 1979
<i>Mysidopsis bahia</i>	6-10 mm								96 h	LC50	mortality	29.7	4	11,23	LeBlanc, 1984
<i>Nitocra spinipes</i>	adults	S	99	nw	7.8	21 ± 1	7	96 h	LC50	mortality	21	2		Lindén et al., 1979	
<i>Pontoporeia affinis</i>	field collected from clean site	Y	F	ag	nw		4	5-6	24h	LC50	mortality	>10	3	14,24	Lindstrom and Lindstrom, 1980
<i>Pontoporeia affinis</i>	field collected from clean site	Y	F	ag	nw		4	5-6	5 d	LC50	mortality	>5	3	14,24	Lindstrom and Lindstrom, 1980
<i>Pontoporeia affinis</i>	field collected from clean site	Y	F	ag	nw		4	5-6	10 d	LC50	mortality	>5	3	14,24	Lindstrom and Lindstrom, 1980
<i>Tisbe battagliai</i>	6 d old copepodid stages	S	≥ 98	nw	8.0 ± 0.1	20	30	24 h	LC50	mortality	21	2		Smith et al., 1994	
Pisces															
<i>Cyprinodon variegatus</i>	juveniles, 14 - 28 d posthatch, 8 - 15 mm	S	≥ 80	nw		25 - 31	10 - 31	96 h	LC50	mortality	5.4	2	15	Heitmuller et al., 1981	
<i>Cyprinodon variegatus</i>									96 h	LC50	mortality	5.35	4*	11,23	LeBlanc, 1984
<i>Macquaria novemaculeata</i>	0.42 ± 0.03 g	N	R		nw	7.8 ± 0.08	16.3 ± 0.2	35.2 ± 0.1	96 h	LC50	mortality	1.92	2		Cohen and Nugegoda, 2000
<i>Platichthys flesus</i>	collected in the field, 56 ± 2.5 g	Y	R	≥ 98		8 ± 0.1	6	5	96 h	LC50	mortality	5	2	16,25	Smith et al., 1994

Notes

- 1 Microtox test.
- 2 Data from 15 and 30 min-exposures are most accurate.
- 3 Unclear which chlorophenol was tested.
- 4 L(E)C50 calculated with data provided by author using Graphpad
- 5 Result given as 5.8% of the reaction product mixture.Microtox test.
- 6 Flash method: photobacteria reagent is dispensed on top of sample and changes in luminescence signal are recorded at several readings per second.
- 7 EC50 calculated using control peak height (in accordance with Microtox test method).
- 8 The EC50-values expressed as TOC are used in this study. In order to further discuss the contribution of toxicity for ozonated intermediates, EC50 values are transformed to TU_s
- 9 Test result given as range of 7 experiments.
- 10 Large confidence intervals due to stimulation at lower test concentrations.
- 11 In accordance with US EPA guideline (1975).

12 Unclear if test result is based on measured or nominal concentrations.
13 Exposure time not fixed (time to lethality experiment). Unclear if LC50 is based on nominal or measured concentrations, but concentrations remained practically constant. 3 shrimp and 3 clams were exposed simultaneously.
14 Results based on nominal concentrations
15 In accordance with EPA-660/3-75-009.
16 In accordance with OECD 203 (1981)
17 Mutagenesis induced by chemical to obtain more sensitive mutant.
18 Unit of EC50 is not reported.
19 No standard Microtox test method.
20 Unclear if EC50 expressed in mg/L substance or TOC; unclear if test is performed as a mixture toxicity test.
21 Test criterion not reported (unclear if this is growth rate or biomass).
22 Number of test animals (3) too small, exposure duration too short.
23 Review with little test information
24 Experimental systems contained mud
25 Fish loading higher than recommended in guideline, but concentrations are measured and control included.

Table A2.11 Chronic toxicity of 4-chlorophenol to freshwater organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Bacillus subtilis</i>		N	S		am		37	0.17	logarithmic growth phase	EC10	growth	53	2	1	Ogawa et al., 1991
<i>Escherichia coli</i>	ATCC 23820, radiolabelled thymidine, stationary growth phase	N	S		am				50 h	EC10	lysis rate	133.6595517	2	1,2	Perez-Padilla and Grady, 1998
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	NOEC	max. growth yield	96.417	2	14	Cenci et al., 1987
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	LOEC	specific growth rate	47.56572	2	14	Cenci et al., 1987
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	NOEC	lag time	96.417	2	3,14	Cenci et al., 1987
<i>Escherichia coli</i>	NCTC 9001, 1E+07 cells/mL	N	S		am	7	37		≤ 24 h	NOEC	dehydrogenase activity	96.417	2	14	Cenci et al., 1987
<i>Escherichia coli</i>	strain K12 W3110 thy-F-	N	S		am		37		exp. growth phase (4 - 5 h)	LOEC	growth rate	62.5	2	4	Espigares et al., 1990
<i>Escherichia coli</i>	strain K12 W3110 thy-F-	N	S		am		37		exp. growth phase (4 - 5 h)	LOEC	doubling time	250	2	4	Espigares et al., 1990
<i>Pseudomonas pictorum</i>		N	R		am				96 - 192 h (24 - 48 h per test conc.)	NOEC	growth	1000	3	5,15	Chitra and Chandrakasan, 1996
<i>Pseudomonas</i>										LOEC		20	4	6,16,17	Jones, 1971. In: Verschueren, 1983
Algae															
<i>Chlorella protothecoides</i>	log growth phase	Y	S				21		72 h	NOEC	cell division	12.8556	2		Stauber et al., 1994. In: Warne et al., 1999
<i>Chlorella pyrenoidosa</i>										LOEC		40	4	6	Jones, 1971. In: Verschueren, 1983
<i>Chlorella pyrenoidosa</i>		N	S		am	7	22		72h	NOEC	chlorophyll/ oxygen production	10	3	18	Huang and Gloyna, 1968
<i>Chlorella vulgaris</i>		Y	S	rg	nw	7.5 - 8.2	19 - 22		96 h	NOEC	growth rate	≥ 0.1	2	7	Gokcen, 1998
<i>Pseudokirchneriella subcapitata</i>	log growth phase	Y	S				21		72 h	NOEC	cell division	25.7112	2		Stauber et al., 1994. In: Warne et al., 1999
<i>Pseudokirchneriella subcapitata</i>									72 h	NOEC	biomass (AUC)	0.93	2		CITI data
<i>Pseudokirchneriella subcapitata</i>									72 h	NOEC	growth rate	1.7	2		CITI data
<i>Scenedesmus</i>										LOEC		20	4	6	Jones, 1971. In: Verschueren, 1983
<i>Scenedesmus pannonicus</i>									96 h	NOEC	growth	18	4		Adema et al., 1982
<i>Scenedesmus pannonicus</i>									96 h	NOEC	growth	3.2	4		EC, 2000
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		72 h	EC10	biomass (AUC)	1.9	2		Kühn and Pattard, 1990

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		72 h	EC10	growth rate	5.8	2		Kühn and Pattard, 1990
<i>Scenedesmus subspicatus</i>		N	S		am	7	27	550	8 d	LOEC	growth	1.9026288	3	8,19	Schmidt and Schnabl, 1988
Protozoa															
<i>Coldopla</i>										LOEC		5	4	6,16	Meinck et al., 1970 In: Verschueren, 1983
Macrophyta															
<i>Lemna gibba</i> L.	G-3, 5 plants, 15 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of plants	21.6	3	9,17	Cowgill et al., 1991
<i>Lemna gibba</i> L.	G-3, 5 plants, 15 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of fronds	21.6	3	9,17	Cowgill et al., 1991
<i>Lemna gibba</i> L.	G-3, 5 plants, 15 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	dry weight	21.6	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 6591, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of plants	13	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 6591, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of fronds	13	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 6591, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	dry weight	13	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 7101, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of plants	7.8	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 7101, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of fronds	7.8	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 7101, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	dry weight	13	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 7120, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of plants	7.8	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 7120, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of fronds	7.8	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 7120, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	dry weight	13	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 7136, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of plants	13	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 7136, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	number of fronds	13	3	9,17	Cowgill et al., 1991
<i>Lemna minor</i> L.	clone 7136, 10 plants, 30 fronds	S			am	4.9 ± 0.2	25 ± 0.7	636	7 d	NOEC	dry weight	13	3	9,17	Cowgill et al., 1991
Cnidaria															
<i>Hydra vulgaris</i>	budding	Y	S	> 99	tw	7.07 - 7.3	24.2 - 24.8		6 d	NOEC	population growth rate	< 1.1	2	10	Pollino and Holdway, 1999
<i>Hydra vulgaris</i>	budding	Y	S	> 99	tw	7.07 - 7.3	24.2 - 24.8		6 d	EC10	population growth rate	0.762605617	2	1,10	Pollino and Holdway, 1999
<i>Hydra viridissima</i>	budding	Y	S	> 99	tw	7.07 - 7.3	24.2 - 24.8		6 d	NOEC	population growth rate	10.3	2	10	Pollino and Holdway, 1999
<i>Hydra viridissima</i>	budding	Y	S	> 99	tw	7.07 - 7.3	24.2 - 24.8		6 d	EC10	population growth rate	9.9	2	1,10	Pollino and Holdway, 1999
Rotifera															
<i>Brachionus calyciflorus</i>	newly hatched	N	S	99	am	7.5	25		48 h	NOEC	reproduction	30	2		Radix et al., 1999

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Brachionus calyciflorus</i>	newly hatched	N	S	99	am	7.5	25		48 h	EC10	reproduction	19.5	2		Radix et al., 1999
Crustacea															
<i>Ceriodaphnia dubia</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	90 - 110	9 d	NOEC	mortality	0.2	2	11	Cowgill and Milazzo, 1991
<i>Ceriodaphnia dubia</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	90 - 110	9 d	NOEC	progeny	1.6	2	11	Cowgill and Milazzo, 1991
<i>Ceriodaphnia dubia</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	90 - 110	9 d	NOEC	number of broods	1.6	2	11	Cowgill and Milazzo, 1991
<i>Ceriodaphnia dubia</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	90 - 110	9 d	NOEC	mean brood size	1.6	2	11	Cowgill and Milazzo, 1991
<i>Daphnia magna</i>									14 d	NOEC		1		4*	Kuiper, 1982. In: Krijgheld and Van der Gen, 1986
<i>Daphnia magna</i>	≤ 24 h old	Y	R		am	8.0 ± 0.2	25 ± 1	250	21 d	NOEC	survival, reproduction rate, time to 1st reproduction	0.63	2	12	Kühn et al., 1989b
<i>Daphnia magna</i>									21 d	LC50	mortality	3.6	4		Kuiper and Hanstveit, 1984
<i>Daphnia magna</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	160 - 180	9 d	NOEC	mortality	2.6	2	11	Cowgill and Milazzo, 1991
<i>Daphnia magna</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	160 - 180	9 d	NOEC	progeny	0.6	2	11	Cowgill and Milazzo, 1991
<i>Daphnia magna</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	160 - 180	9 d	NOEC	number of broods	2.6	2	11	Cowgill and Milazzo, 1991
<i>Daphnia magna</i>	< 12 h old, from 4th brood	N	R	rg	nw	8.2 ± 0.2	25 ± 2	160 - 180	9 d	NOEC	mean brood size	0.3	2	11	Cowgill and Milazzo, 1991
<i>Daphnia magna</i>									14 d	NOEC	mortality, reproduction	1		4	Adema et al., 1982
<i>Daphnia magna</i>									14 d	EC50	mortality	6.1	4		Adema et al., 1982
<i>Daphnia magna</i>									21 d	EC50	reproduction	0.59	2		CITI data
<i>Daphnia magna</i>									21 d	NOEC	reproduction	0.2	2		CITI data
Pisces															
<i>Oncorhynchus mykiss</i>	fertilised eggs	Y	CF	highly purified standards or repurified	nw	8.08 - 8.10	10 ± 1 (egg dev.), 12 ± 1 (yolk resorption), 15 ± 1 (fry growth)	135	until hatching	NOEC	larval weight	0.03085344	2	13	Hodson et al., 1991
<i>Oncorhynchus mykiss</i>	fertilised eggs	Y	CF	highly purified standards or repurified	nw	8.08 - 8.10	10 ± 1 (egg dev.), 12 ± 1 (yolk resorption), 15 ± 1 (fry growth)	135	until hatching	EC10	larval weight	0.16	2	1,13	Hodson et al., 1991
<i>Oncorhynchus mykiss</i>	fertilised eggs	Y	CF	highly purified standards or repurified	nw	8.08 - 8.10	10 ± 1 (egg dev.), 12 ± 1 (yolk resorption), 15 ± 1 (fry growth)	135	85 d	NOEC	post-hatch mortality	0.24939864	2	13	Hodson et al., 1991
<i>Oncorhynchus mykiss</i>	fertilised eggs	Y	CF	highly purified standards or repurified	nw	8.08 - 8.10	10 ± 1 (egg dev.), 12 ± 1 (yolk resorption), 15 ± 1 (fry growth)	135	10 d post hatch	NOEC	larval weight	0.24939864	2	13	Hodson et al., 1991
<i>Oncorhynchus mykiss</i>	fertilised eggs	Y	CF	highly purified standards or repurified	nw	8.08 - 8.10	10 ± 1 (egg dev.), 12 ± 1 (yolk resorption), 15 ± 1 (fry growth)	135	85 d	NOEC	fry mortality	0.24939864	2	13	Hodson et al., 1991

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
<i>Oncorhynchus mykiss</i>	fertilised eggs	Y	CF	highly purified standards or repurified	nw	8.08 - 8.10	10 ± 1 (egg dev.), 12 ± 1 (yolk resorption), 15 ± 1 (fry growth)	135	4 wk post swim-up	NOEC	fry weight	0.24939864	2	13	Hodson et al., 1991

Notes

- 1 EC10 calculated with data provided by author using graphpad
- 2 Concentrations recalculated from mg COD/L. Cells were in stationary phase
- 3 Lag time is defined as the time (h) required to attain the mid-point of the growth curve.
- 4 Reported as Minimum Effective Concentration
- 5 Concentrations were tested in a stepwise approach: colonies were exposed to the lowest concentration, if growth was observed, then they were transferred to a higher concentration, etc. NOEC not statistically determined and based on a qualitative endpoint (growth (colonies formed), absence of growth (no colonies formed)). Minimal medium.
- 6 Toxic at reported value; assumed that the LOEC is ment.
- 7 Test result based on nominal concentrations; measured concentrations were ≥ 80% of nominal.
- 8 Reported as an IC10, which was defined as the lowest concentration that differs statistically from the control.
- 9 In accordance with US EPA guidelines.
- 10 In accordance with ASTM E729-88a 1991.
- 11 Three-brood test.
- 12 Test result based on measured concentrations, which were > 80% of nominal.
- 13 Test result based on measured concentrations. Unclear if these were were ≥ 80% of nominal.
- 14 Exposure time not clear.
- 15 No standard approach (bacteria were not exposed to a range of concentrations, but well-performing colonies were transferred to higher concentrations). NOEC qualitatively and not statistically determined.
- 16 Test duration not reported.
- 17 Little or no info on test methods
- 18 Cell densitiy too high (1 mg/L)
- 19 Test duration too long
- 20 tests with 2,4-dichlorophenol, 2,4,5-trichlorophenol and pentachlorophenol indicate that duckweed can metabolise chlorophenols

Table A2.12 Chronic toxicity of 4-chlorophenol to marine organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Salinity [%]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Vibrio fischeri</i>		N	S	99	am	7.5	27	38.4	22 h	EC50	bioluminescence	3.23	2	1	Radix et al., 1999
Algae															
<i>Dunaliella tertiolecta</i>	log growth phase	Y	S				21		72 h	NOEC	cell division	10.28448	2		Stauber et al., 1994. In: Warne et al., 1999
<i>Nitzschia closterium</i>	log growth phase	Y	S				21		72 h	NOEC	cell division	1.28556	2	2	Stauber et al., 1994. In: Warne et al., 1999
<i>Phaeodactylum tricornutum</i>									96 h	NOEC	growth	0.32	2		Adema et al., 1982
<i>Skeletonema costatum</i>	1E+05 cells/mL, strain SKEL		rg	am	8.25	19.9			5 d	NOEC	cell density	1.08	2		Cowgill and Milazzo, 1989
<i>Skeletonema costatum</i>	1E+05 cells/mL, strain SKEL		rg	am	8.25	19.9			5 d	NOEC	cell volume	0.39	2		Cowgill and Milazzo, 1989
Field community		F	tg	am		13	23.5		24 h	NOEC	14C uptake	>2.0	3	3	Erickson and Hawkins, 1980
Crustacea															
<i>Mesidotea entomon</i>	3.8 ± 0.4 cm, 0.9 ± 0.3 g, collected in the field	Y	CF		nw	7.7 ± 0.1	5 ± 0.6	6	14 d	LC5	mortality	18.9	2		Oksama and Kristoffersson, 1979
<i>Mesidotea entomon</i>	3.8 ± 0.4 cm, 0.9 ± 0.3 g, collected in the field	Y	CF		nw	7.7 ± 0.1	10 ± 0.7	6	7 d	LC5	mortality	23	2		Oksama and Kristoffersson, 1979
Mollusca															
<i>Chlamys asperrima</i>	fertilised eggs	N	S		nw		18	32 - 34	48 h	NOEC	development (larval abnormalities)	3	2		Krassoi et al., 1997
Annelida															
<i>Platynereis dumerilii</i>	newly fertilised embryos (< 6 h post-fertilization)	N	S	> 99	nw	8.01 - 8.13	19.2 - 20.3	34.85 - 34.95	48 h	EC50	embryo development	23.6	2	4	Palau and Hutchinson, 1998
<i>Platynereis dumerilii</i>	larvae	N	S	> 99	nw	8.01 - 8.13	19.2 - 20.3	34.85 - 34.95	96 h	EC50	mortality	13.3	2		Palau and Hutchinson, 1998

Notes

- 1 Microtox chronic toxicity test
- 2 Two experiments with same result.
- 3 Significant effect at 1 mg/L, but not at 2 mg/L
- 4 Percentage of embryos developing normally was calculated in accordance with ASTM 1989.

Table A2.13 Acute toxicity of 4-chloro-3-methylphenol to freshwater organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference	
Bacteria																
<i>Bacillus</i> sp.									6 h	EC2 - EC82	spore germination	62.7	4	1,20	Kirk and Lester, 1989	
<i>Bacillus subtilis</i>							28		24 h	EC25	cell multiplication	28	3	21	Voets et al., 1976	
<i>Bacillus subtilis</i>	spores				am	7.5	31		24 h	EC100	spore germination	1000	2		Parker and Bradley, 1967	
<i>Pseudomonas aeruginosa</i>						am	7.4	20		40 min	LC100	mortality	657	4	22	Burton et al., 1964
<i>Pseudomonas aeruginosa</i>	strain NCTC 6750				am		37		7 d	LC100	mortality	1000	4		Richards, 1971. In: Gesellschaft Deutscher Chemiker, 1984	
<i>Pseudomonas putida</i>									30 min	EC50	oxygen consumption	> 250	4	2	Bayer AG, 1981. In: Gesellschaft Deutscher Chemiker, 1984	
Algae																
<i>Chlorella pyrenoidosa</i>		Y	S	99	am	ca. 7.4	ca. 22		72 h	EC50	growth rate	15	2	3	Ramos et al., 1999	
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		72 h	EC50	biomass (AUC)	> 10	2		Kühn and Pattard, 1990	
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		72 h	EC50	growth rate	> 10	2		Kühn and Pattard, 1990	
<i>Scenedesmus subspicatus</i>			S						72 h	EC50	growth rate	4.2	4	4	Bayer AG, 1983. In: Gesellschaft Deutscher Chemiker, 1984	
Protozoa																
<i>Tetrahymena pyriformis</i>	strain GL-C, ca. 2500 cells/mL from log. growing culture		S		am	7.35 (initially)	27 ± 1		40 h	EC50	population growth (density)	22.6	4*	5	Schultz, 1996 and Schultz, 1997	
<i>Tetrahymena pyriformis</i>	strain GL-C	N	S	> 95	am	7.35	27 ± 1	75	40 h	EC50	population growth (cell density)	22.6	4*	5	Schultz, 1999	
<i>Tetrahymena pyriformis</i>									48 h	EC50	population growth (density)	22.86	2	6,7	Schultz et al., 1986. And Schultz, 1987	
<i>Tetrahymena pyriformis</i>	ca. 36000 cells/mL, in log phase	N	S	≥ 95	am	7.35 (initially)	27 ± 1		48 h	EC50	population growth (density)	22.6	4*	6,7	Schultz et al., 1990	
Mollusca																
<i>Lymnaea stagnalis</i>	2 - 3 mo old, 814 ± 332 mmg	Y	R	99	tw	6.6 - 8.5	21 - 24		96 h	LC50	mortality	14	2	8	Ramos et al. 1998	
Crustacea																
<i>Ceriodaphnia dubia</i>	< 24 h old	Y	S					23 ± 1		48 h	EC50	immobility	3.69	2		Mulhall, 1997. In: Warne and Westbury, 1999
<i>Daphnia carinata</i>	< 24 h old	Y	S					20 ± 1		48 h	EC50	immobility	3.34	2		Azim, 1998. In: Warne and Westbury, 1999
<i>Daphnia magna</i>	24 h old	N	S	99	am	8.0 - 8.3	18 - 20			48 h	EC50	immobility	1.5	2	9	Ramos et al. 1998
<i>Daphnia magna</i>	≤ 24 h old	Y			am	8.0 ± 0.2	25 ± 1	250	24 h	EC50	immobility	4.4	2	10	Kühn et al., 1989	
<i>Daphnia magna</i>	< 24 h old	N	S	> 99	tw	7.5 - 8.0	19.6 - 20.8	77 ± 4.3	48 h	LC50	mortality	2	2	11	Gersich and Mayes, 1986	
<i>Daphnia magna</i>	< 72 h old	N	S	> 95%	rw	7.8 - 8.2	22 ± 1	200	24 h	EC50	immobility	4.55	2	12	Devillers et al., 1987	
<i>Daphnia magna</i>			S					20 ± 2		24 h	EC50	immobility	5.6	4		Bayer AG, 1983. In: Gesellschaft Deutscher Chemiker, 1984
<i>Daphnia magna</i>			S					20 - 25		24 h	EC50	immobility	3.5 - 10	2		Devillers et al., 1987
<i>Daphnia pulex</i>	12 h old	N	R		nw			20 ± 1		96 h	LC50	mortality	3.1	2		Trabalka and Burke, 1978
Pisces																
<i>Danio rerio</i>			F		am	7.1 - 7.8	21 ± 1	267	14 d	NOEC	mortality	1	2		Bayer AG, 1991. In: Gesellschaft Deutscher Chemiker, 1984	
<i>Danio rerio</i>			F		am	7.1 - 7.8	21 ± 1	267	3 d	EC90	mortality	3.2	2		Bayer AG, 1991. In: Gesellschaft Deutscher Chemiker, 1984	

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference	
<i>Danio rerio</i>		Y	F	> 99.97	am	7.1 - 7.8	21 ± 1	267	14 d	NOEC		1	4*	23	Bayer AG, 1985. In: EC, 2000	
<i>Danio rerio</i>		Y	F	> 99.97	am	7.1 - 7.8	21 ± 1	267	5 d	LC100	mortality	3.2	4*		Bayer AG, 1985. In: EC, 2000	
<i>Danio rerio</i>	mature; 2.5 cm	S	ag	tw	7.8-8	22 ± 0.5	150	24 h	LC50	mortality	1 - 3.5	2			Devillers et al., 1985	
<i>Leuciscus idus melanotus</i>		S			7 - 8	20	267	48 h	LC50	mortality	2.4	2	13		Rubelt et al., 1982	
<i>Leuciscus idus</i>									48 h	LC50	mortality	1.2	4	12,25	Bayer AG, 1980. In: Gesellschaft Deutscher Chemiker, 1984	
<i>Leuciscus idus</i>		S	> 99.9						48 h	LC50	mortality	1.2	4	12	Bayer AG, 1985. In: EC, 2000	
<i>Oncorhynchus mykiss</i>		Y	R	99.97					96 h	NOEC		0.366	4	14,23	Gagliano and Bowers, 1993. In: EC, 2000	
<i>Oncorhynchus mykiss</i>		Y	R	99.97					96 h	LC50	mortality	0.917	2	14		Gagliano and Bowers, 1993. In: EC, 2000
<i>Oryzias latipes</i>									48 h	LC50	mortality	4.6	4	26	CITI data. In: EC, 2000	
<i>Pimephales promelas</i>									96 h	LC50	mortality	5.7	4	15	COMPUTOX database. In: Eldred et al., 1999	
<i>Pimephales promelas</i>	30 - 35 d	F		nw		25 ± 2	43.3 - 48.5		192 h	LC50	mortality	7.7	4	16,27	Hall et al., 1984	
<i>Pimephales promelas</i>	26 - 34 d old (juveniles), laboratory-cultured	Y	CF	> 95	nw	7.8	25	45	96 h	LC50	mortality	5.72	2	17,18	Veith and Broderius 1987	
<i>Pimephales promelas</i>	26 - 34 d old (juveniles), laboratory-cultured	Y	CF	> 95	nw	7.8	25	45	96 h	LC50	mortality	4.05	4*	18	Broderius et al. 1995	
<i>Pimephales promelas</i>	31 d, 0.106 g	Y	F	99	nw/dtw	7.24	25.2	45.6	96 h	LC50	mortality	7.38	1		Geiger et al., 1985	
<i>Pimephales promelas</i>	30 d, 19.1 mm, 0.1 g	Y	F	99	nw/dtw	7.74	24.6		96 h	LC50	mortality	4.05	1		Geiger et al., 1985	
<i>Pimephales promelas</i>		Y	F		nw/dtw				96 h	LC50	mortality	5.47	1		Geiger et al., 1990	
<i>Pimephales promelas</i>	31-35 d old	Y	F	99	nw	6.9 - 7.7	24.6 ± 1.4	44	96 h	LC50	mortality	7.56	1	10	Holcombe et al., 1984	
<i>Pimephales promelas</i>		N	S		tw				96 h	LC50	mortality	0.03	3	19,28	MCA, 1972. In: Verschueren, 1983	
<i>Poecilia reticulata</i>	females, 2 - 3 mo old, 1.8 ± 0.3 cm and 69 ± 34 mg	Y	R	99	tw	7.1 - 8.2	20 - 25		96 h	LC50	mortality	6.71	2	8	Ramos et al. 1998	
<i>Poecilia reticulata</i>	2 - 3 mo old males		rg	tw	7.7 ± 0.1				24 h	LC50	mortality	2.2	27	4	Benoit-Guyod et al., 1984	
<i>Salmo trutta</i>	average 4.5 g						ca. 5		24 h	LC50	mortality	1.3	2		Hattula et al. 1981.	
<i>Salmo trutta</i>		S					5		24 h	LC50	mortality	50	4	24	Kirk and Lester, 1989. In: EC, 2000	

Notes

- 1 Inhibition of spore germination depended on medium with different pHs.
- 2 In accordance with DIN 38 412, Part 27,
- 3 In accordance with OECD 201 (1984).
- 4 In accordance with ISO 147/SC 5/WG 5 N 75).
- 5 8-9 cell cycles
- 6 Final DMSO concentration of 0.35 mL DMSO / 50 mL not toxic to Tetrahymena.
- 7 Unclear if the EC50 is based on nominal or mean measured concentrations. Recovery of the test substance was > 80% of nominal in an abiotic control.
- 8 In accordance with OECD 203 (1992) (adapted for snails). Dissolved oxygen concentrations ranged from 0.0 - 9.4 mg/L (range for several tests with different test substances). It is unclear if this affected the test result (no raw data was provided).
- 9 In accordance with OECD 202 (1984).
- 10 Test result based on measured concentrations, which were > 80% of nominal.
- 11 In accordance with ASTM (1980).
- 12 In accordance with draft DIN 38 412/15.
- 13 According to standard test german test methods (1974)
- 14 In accordance with FIFRA guideline 72-1 Acute toxicity test for freshwater fish.

15 COMPUTOX database
 16 Unit of endpoint not reported. Assumed that unit is mol/L. In accordance with EPA-660/3-75-009.
 17 In accordance with ASTM 1980.
 18 Unclear if the LC50 is based on nominal or mean measured concentrations. Recovery of the test substance was > 90% of nominal.
 19 Reported as TLm.
 20 Results reported in EC, 2000 were not reported in the original article.
 21 Tests methods not according to standard methods; test performed using partly saline solutions which differed per test concentration; EC25 not calculated using accepted methods (but no raw data available).
 22 Reported is a 'killing concentration' without any description of methods. Data in this table were taken from EC, 2000, but were not found in the article.
 23 No endpoint reported
 24 Little info on test design, no info on guideline followed
 25 Little info on test design, but according to specified guideline and same result also presented in EC, 2000 database
 26 No data on 4-chloro-3-methylphenol present in CITEI database, so origin of this data is unclear
 27 Unit of LC50 not reported.
 28 Extrapolated value, 80% mortality at lowest test concentration (1 mg/L)

Table A2.14 Acute toxicity of 4-chloro-3-methylphenol to marine organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Salinity [%]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Vibrio fischeri</i>			tg	am		21.9	5 min	EC50	bioluminescence	1.91	2	1		Vismara et al. 1996	
<i>Vibrio fischeri</i>			tg	am		21.9	15 min	EC50	bioluminescence	1.8	2	1		Vismara et al. 1996	
<i>Vibrio fischeri</i>		N	S			15	21.9	15 min	EC50	bioluminescence	0.95	2		Kafka et al., 1999	
<i>Vibrio fischeri</i>		N	S			15		15 min	EC50	bioluminescence	0.28659183	2	1		Mulhall, 1997. In: Warne and Westbury, 1999
<i>Vibrio fischeri</i>		N	S	99				30 min	EC50	bioluminescence	0.342032794	2	1		Kaiser and Palabrica, 1991

Notes

1 Microtox test.

Table A2.15 Chronic toxicity of 4-chloro-3-methylphenol to freshwater organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Escherichia coli</i>							37		72 h	LOEC		250	4	5,6	Beilfuss and Nolte, 1977. In: Gesellschaft Deutscher Chemiker, 1984
<i>Pseudomonas aeruginosa</i>							37		72 h	LOEC		500	4	5,	Beilfuss and Nolte, 1977. In: Gesellschaft Deutscher Chemiker, 1984
<i>Pseudomonas pictorum</i>		N	R (growing colonies were transferred to higher test concentrations)		am				48 - 96 h (24 - 48 h per test conc.)	NOEC	growth	250	3	1,7	Chitra and Chandrasekaran, 1996
<i>Pseudomonas putida</i>	strain Berlin 33/2						25		16 h	LOEC	growth	70	4	6	Rubelt et al., 1982. In: Gesellschaft Deutscher Chemiker, 1984
<i>Staphylococcus aureus</i>							37		72 h	LOEC		250	4	5,6	Beilfuss and Nolte, 1977. In: Gesellschaft Deutscher Chemiker, 1984
Algae															
<i>Chlorella pyrenoidosa</i>		Y	S	99	am	ca. 7.4	ca. 22		72 h	EC10	growth rate	2.3	2	2	Ramos et al. 1999
<i>Chlorella pyrenoidosa</i>		Y	S	99	am	ca. 7.4	ca. 22		72 h	NOEC	growth rate	1.9	2	2	Ramos et al. 1999
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		72 h	EC10	biomass (AUC)	4.7	2		Kühn and Pattard, 1990
<i>Scenedesmus subspicatus</i>		N	S		am	8.0 - 9.3	24 ± 1		72 h	EC10	growth rate	11	3	8	Kühn and Pattard, 1990
<i>Scenedesmus subspicatus</i>			S						72 h	EC10	growth rate	1.85	4	3,6	Bayer AG, 1983. In: Gesellschaft Deutscher Chemiker, 1984
Crustacea															
<i>Daphnia magna</i>	≤ 24 h old	Y	R		am	8.0 ± 0.2	25 ± 1	250	21 d	NOEC	survival, repro. rate, time to 1st repro.	1.3	2	4	Kühn et al., 1989b

Notes

- Concentrations were tested in a stepwise approach: colonies were exposed to the lowest concentration, if growth was observed, then they were transferred to a higher concentration, etc. NOEC not statistically determined and based on a qualitative endpoint (growth (colonies formed), absence of growth (no colonies formed)). Minimal medium.
- In accordance with OECD 201 (1984).
- In accordance with ISO 147/SC 5/WG 5 N 75.
- Test result based on nominal concentrations, which were > 80% of nominal.
- Test endpoint not reported.
- Little info on test design.
- No standard approach (bacteria were not exposed to a range of concentrations, but well-performing colonies were transferred to higher concentrations). NOEC qualitatively and not statistically determined.
- Extrapolated value, EC10 is above highest tested concentration.

Table A2.16 Chronic toxicity of 4-chloro-3-methylphenol to marine organisms.

No data were available for chronic toxicity of 4-chloro-3-methylphenol to marine organisms.

Table A2.17 Acute toxicity of aminochlorophenol to freshwater organisms.

Species	Species properties	A	Test type	Purity [%]	Test water	pH	T [°C]	Hardness CaCO ₃ [mg/L]	Exp. time	Criterion	Test endpoint	Value [mg/L]	Ri	Notes	Reference
Bacteria															
<i>Escherichia coli</i>	10E4 cells/mL	N	S		am		37		8h, 15m	EC50	growth rate	33.02	2		Nendza and Seydel 1988

Table A2.18 Acute toxicity of aminochlorophenol to marine organisms.

No data were available for acute toxicity of aminochlorophenol to marine organisms.

Table A2.19 Chronic toxicity of aminochlorophenol to freshwater organisms.

No data were available for chronic toxicity of aminochlorophenol to freshwater organisms.

Table A2.20 Chronic toxicity of aminochlorophenol to marine organisms.

No data were available for chronic toxicity of aminochlorophenol to marine organisms.

Appendix 3. References used in the appendices

Adema DMM, Kuiper J, Hanstveit AO, Canton HH. 1982. Consecutive system of tests for assessment of the effects of chemical agents in the aquatic environment. *Pestic Chem* 3: 537-544.

Aitken MD, Massey IJ, Chen T, Heck PE. 1994. Characterization of reaction products from the enzyme catalyzed oxidation of phenolic pollutants. *Water Res* 28: 1879-1889.

Applegate VC, Howell JH, Hall AE Jr., Smith AM. 1957. Toxicity of 4,346 chemicals to larval lampreys and fishes. Washington DC, USA: U.S. Fish and Wildlife Services, Department of the Interior. Report no. Special scientific report, Fisheries No. 207.

Banerjee S. 1987. Interrelationship between biodegradability, toxicity, and structure of chlorophenols. In: Kaiser KLE, ed. QSAR Environ. Toxicol., Proc. Int. Workshop, 2nd. Reidel. p. 17-23.

Barrows ME, Petrocelli SR, Macek KJ, Carroll JJ. 1980. Bioconcentration and elimination of selected water pollutants by bluegill sunfish (*Lepomis macrochirus*). In: Haque R, ed. Dynamics, exposure and hazard assessment of toxic chemicals. Ann Arbor, Michigan, U.S.A.: American Chemical Society. p. 379-392.

Bazin C, Chambon P, Bonnefille M, Larbait G. 1987. Comparison of the sensitivity of a test using the luminescent marine bacteria (*Photobacterium phosphoreum*) and Daphnia bioassays. *Sci. Eau* 6: 403-413.

Bearden AP, Schultz TW. 1998. Comparison of Tetrahymena and Pimephales toxicity based on mechanism of action. *SAR QSAR Environ Res* 9: 127-153.

Benoit-Guyod J-L, Andre C, Taillandier G, Rochat J, Boucherle A. 1984. Toxicity and QSAR of chlorophenols on *Lebister reticulatus*. *Ecotoxicol Environ Saf* 8: 227-235.

Blackman, Parka, Garton. 1955. The physiological activity of substituted phenols - I. Relationships between chemical structure and physiological activity. *Arch Biochem Biophys* 54: 45-54.

Blum DJW, Speece RE. 1991. A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations. *Research Journal - Water Pollution Control Federation* 63: 198-207.

Boyd EM, Killham K, Meharg AA. 2001. Toxicity of mono-, di- and tri-chlorophenols to lux marked terrestrial bacteria, *Burkholderia* species Rasc c2 and *Pseudomonas fluorescens*. *Chemosphere* 43: 157-166.

Broderius SJ, Kahl MD, Hoglund MD. 1995. Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. *Environ Toxicol Chem* 14: 1591-1605.

Bryant SE, Schultz TW. 1994. Toxicological assessment of biotransformation products of pentachlorophenol: Tetrahymena population growth impairment. *Arch Environ Contam Toxicol* 26: 299-303.

Buccafusco RJ, Ells SJ, LeBlanc GA. 1981. Acute toxicity of priority pollutants to bluegill (*Lepomis macrochirus*). *Bull Environ Contam Toxicol* 26: 446-452.

Butte W, Willig A, Zuake G-P. 1987. Bioaccumulation of phenols in zebrafish determined by a dynamic flow through test. *QSAR in Environmental Toxicology II*: 43-53.

Cenci G, Caldini G, Morozzi G. 1987. Chlorinated phenol toxicity by bacterial and biochemical tests. *Bull Environ Contam Toxicol* 38: 868-875.

Chitra S, Chandrasekaran G. 1996. Response of phenol degrading *Pseudomonas pictorum* to changing loads of phenolic compounds. *Journal of Environmental Science and Health Part A Environmental Science and Engineering & Toxic and Hazardous Substance Control* 31: 599-619.

Cohen AM, Nuggegoda D. 2000. Toxicity of three oil spill remediation techniques to the Australian bass *Macquaria novemaculeata*. *Ecotoxicol Environ Saf* 47: 178-185.

Cowgill UM, Milazzo DP. 1991. The sensitivity of *Ceriodaphnia dubia* and *Daphnia magna* to seven chemicals utilizing the three-brood test. *Arch Environ Contam Toxicol* 20: 211-217.

Cowgill UM, Milazzo DP, Landenberger BD. 1991. The sensitivity of *Lemna gibba* G-3 and four clones of *Lemna minor* to eight common chemicals using a 7-day test. *Research Journal - Water Pollution Control Federation* 63: 991-998.

Devillers J, Chambon P. 1986. Acute toxicity and QSAR of chlorophenols on *Daphnia magna*. *Bull Environ Contam Toxicol* 37: 599-605.

Devillers J, Chambon P. 1986. Acute toxicity of chlorophenols to *Daphnia magna* and *Brachydanio rerio*. *J. Fr. Hydrol.* 17: 111-119.

Devillers J, Chambon P, Zakarya D, Chastrette M, Chambon R. 1987. A predictive structure-toxicity model with *Daphnia magna*. *Chemosphere* 16: 1149-1163.

Devillers J, Meunier T, Chambon P. 1985. Usefulness of the dosage-effect-time relation in ecotoxicology for determination of different chemical classes of toxicants. *Tech. Sci. Munic* 329-334.

Dietz F, Traud J. 1978. Geruchs- und Geschmacks-Schwellen-Konzentrationen von Phenolkörpern. *gwf-wasser/abwasser* 119: 318-325.

Dojlido JR. 1979. Investigations of biodegradability and toxicity of organic compounds. US Environmental Protection Agency. Report no. EPA-600/2-79-163 (NTIS PB80 179336).

Eldred DV, Weikel CL, Jurs PC, Kaiser KLE. 1999. Prediction of fathead minnow acute toxicity of organic compounds from molecular structure. *Chem. Res. Toxicol.* 12: 670-678.

Erickson SJ, Freeman AE. 1978. Toxicity screening of fifteen chlorinated and brominated compounds using four species of marine phytoplankton. 307-310.

Erickson SJ, Hawkins CE. 1980. Effects of halogenated organic compounds on photosynthesis in estuarine phytoplankton. *Bull Environ Contam Toxicol* 24: 910-915.

Espigares M, Roman I, Gonzalez AJM, De LB, Yeste F, Galvez R. 1990. Proposal and application of an ecotoxicity biotest based on *Escherichia coli*. *J Appl Toxicol* 10: 443-446.

European Commission (European Chemical Bureau). 2000. EC, 2000 (International Uniform Chemical Information Database) on CD-ROM. European Chemicals Bureau, Ispra, Italy.

Fu LJ, Johnson EM, Newman LM. 1990. Prediction of the developmental toxicity hazard potential of halogenated drinking water disinfection by-products tested by the *in vitro* hydra assay. *Regul Toxicol Pharmacol* 11: 213-219.

Gallardo MT, Martin BB, Martin DF. 1998. Inhibition of water fern *Salvinia minima* by cattail (*Typha domingensis*) extracts and by 2-chlorophenol and salicylaldehyde. *J Chem Ecol* 24: 1483-1490.

Geiger DL, Northcott CE, Call DJ, Brooke LT, Eds. 1985. Acute toxicities of organic chemicals to fathead minnows (*Pimephales promelas*). Vol. 2. Superior, Wisconsin, USA: Center for Lake Superior Environmental Studies. 326 pp.

Gersdorff WA, Smith LE. 1940. Effect of introduction of the halogens into the phenol molecule on toxicity to goldfish. I. Monochlorophenols. 197-204.

Gersich FM, Mayes MA. 1986. Acute toxicity tests with *Daphnia magna* Straus and *Pimephales promelas* Rafinesque in support of national pollutant discharge elimination permit requirements. *Water Res* 20: 939-941.

Gesellschaft Deutscher Chemiker. 1984. BUA Report No. 135: 4-Chlor-3-Methylphenol. Germany: S. Hirzel Verlag.

Gokcen JE. 1998. Investigating the potential impacts of chlorophenols on the Lake Baikal (Siberia, Russia) food web by employing *Daphnia* grazing bioassays and a *Chlorella* growth bioassay. *Arch Environ Contam Toxicol* 34: 241-247.

Gunthorpe L, Nottage M, Palmer D, Wu R. 1995. The development of a fertilization inhibition assay using gametes of the brown alga *Hormosira banksii*. *Australas J Ecotoxicol* 1: 25-31.

Hakkila K, Lappalainen J, Virta M. 2004. Toxicity detection from EILATox-Oregon workshop samples by using kinetic photobacteria measurement: the flash method. *J Appl Toxicol* 24: 349-353.

Hall LH, Kier LB, Phipps G. 1984. Structure-activity relationship studies on the toxicities of benzene derivatives: I. an additivity model. *Environ Toxicol Chem* 3: 355-365.

Hattula ML, Wasenius VM, Reunanen H, Arstila AU. 1981. Acute toxicity of some chlorinated phenols, catechols and cresols to trout. *Bull Environ Contam Toxicol* 26: 295-298.

Heck PE, Massey IJ, Aitken MD. 1992. Toxicity of reaction products from enzymatic oxidation of phenolic pollutants. *Water Sci Technol* 26: 2369-2371.

Heipieper HJ, Keweloh H, Rehm HJ. 1991. Influence of phenols on growth and membrane permeability of free and immobilized *Escherichia coli*. *Appl Environ Microbiol* 57: 1213-1217.

Heitmuller PT, Hollister TA, Parrish PR. 1981. Acute toxicity of 54 industrial chemicals to sheepshead minnows (*Cyprinodon variegatus*). *Bull Environ Contam Toxicol* 27: 596-604.

Henderson C, Pickering QH, Lemke AE. 1961. The effect of some organic cyanides (nitriles) on fish. *Proc. 15th Ind. Waste Conf. Purdue Univ.* 45: 120-130.

Hodson PV, Dixon DG, Kaiser KLE. 1984. Measurement of median lethal dose as a rapid indication of contaminant toxicity to fish. *Environ Toxicol Chem* 3: 243-254.

Hodson PV, Parisella R, Blunt B, Gray B, Kaiser KLE. 1991. Quantitative structure-activity relationships for chronic toxicity of phenol, p-chlorophenol, 2,4-dichlorophenol, pentachlorophenol, p-nitrophenol, and 1,2,4-trichlorobenzene to early life stages of rainbow trout (*Oncorhynchus mykiss*). Canadian Technical Report of Fisheries and Aquatic Sciences(1784) I-X: 1-56.

Holcombe GW, Philipps GL, Knuth ML, Felhabert T. 1984. The acute toxicity of selected substituted phenols, benzenes and benzoic acid esters to fathead minnows. *Environ Pollut (Ser A)* 35: 367-381.

Holdway DA, Dixon DG, Kaiser KLE. 1991. The acute toxicity of pulse-dosed, para-substituted phenols to larval American flagfish (*Jordanella floridae*): a comparison with toxicity to photoluminescent bacteria and predicted toxicity using log Kow. *Sci Total Environ* 104: 229-237.

Hollis EH, Lennon RE. 1954. The toxicity of 1085 chemicals to fish. Leetown, West Virginia: U.S. fish and wildlife service.

Huang DS, Tseng IC. 1996. Toxicity of phenol and monochlorophenols to growth and metabolic activities of *Pseudomonas*. *Bull Environ Contam Toxicol* 57: 69-76.

Huang J-C, Gloyna EF. 1968. Effects of organic compounds on photosynthetic oxygenation-I. Chlorophyll destruction and suppression of photosynthetic oxygen production. *Water Res* 2: 347-366.

Jennings JG, De Nys R, Charlton TS, Duncan MW, Steinberg PD. 1996. Phenolic compounds in the nearshore waters of Sydney, Australia. *Mar Freshw Res* 47: 951-959.

Kafka Z, Puncocharova J, Brezina M, Kuras M. 1995. Acute toxicity of some industrial chemicals. *Soil Environ.* 5: 625-626.

Kafka Z, Puncocharova J, Hrebikova M, Kuras M. 1999. Determination of acute toxicity of phenol type compounds. *Toxicol Environ Chem* 69: 133-137.

Kaiser KLE, Palabrica VS. 1991. Photobacterium phosphoreum toxicity data index. *Water Poll Res J Canada* 26: 361-431.

Keen R, Baillod CR. 1985. Toxicity to *Daphnia* of the end products of wet oxidation of phenol and substituted phenols. *Water Res* 19: 767-772.

Kim KT, Lee YG, Kim SD. 2006. Combined toxicity of copper and phenol derivatives to *Daphnia magna*: effect of complexation reaction. *Environ Internat* 32: 487-492.

Kishino T, Kobayashi K. 1995. Relation between toxicity and accumulation of chlorophenols at various pH, and their absorption mechanism in fish. *Water Res* 29: 431-442.

Kishino T, Kobayashi K. 1996. Acute toxicity and structure-activity relationships of chlorophenols in fish. *Water Res* 30: 387-392.

Kishino T, Kobayashi K. 1996. Studies on the mechanism of toxicity of chlorophenols found in fish through quantitative structure-activity relationships. *Water Res* 30: 393-399.

Klamer HJC, Beekman M. 1995. Estimating the 1-octanol/water partition coefficients (Kow) and fish bioconcentration factors (BCF) of unknown compounds using a gradient HPLC method. *Toxicology Modeling* 1: 169-179.

Knie J, Halke A, Juhnke I, Schiller W. 1983. Ergebnisse der untersuchungen von chemischen stoffen mit vier biotests. *Deutsche Gewass. Mitt.* 3: 77-79.

Kobayashi K, H. Akitake, K. Manabe. 1979. Relation between toxicity and accumulation of various chlorophenols in goldfish. *Bull Jap Soc Sci Fish* 45: 173-175.

Könemann H, Musch A. 1981. Quantitative structure-activity relationship in fish toxicity studies. Part 2: the influence of pH on the qsar of chlorophenols. *Toxicology* 19: 223-228.

Kopperman HL, Carlson RM, Caple R. 1974. Aqueous chlorination and ozonation studies I. Structure-toxicity correlations of phenolic compounds to *Daphnia magna*. *Chem-Biol Interact* 9: 245-251.

Kramer CR, Trümper L. 1986. Quantitative structure activity relations for the autotrophic growth inhibition of synchronous *Chlorella vulgaris* suspensions by monosubstituted phenols. *Biochem. Physiol. Pflanz.* 181 : 81-89.

Krassoi R, Anderson I, Everett D. 1997. Larval abnormalities in doughboy scallops *Chlamys (Mimachlamys) asperima* L. in response to test conditions and six reference toxicants. *Australas J Ecotoxicol* 3: 65-74.

Krijgsheld KR, Van der Gen A. 1986. Assessment of the impact of the emission of certain organochlorine compounds on the aquatic environment. Part I: monochlorophenols and 2,4-dichlorophenol. *Chemosphere* 15: 825-860.

Kühn R, Pattard M. 1990. Results of the harmful effects of water pollutants to green algae (*Scenedesmus subspicatus*) in the cell multiplication inhibition test. *Water Res* 24: 31-38.

Kühn R, Pattard M, Pernak KD, Winter A. 1989. Results of the harmful effects of selected water pollutants (anilines, phenols, aliphatic compounds) to *Daphnia magna*. *Water Res* 23: 495-499.

Kühn R, Pattard M, Pernak KD, Winter A. 1989. Results of the harmful effects of water pollutants to *Daphnia magna* in the 21 day reproduction test. *Water Res* 23: 501-510.

Kuiper J, Hanstveit AO. 1984. Fate and effects of 4-chlorophenol and 2,4-dichlorophenol in marine plankton communities in experimental enclosures. *Ecotoxicol Environ Saf* 8: 15-33.

Kuo WS. 1999. Synergistic effects of combination of photolysis and ozonation on destruction of chlorophenols in water. *Chemosphere* 39: 1853-1860.

Kwasniewska K, Kaiser KLE. 1983. Toxicities of selected phenols to fermentative and oxidative yeasts. *Bull Environ Contam Toxicol* 31: 188-194.

Lammering M W, Burbank N C Jr. 1960. The toxicity pf phenol, o-chlorophenol and o-nitrophenol to bluegill sunfish. 15: 541-555.

LeBlanc GA. 1980. Acute toxicity of priority pollutants to water flea (*Daphnia magna*). *Bull Environ Contam Toxicol* 24: 684-691.

LeBlanc GA. 1984. Comparative structure-toxicity relationships between acute and chronic effects to aquatic organisms. *QSAR in Environmental Toxicology* 235-260.

LeBlanc GA, Hilgenberg B, Cochrane BJ. 1988. Relationships between the structures of chlorinated phenols, their toxicity, and their ability to induce glutathione S-transferase activity in *Daphnia magna*. *Aquat Toxicol* 12: 147-155.

Lee HJ, Yoo SO, Lee JG, Kim BY, Chun UH. 1999. Prediction of EC50 of *Photobacterium phosphoreum* for CAHs and chlorophenol derivatives using QSAR. *Sanop Misaengmul Hakhoechi* 27 : 54-61.

Lindstrom M, Lindstrom A. 1980. Xhanges in the swimming activity of *pontoporeia affinis* (Crustacea, Amphipoda) after exporuse to sublethal concentrations of phenol, 4-chlorophenol and styrene. *Ann Zool Fenn* 17: 221-231.

Lindén E, Bengtsson EB, Svanberg O, Sundström G. 1979. The acute toxicity of 78 chemicals and pesticide formulations against two brackish water organisms, the bleak (*Alburnus alburnus*) and the harpacticoid *Nitocra spinipes*. *Chemosphere* 11/12: 843-851.

Liu D. 1985. Effect of bacterial cultures on microbial toxicity assessment. *Bull Environ Contam Toxicol* 34: 331-339.

Liu D, Thomson K, Kaiser KLE. 1982. Quantitative structure-toxicity relationship pf halogenated phenols on bacteria. *Bull Environ Contam Toxicol* 29: 130-136.

Long SM, Holdway DA. 2002. Acute toxicity of crude and dispersed oil to *Octopus pallidus* (Hoyle, 1885) hatchlings. *Water Res* 36: 2769-2776.

Lu X, Tao S, Hu H, Dawson RW. 2000. Estimation of bioconcentration factors of nonionic organic compounds in fish by molecular connectivity indices and polarity correction factors. *Chemosphere* 41: 1675-1688.

Ma M, Tong Z, Wang Z, Zhu W. 1999. Acute toxicity bioassay using the freshwater luminescent bacterium *Vibrio-qinghaiensis* sp. Nov.-Q67. *Bull Environ Contam Toxicol* 62: 247-253.

MacPhee C, Ruelle R. 1969. Lethal effects of 1,888 chemicals upon four species of fish from western North America. *Bulletin* 3. Moscow, ID: University of Idaho, Forest Wildlife, and Range Experiment Station. 112 pp.

Mayes MA, H.C. Alexander, D.C. Dill. 1983. A study to assess the influence of age on the response of fathead minnows in static acute toxicity tests. *Bull Environ Contam Toxicol* 31: 139-147.

Mayes MA, Shafer TJ, Barron MG. 1988. Critical evaluation of the fathead minnow 7-day static renewal test. *Chemosphere* 17: 2243-2252.

Mayura K, Smith EE, Clement BA, Phillips TD. 1991. Evaluation of the developmental toxicity of chlorinated phenols utilizing *Hydra attenuata* and postimplantation rat embryos in culture. *Toxicol Appl Pharmacol* 108: 253-266.

McCarthy LS, Hodson PV, Craig G R, Kaiser KLE. 1985. The use of quantitative structure-activity relationships to predict the acute and chronic toxicities of organic chmicals to fish. *Environ Toxicol Chem* 4: 595-606.

McLeese DW, Zitko V, Peterson MR. 1979. Structure-lethality relationship for phenols, anilines and other aromatic compounds in shrimp and clams. *Chemosphere* 2: 53-57.

Nendza M, Seydel JK. 1990. Application of bacterial growth kinetics to in vitro toxicity assessment of substituted phenols and anilines. *Ecotoxicol Environ Saf* 19: 228-241.

Niculescu SP, Kaiser KLE, Schultz TW. 2000. Modeling the toxicity of chemicals to *Tetrahymena pyriformis* using molecular fragment descriptors and probabilistic neural networks. *Arch Environ Contam Toxicol* 39: 289-298.

Ogawa T, Hirose Y, Yatome C. 1991. Effects of monochlorophenols and p-chloroaniline on nucleic acid synthesis in microbial growth process. *Bull Environ Contam Toxicol* 47: 8-14.

Oksama M, Kristoffersson R. 1979. The toxicity of phenol to *Phoxinus phoxinus*, *Gammarus duebeni* and *Mesidotea entomon* in brackish water. *Ann. Zool. Fennici* 16: 209-216.

Palau CA, Hutchinson TH. 1998. Acute toxicity of chlorinated organic chemicals to the embryos and larvae of the marine worm *Platynereis dumerilii* (Polychaeta: Nereidae). *Environ Toxicol Water Qual* 13: 149-155.

Park JH, Lee HJ. 1993. Estimation of bioconcentration factor in fish, adsorption coefficient for soils and sediments and interfacial tension with water for organic nonelectrolytes based on the linear solvation energy relationships. *Chemosphere* 26: 1905-1916.

Perez-Padilla GG, Grady CPLJ. 1998. Effects of synthetic organic chemical on bacterial death and lysis. *Water Sci Technol* 37: 385-393.

Phipps GL, Holcombe GW, Fiandt JT. 1981. Acute toxicity of phenol and substituted phenols to the fathead minnow. *Bull Environ Contam Toxicol* 26: 585-593.

Pickering QH, C. Henderson. 1966. Acute toxicity of some important petrochemicals to fish. *J. Water Pollut. Control Fed* 38: 1419-1429.

Pill KG, Kupillas GE, Picardal FW, Arnold RG. 1991. Estimating the toxicity of chlorinated organic compounds using a multiparameter bacterial bioassay. *Environ Toxicol Water Qual* 6: 271-291.

Pollino CA, Holdway DA. 1999. Potential of two hydra species as standard toxicity test animals. *Ecotoxicol Environ Saf* 43: 309-316.

Radix P, Leonard M, Papantoniou C, Roman G, Saouter E, Gallotti SS, Thiebaud H, Vasseur P. 1999. Comparison of *Brachionus calyciflorus* 2-d and Microtox(R) chronic 22-h tests with *Daphnia magna* 21-d test for the chronic toxicity assessment of chemicals. *Environ Toxicol Chem* 18: 2178-2185.

Ramos UE, Vaes WHJ, Mayer P, Hermens JLM. 1999. Algal growth inhibition of *Chlorella pyrenoidosa* by polar narcotic pollutants: toxic cell concentrations and QSAR modelling. *Aquat Toxicol* 46: 1-10.

Ramos UE, Vermeer C, Vaes W H J, Hermens JLM. 1998. Acute toxicity of polar narcotics to three aquatic species (*Daphnia magna*, *Poecilia reticulata* and *Lymnaea stagnalis*) and its relation to hydrophobicity. *Chemosphere* 37: 633-650.

Randall TL, Knopp PV. 1980. Detoxification of specific organic substances by wet oxidation. *J. Water Pollut. Control Fed.* 52: 2117-2130.

Ribo JM, Rogers F. 1990. Toxicity of mixtures of aquatic contaminants using the luminescent bacteria bioassay. *Toxicity Assessment* 5: 135-152.

Ribo JM, Kaiser KLE. 1983. Effects of selected chemicals to photoluminescent bacteria and their correlations with acute and sublethal effects on other organisms. *Chemosphere* 12: 1421-1442.

Rübelt C, Dietz F, Kickuth R, Koppe P, Kunte H, Pescherl G, Sonneborn M. 1982. *Schadstoffe im Wasser*, Band II, Phenole. Chapter 5: Biologische Wirksamkeit. pp 101-115. Boppard: Harald Boldt Verlag.

Saarikoski J, Viluksela M. 1981. Influence of pH on the toxicity of substituted phenols to fish. *Arch Environ Contam Toxicol* 10: 747-753.

Saarikoski J, Viluksela M. 1982. Relation between physicochemical properties of phenols and their toxicity and accumulation in fish. *Ecotoxicol Environ Saf* 6: 501-512.

Salkinoja-Salonen M, Saxelin M-L, Pere J, Jaakkola T, Saarikoski J, Hakulinen R, Koistinen O. Chapter 56: Analysis of toxicity and biodegradability of organochlorine compounds released into the environment in bleaching effluent of kraft pulping. *Industrial wastewater analysis*. p. 1131-1164.

Schmidt C, Schnabl H. 1988. Structure-activity-relationship of organic substances and bioindication. *Vom Wasser* 70: 21-32.

Schultz TW. 1987a. Relative toxicity of para-substituted phenols: log K_{ow} and pKa-dependent structure-activity relationships. *Bull Environ Contam Toxicol* 38: 994-999.

Schultz TW. 1987b. The use of the ionization constant (pKa) in selecting models of toxicity in phenols. *Ecotoxicol Environ Saf* 14 : 178-183.

Schultz TW. 1997. Tetratox: *Tetrahymena pyriformis* population growth impairment endpoint-a surrogate for fish lethality. *Toxicol Method* 7: 289-309.

Schultz TW. 1999. Structure-toxicity relationships for benzenes evaluated with *Tetrahymena pyriformis*. *Chem Res Toxicol* 12: 1262-1267.

Schultz TW, Holcombe GW, Phipps GL. 1986. Relationships of quantitative structure-activity to comparative toxicity of selected phenols in the *Pimephales promelas* and *Tetrahymena pyriformis* test systems. *Ecotoxicol Environ Saf* 12: 146-153.

Schultz TW, Cajina QM, Chang M, Lin DT, Jain R. 1988. Structure-toxicity relationships of para-position alkyl- and halogen-substituted monoaromatic compounds. *ASTM STP 1007*: 410-423.

Schultz TW, Cajina-Quezada M, Wesly SK. 1989. Structure-toxicity relationships for mono alkyl- or halogen-substituted anilines. *Bull Environ Contam Toxicol* 43: 564-569.

Schultz TW, Lin DT, Wilke TS, Arnold LM. 1990. Quantitative structure-activity relationships for the *Tetrahymena pyriformis* population growth endpoint: a mechanisms of action approach. *Environ Toxicol Chem* 241-262.

Schultz TW, Wyatt NL, Lin DT. 1990. Structure-toxicity relationships for nonpolar narcotics: A comparison of data from the *Tetrahymena*, *Photobacterium* and *Pimephales* systems. *Bull Environ Contam Toxicol* 44: 67-72.

Schultz TW, Sinks GD, Cronin MTD. 1997. Identification of mechanisms of toxic action of phenols to *Tetrahymena pyriformis* from molecular descriptors. In: Chen F, Schueuermann G, eds. *Quant. Struct.-Act. Relat. Environ. Sci.-VII, Proc. QSAR 96*. SETAC Press. p. 329-342.

Schultz TW, Bearden AP, Jaworska JS. 1996. A novel QSAR approach for estimating toxicity of phenols. *SAR QSAR Environ Res* 5: 99-112.

Schüürmann G, Segner H, Jung K. 1997. Multivariate mode-of-action analysis of acute toxicity of phenols. *Aquat Toxicol* 38: 277-296.

Shang NC, Yu YH, Ma HW. 2002. Variation of toxicity during the ozonation of monochlorophenolic solutions. *J Environ Sci Health Part A Toxic-Hazard Subst Environ Eng* 37: 261-271.

Sharma HA, Barber JT, Ensley HE, Polito MA. 1997. A comparison of the toxicity and metabolism of phenol and chlorinated phenols by *Lemna gibba*, with special reference to 2,4,5-trichlorophenol. *Environ Toxicol Chem* 16: 346-350.

Shigeoka T, Sato Y, Takeda Y, Yoshida K, Yamauchi F. 1988. Acute toxicity of chlorophenols to green algae, *Selenastrum capricornutum* and *Chlorella vulgaris*, and quantitative structure-activity relationships. *Environ Toxicol Chem* 7: 847-854.

Sixt S, Altschuh J. 1997. Prediction of luminescent bacteria toxicity using quantum chemical descriptors: test of a classification scheme. *Quantitative Structure-Activity Relationships in environmental sciences VII*. Chapter 24. SETAC Press. p. 343-362.

Smith S, Furay VJ, Layiwola PJ, Menezes FJA. 1994. Evaluation of the toxicity and quantitative structure-activity relationships (QSAR) of chlorophenols to the copepodid stage of a marine copepod (*Tisbe battagliai*) and two species of benthic flatfish, the flounder (*Platichthys flesus*) and sole (*Solea solea*). *Chemosphere* 28: 825-836.

Steinberg CEW, Sturm A, Kelbel J, Lee SK, Hertkorn N, Freitag D, Kettrup AA. 1992. Changes of acute toxicity of organic chemicals to *Daphnia magna* in the presence of dissolved humic material (DHM). *Acta Hydroch Hydrobiol* 20: 326-332.

Strotmann UJ, Eglsaer H. 1995. The toxicity of substituted phenols in the nitrification inhibition test and luminescent bacteria test. *Ecotoxicol Environ Saf* 30: 269-273.

Tissot A, Boule P, Lemaire J, Lambert S, Palla JC. 1985. Photochemistry and environment: 10. Evaluation of the toxicity of the phototransformation products of hydroquinone and chlorophenols in aqueous environments. *Chemosphere* 14: 1221-1230.

Trabalka JR, Burch MB. 1979. Effects of water-soluble chlorine-containing organics on aquatic environments - another perspective. *Toxicol Lett* 3: 201-207.

Trapido M, Veressinina Y, Hentunen JK, Hirvonen A. 1997. Ozonation of chlorophenols: kinetics, byproducts and toxicity. *Environ Technol* 18: 325-332.

Van Wezel AP, Opperhuizen A. 1995. Narcosis due to environmental pollutants in aquatic organisms: Residue-based toxicity, mechanisms, and membrane burdens. *Crit Rev Toxicol* 25: 255-279.

Veith GD, Broderius SJ. 1987. Structure-toxicity relationships for industrial chemicals causing type (II) narcosis syndrome. *Environ Toxicol* 2: 385-391.

Verschueren K. 1983. *Handbook of environmental data on organic chemicals*, second edition. New York, USA: Van Nostrand Reinhold Company Inc. 1310 pp.

Vismara C, Rossetti C, Bolzacchini E, Orlandi M, Luperini A, Bernardini G. 1996. Toxicity evaluation of 4-chloro-2-methylphenoxyacetic acid by Microtox and comparison with FETAX. *Bull Environ Contam Toxicol* 56: 85-89.

Wagner A, Winkler U, Luemmen P. 1989. Mutants of luminous bacteria selected for bioluminescent toxicity tests. *J. Biolumin. Chemilumin.* 4: 342-345.

Wang X, Dong Y, Xu S, Wang L, Han S. 2000. Quantitative structure-activity relationships for the toxicity to the tadpole *Rana japonica* of selected phenols. *Bull Environ Contam Toxicol* 64: 859-865.

Warne MSJ, Westbury AM. 1999. A compilation of data on the toxicity of chemicals to species in Australasia. Part II: Organic chemicals. *Australas J Ecotoxicol* 5: 21-84.

Weber J, Plantikow A, Kreutzmann J. 2000. A new bioassay with the yeast *Saccharomyces cerevisiae* on aquatoxic pollution. *Umweltwiss Schadst-Forsch* 12: 185-189.

WHO. 1989. Chlorophenols other than pentachlorophenol. *Environmental Health Criteria* (93). World Health Organization. 208 pp.

Wood EM. 1953. 1. The toxicity of 3400 chemicals to fish. Kearneysville, West Virginia: U.S. fish and wildlife service. 196 pp.

Yasuda Y, Tochikubo K, Hachisuka Y, Tomida H, Ikeda K. 1982. Quantitative structure-inhibitory activity relationships of phenols and fatty acids of *Bacillus subtilis* spore germination. *J Med Chem* 25: 315-320.

Yen JH, Lin KH, Wang YS. 2002. Acute lethal toxicity of environmental pollutants to aquatic organisms. *Ecotoxicol Environ Saf* 52: 113-116.

Zhao YH, He YB, Wang LS. 1995. Predicting toxicities of substituted aromatic hydrocarbons to fish by toxicities to *Daphnia magna* or *Photobacterium phosphoreum*. *Toxicol Environ Chem* 51: 191-195.

Zhao Y, Wang L, Gao H, Zhang Z. 1993. Quantitative structure-activity relationships-relationship between toxicity of organic chemicals to fish and to *Photobacterium phosphoreum*. *Chemosphere* 26: 1971-1979.

RIVM

National Institute
for Public Health
and the Environment

P.O. Box 1
3720 BA Bilthoven
The Netherlands
www.rivm.com