

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

# Environmental risk limits for triphenyltin in water

RIVM report 601714018/2012 R. van Herwijnen | C.T.A. Moermond | P.L.A. van Vlaardingen | F.M.W. de Jong | E.M.J. Verbruggen



National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

# Environmental risk limits for triphenyltin in water

RIVM Report 601714018/2012

## Colophon

© RIVM 2012

Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication.

R. van Herwijnen C.T.A. Moermond P.L.A. van Vlaardingen F.M.W. de Jong E.M.J. Verbruggen

Contact: René van Herwijnen Expertise Centre for Substances rene.van.herwijnen@rivm.nl

This investigation has been performed by order and for the account of the Ministry of Infrastructure and the Environment, Directorate for Sustainability, within the framework of the project 'Chemical aspects of the Water Framework Directive and the Directive on Priority Substances'.

## Abstract

#### Environmental risk limits for triphenyltin in water

RIVM has, by order of the Ministry of Infrastructure and the Environment, derived environmental risk limits for triphenyltin. This was necessary because the current risk limts have not been derived according to the most recent methodology. Main uses of triphenyltin were for wood preservation and as antifouling on ships. The use as antifouling has been banned within Europe since 2003. The Dutch Steering Committee for Substances will set new standards on the basis of the scientific advisory values in this report.

Environmental risk limits have been derived for short term concentration peaks and for long term exposure at which harmful effects for water are not expected. The environmental risk limits for long term exposure are derived for annual average concentrations. Monitoring data indicate that these are currently likely to be exceeded in Dutch seawater and in saltwater sediment. For freshwater this cannot be determined because the new environmental risk limits for long term exposure are lower than the current detection level for TPT in the environment.

For the environmental risk limits for long term exposure in surface water, three routes have been examined: direct ecotoxicity, secondary poisoning and consumption of fish by humans. Direct toxicity is the most critical of these and determines the overall long term environmental risk limit in fresh- and saltwater (0.23 nanogram per liter). The environmental risk limit that protects the ecosystem from effects of short term concentration peaks, is 0.47 microgram per liter for fresh- and saltwater.

#### Keywords:

triphenyltin; Water Framework Directive (WFD); environmental risk limits; water

RIVM Report 601714018

## Rapport in het kort

#### Milieurisicogrenzen voor trifenyltin in water

Het RIVM heeft, in opdacht van het ministerie van Infrastructuur en Milieu (I&M), milieurisicogrenzen voor trifenyltin in water bepaald. Dit was nodig omdat de huidige norm voor trifenyltin voor waterkwaliteit niet is afgeleid volgens de meest recente methodiek. Trifenyltin wordt voornamelijk gebruikt als middel om hout te conserveren en om te voorkomen dat onder water op de romp van schepen organismen groeien (aangroeiwerend middel). Het gebruik als aangroeiwerend middel is in Europa sinds 2003 niet meer toegestaan. De Stuurgroep Stoffen stelt de nieuwe normen vast op basis van de wetenschappelijke advieswaarden in dit rapport.

Er zijn milieurisicogrenzen bepaald voor kortdurende concentratiepieken en voor langdurige blootstelling waarbij geen schadelijke effecten te verwachten zijn. De milieurisicogrenzen voor langdurige blootstelling zijn bepaald voor jaargemiddelde concentraties. Meetgegevens geven aan dat deze waarschijnlijk in Nederlands zeewater en in zoutwatersediment worden overschreden. Voor zoetwater is dit onbekend, omdat de nieuwe milieurisicogrens lager is dan de laagste concentratie die met de huidige technieken in het milieu kan worden aangetoond.

Voor de milieurisicogrenzen voor langdurige blootstelling in oppervlaktewater zijn drie routes onderzocht: directe effecten op waterorganismen, indirecte effecten op vogels en zoogdieren via het eten van prooidieren, en indirecte effecten op mensen via het eten van vis. De eerste van de drie levert de laagste waarde voor trifenyltin en bepaalt daarmee de milieurisicogrens voor langdurige blootstelling voor zoet- en zoutwater (0,23 nanogram per liter). De milieurisicogrens die het ecosysteem beschermt tegen kortdurende concentratiepieken, is 0.47 microgram per liter voor zoet- en zoutwater.

Trefwoorden: trifenyltin; Kaderrichtlijn Water (KRW); milieurisicogrenzen; water RIVM Report 601714018

## Contents

## Summary-9

| <b>1</b>                                 | Introduction-11                                                         |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| 1.1                                      | Project framework-11                                                    |  |  |  |
| 1.2                                      | Current standards for TPT-12                                            |  |  |  |
| 1.3                                      | Methodology-12                                                          |  |  |  |
| 1.4                                      | Status of the results-14                                                |  |  |  |
| <b>2</b>                                 | Substance information on TPT-15                                         |  |  |  |
| 2.1                                      | General information-15                                                  |  |  |  |
| 2.2                                      | Information on production and use-15                                    |  |  |  |
| 2.3                                      | Identification-15                                                       |  |  |  |
| 2.4                                      | Physico-chemical properties-16                                          |  |  |  |
| 2.5                                      | Behaviour and distribution in the environment-20                        |  |  |  |
| 2.6                                      | Bioconcentration and biomagnification-20                                |  |  |  |
| 2.7                                      | Human toxicology-32                                                     |  |  |  |
| 2.8                                      | Trigger values-32                                                       |  |  |  |
| <b>3</b>                                 | Water: ecotoxicity data and derivation of ERLs-35                       |  |  |  |
| 3.1                                      | Laboratory data-35                                                      |  |  |  |
| 3.2                                      | Field and mesocosm data-36                                              |  |  |  |
| 3.3                                      | Treatment of fresh- and saltwater data-36                               |  |  |  |
| 3.4                                      | Derivation of the MPC <sub>fw</sub> and MPC <sub>sw</sub> -37           |  |  |  |
| 3.5                                      | Derivation of the MPC <sub>dw, hh</sub> -39                             |  |  |  |
| 3.6                                      | Derivation of the NC <sub>fw</sub> and NC <sub>sw</sub> -40             |  |  |  |
| 3.7                                      | Derivation of the MAC <sub>fw, eco</sub> and MAC <sub>sw, eco</sub> -40 |  |  |  |
| 3.8                                      | Derivation of the SRC <sub>aquatic, eco</sub> -41                       |  |  |  |
| <b>4</b>                                 | <b>Sediment: Toxicity data derivation of ERLs-43</b>                    |  |  |  |
| 4.1                                      | Sediment toxicity data-43                                               |  |  |  |
| 4.2                                      | Derivation of the MPC <sub>sediment</sub> -43                           |  |  |  |
| 4.3                                      | Derivation of the NC <sub>sediment</sub> -43                            |  |  |  |
| 4.4                                      | Derivation of the SRC <sub>sediment, eco</sub> -43                      |  |  |  |
| 5                                        | Comparison of derived ERLs with monitoring data-45                      |  |  |  |
| 6                                        | Conclusions—47                                                          |  |  |  |
| References—49                            |                                                                         |  |  |  |
| Appendix 1                               | 1. Data on bioconcentration—61                                          |  |  |  |
| Appendix 2. Detailed ecotoxicity data—71 |                                                                         |  |  |  |

## Appendix 3. Summary of mesocosm studies-99

RIVM Report 601714018

## Summary

Environmental risk limits are derived for triphenyltin (TPT) using ecotoxicological, physico-chemical, and human toxicological data. They represent environmental concentrations of a substance offering different levels of protection to man and ecosystems. It should be noted that the ERLs are scientifically derived values. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs) from these ERLs. ERLs should thus be considered as preliminary values that do not have an official status.

This report contains ERLs for TPT in surface water and sediment. The following ERLs are derived: Negligible Concentration (NC), Maximum Permissible Concentration (MPC), Maximum Acceptable Concentration for ecosystems ( $MAC_{eco}$ ), and Serious Risk Concentration for ecosystems ( $SRC_{eco}$ ). The risk limits are based on data from the public literature and data from the EU risk assessments of TPT as plant protection product.

The methodology used for the derivation of the MPC and  $MAC_{eco}$  for water and sediment, is in accordance with the recently published European guidance in the context of the Water Framework Directive. An overview of the derived environmental risk limits is given in Table 1.

The derived ERLs for long-term exposure are lower than the reported limits of quantification from regular monitoring programs. A preliminary screening of monitoring data shows that there are some locations where TPT has been detected and the proposed ERLs may thus be exceeded, depending on the frequency of detection. The derived ERLs for suspended matter and sediment in the marine environment are likely to be exceeded.

When using the ERLs for risk assessment or compliance check, mixture toxicity of the total number of organotin compounds should be taken into account through the added risk approach.

| EKL                                   | unit                 | vaiue |                        |                       |                       |
|---------------------------------------|----------------------|-------|------------------------|-----------------------|-----------------------|
|                                       |                      | MPC   | NC                     | MAC <sub>eco</sub>    | SRC <sub>eco</sub>    |
| fresh water <sup>a</sup>              | ng/L                 | 0.23  | 2.3 x 10 <sup>-3</sup> | 4.7 x 10 <sup>2</sup> | 4.0 x 10 <sup>2</sup> |
| susp. matter fresh water <sup>b</sup> | µg/kg <sub>dwt</sub> | 0.27  | 2.7 x 10⁻³             |                       |                       |
| salt water                            | ng/L                 | 0.23  | 2.3 x 10⁻³             | 4.7 x 10 <sup>2</sup> | 4.0 x 10 <sup>2</sup> |
| susp. matter salt water <sup>b</sup>  | µg/kg <sub>dwt</sub> | 0.27  | 2.7 x 10⁻³             |                       |                       |
| sediment fresh water <sup>c</sup>     | ng/kg <sub>dwt</sub> | 2.2   | 0.022                  |                       | 2.2 x 10 <sup>3</sup> |
| sediment salt water <sup>c</sup>      | ng/kg <sub>dwt</sub> | 2.2   | 0.022                  |                       | 2.2 x 10 <sup>3</sup> |

Table 1: Derived MPC, NC, MAC<sub>eco</sub>, and SRC<sub>eco</sub> values for triphenyltin.

 $^a$  From the MPC\_{fw,\,eco}, MPC\_{fw,\,secpois} and MPC\_hh,  $_{food,\,water}$  the lowest one is selected as the 'overall' MPC\_water.

<sup>b</sup> Expressed on the basis of Dutch standard suspended matter.

<sup>c</sup> Expressed on the basis of Dutch standard sediment.

RIVM Report 601714018

## 1 Introduction

#### 1.1 Project framework

In this report, environmental risk limits (ERLs) for surface water and sediment are derived for triphenyltin (TPT). TPT is a herbicide, fungicide and biocide that is considered as a specific pollutant for the Netherlands in the context of the Water Framework Directive (WFD). The compound is listed in the Dutch decree on WFD-monitoring (*Regeling monitoring Kaderrichtlijn Water*). The aim of this report is to present updated risk limits that can be used to set water quality standards in accordance with the WFD. The derivation of the ERLs is performed in the context of the project Chemical aspects of the Water Framework Directive, which is closely related to the project INS (International and national environmental quality standards for substances in the Netherlands). TPT compounds are also mentioned as relevant for the river basin of the Ems (Anonimous, 2009). The following ERLs are considered:

- Maximum Permissible Concentration (MPC) defined in VROM (2004) and INS (1999) as the standard based on scientific data which indicates the concentration in an environmental compartment for which:
  - 1 no effect to be rated as negative is to be expected for ecosystems;
  - 2a no effect to be rated as negative is to be expected for humans (for non-carcinogenic substances);
  - 2b for humans no more than a probability of  $10^{-6}$  per year of death can be calculated (for carcinogenic substances). Within the scope of the Water Framework Directive (WFD), a probability of  $10^{-6}$  on a life-time basis is used.

The MPC for water should not result in risks due to secondary poisoning and/or risks for human health aspects. These aspects are therefore also addressed in the MPC derivation. Separate MPC-values are derived for the freshwater and saltwater environment.

- Negligible Concentration (NC) the concentration in fresh- and saltwater at which effects to ecosystems are expected to be negligible and functional properties of ecosystems are safeguarded fully. It defines a safety margin which should exclude combination toxicity. The NC is derived by dividing the MPC by a factor of 100.
- Maximum Acceptable Concentration ( $MAC_{eco}$ ) for aquatic ecosystems the concentration protecting aquatic ecosystems from effects due to short-term exposure or concentration peaks. The  $MAC_{eco}$  is derived for freshwater and saltwater ecosystems.
- Serious Risk Concentration for ecosystems (SRC<sub>eco</sub>) the concentration in water at which possibly serious ecotoxicological effects are to be expected. The SRC<sub>eco</sub> is valid for the freshwater and saltwater compartment.
- Maximum Permissible Concentration for surface water that is used for drinking water abstraction ( $MPC_{dw, hh}$ ). This is the concentration in surface water that meets the requirements for use of surface water for drinking water production. The  $MPC_{dw, hh}$  specifically refers to locations that are used for drinking water abstraction.

The quality standards in the context of the WFD refer to the absence of any impact on community structure of aquatic ecosystems. Hence, not the potential to recover after transient exposure, but long-term undisturbed function is the protection objective under the WFD. Recovery in a test situation, after a limited exposure time, is therefore not included in the derivation of the MPC and MAC.

#### 1.2 Current standards for TPT

Current standards can be found in the *Regeling monitoring KRW* and at the website 'Risico's van stoffen' (<u>http://www.rivm.nl/rvs/</u>). For freshwater and marine waters, MPCs of  $0.005 \mu g/L$  and  $0.0009 \mu g/L$  are reported, based on total concentration in water. These values are based on the evaluation performed by Crommentuijn et al. (1997).

### 1.3 Methodology

The methodology for risk limit derivation is described in detail in the INSguidance document (Van Vlaardingen and Verbruggen, 2007), which is further referred to as the INS-Guidance. The methodology is based on the Technical Guidance Document (TGD), issued by the European Commission and developed in support of the risk assessment of new notified chemical substances, existing substances and biocides (EC, 2003) and on the Manual for the derivation of Environmental Quality Standards in accordance with the Water Framework Directive (Lepper, 2005). The European technical guidance for the derivation of environmental quality standards in the context of the WFD has been revised recently (EC, 2011). Therefore, the terminology is harmonised as much as possible and the new guidance is followed in the case it deviates from the INSquidance. This specifically applies to the treatment of data for freshwater and marine species (see section 3.3) and the derivation of the MAC (see section 3.7), for which the new methodology is used (EC, 2011). This also holds for the MPC for surface waters intended for the abstraction of drinking water (MPC<sub>dw, hh</sub>, see section 3.5). In the INS-guidance, this is one of the MPCs from which the lowest value should be selected as the general MPC<sub>water</sub> (see section 3.1.6 and 3.1.7 of the INS-Guidance). According to the new guidance, the MPC<sub>dw. bh</sub> is not taken into account for the derivation of the general MPC<sub>water</sub>, but specifically refers to locations that are used for drinking water abstraction. Another difference is that according to the new WFD-guidance, derived ERLs refer to dissolved concentrations in water, instead of total.

#### 1.3.1 Data sources

Data of existing evaluations were used as a starting point. An on-line literature search was performed using Scopus at <u>www.scopus.com</u>. The last search has been performed on 23 March 2011. In addition to this, RIVM's e-tox base, EPA's ECOTOX database, IUCLID and other data sources as listed in the INS-Guidance were checked. There are curently no REACH dossiers available for TPT compounds.

Information on physico-chemical properties, environmental behaviour and human toxicology, including threshold limits, was retrieved from the information sources as mentioned in the INS-Guidance. The available data on human toxicology were reviewed by a human toxicologist at the RIVM.

#### 1.3.2 Data evaluation

Ecotoxicity studies were screened for relevant endpoints (i.e. those endpoints that have consequences at the population level of the test species) and thoroughly evaluated with respect to the validity (scientific reliability) of the study. A detailed description of the evaluation procedure is given in sections 2.2.2 and 2.3.2 of the INS-Guidance and in the Annex to the EQS-guidance under the WFD (EC, 2011). In short, the following reliability indices were assigned, based on Klimisch et al. (1997):

#### Ri 1: Reliable without restriction

'Studies or data ... generated according to generally valid and/or internationally accepted testing guidelines (preferably performed according to GLP) or in which the test parameters documented are based on a specific (national) testing guideline ... or in which all parameters described are closely related/comparable to a guideline method.'

#### Ri 2: Reliable with restrictions

'Studies or data ... (mostly not performed according to GLP), in which the test parameters documented do not totally comply with the specific testing guideline, but are sufficient to accept the data or in which investigations are described which cannot be subsumed under a testing guideline, but which are nevertheless well documented and scientifically acceptable.'

#### Ri 3: Not reliable

'Studies or data ... in which there are interferences between the measuring system and the test substance or in which organisms/test systems were used which are not relevant in relation to the exposure (e.g., unphysiologic pathways of application) or which were carried out or generated according to a method which is not acceptable, the documentation of which is not sufficient for an assessment and which is not convincing for an expert judgment.'

#### Ri 4: Not assignable

'Studies or data ... which do not give sufficient experimental details and which are only listed in short abstracts or secondary literature (books, reviews, etc.).'

#### Citations

In case of (self-)citations, the original (or first cited) value is considered for further assessment, and an asterisk is added to the Ri of the endpoint that is cited.

All available studies are summarised in data-tables that are included as Annexes to this report. These tables contain information on species characteristics, test conditions and endpoints. Explanatory notes are included with respect to the assignment of the reliability indices.

#### 1.3.3 Specific considerations for TPT

In the case of TPT, only studies in flow-through systems and studies where endpoints were based on measured concentrations were accepted as reliable. Tremolada et al. (2006) measured TPT during 28 days of exposure of the echinoderm *Antedon mediterrana*. With a density of 1.2 grams of biota per litre of water in a renewal system where 20% of the artificial seawater was replaced daily, average measured concentrations were a factor of 15-20 lower than nominal. Models show that the loss of 92-95% of the added compound is mainly caused by sorption by biota, combined with biotransformation (Tremolada et al., 2006). This is confirmed by Huang et al. (1993), who showed that without biota the concentration of TPT stayed within 90% of nominal over seven days, but with algae present the concentration dropped to 33% of nominal. Fent and Meier (1994) showed that concentrations in a renewal system with embryonic or hatched fish larvae decreased to 53% (range 22-85%) of initial values. The largest reduction in concentration was observed for the lowest exposure concentrations. In contrast, Jarvinen et al. (1988) reported a loss over 96 hours of only 1 to 11%. The details of the test are however not given and therefore it is unknown if biota were available in the test system. Nevertheless, most references given above indicate that the actual exposure concentrations. Therefore, endpoints from studies in static or renewal systems where concentrations were not measured are not considered reliable. Studies which are not valid due to the lack of measurements can still be used as circumstantial evidence.

#### 1.4 Status of the results

The results presented in this report have been discussed by the members of the scientific advisory group for the INS-project (WK-INS). It should be noted that the ERLs in this report are scientifically derived values, based on (eco)toxicological, fate and physico-chemical data. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs). ERLs should thus be considered as advisory values that do not have an official status.

## 2 Substance information on TPT

#### 2.1 General information

TPT compounds are triphenyl derivatives of tetravalent tin. They are lipophilic and have low solubility in water. Since TPT compounds are salts which dissociate in the environment and the TPT-cation remains unchanged, data available for all TPT compounds (TPT chloride, -acetate, -hydroxide) are evaluated. The ERLs will be expressed in concentration of the dissociated cation.

### 2.2 Information on production and use

TPT compounds have been used extensively as algicides and molluscicides in antifouling products since the 1960s. Use of triorganotins in antifouling paints has been restricted in many countries because of their catastrophic effects on the oyster industry and more general effects on the aquatic ecosystem. TPT was used as a non-systemic fungicide with mainly protective action. In the Netherlands, the use of TPT is prohibited since 2003. In the EU, there is no authorisation for the use of TPT acetate and TPT hydroxide as plant protection product.

#### 2.3 Identification

Information on the identification of different species of TPT are presented in the tables below.



Table 2: Identification of triphenyltin.



## 2.4 Physico-chemical properties

Physico-chemical properties of TPT are presented in the following tables for different ionic forms. Bold values are taken forward for ERL derivation.

| Parameter                                | lloit               | Value                       | Pomark                                                                                                                                       | Deference                                                  |
|------------------------------------------|---------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Malagular                                |                     |                             | RellialK                                                                                                                                     |                                                            |
| weight                                   | [g/moi]             | 385.5                       |                                                                                                                                              | HSDB (2005)                                                |
| Water<br>solubility                      | [mg/L]              | 40                          | 20°C                                                                                                                                         | HSDB (2005)                                                |
| ,                                        |                     | 1.2                         | 10°C, pH 7.5, distilled water*                                                                                                               | Inaba et al.<br>(1995)                                     |
|                                          |                     | 0.6                         | 10°C, pH 7.5, seawater*                                                                                                                      | Inaba et al.<br>(1995)                                     |
|                                          |                     | 0.99                        | estimated from log $K_{ow}$ of 4.19                                                                                                          | ÙS EPÁ (2009)                                              |
| nK                                       | [-]                 | 1<br>0.078                  | from experimental database estimated from fragments                                                                                          | US EPA (2009)<br>US EPA (2009)                             |
| log K <sub>ow</sub>                      | [-]                 | 3.56                        | estimated - ClogP                                                                                                                            | Biobyte (2006)<br>Biobyte (2006)                           |
|                                          |                     | 4.19                        | experimental - Mogr                                                                                                                          | HSDB (2005)                                                |
| log K <sub>oc</sub>                      | [-]                 | 3.89                        | experimental, calculated from Freundlich log $K_d$ of 1.81 and $f_{om}$ of 1.43%, $1/n = 0.793$                                              | Sun et al. (1996)                                          |
|                                          |                     | 3.5                         | QSAR Sabljic hydrophobics                                                                                                                    | Van Vlaardingen<br>and Verbruggen<br>(2007)                |
|                                          |                     | 5.7<br>3.6<br>5.09;<br>4.73 | estimated: MCI method<br>estimated: K <sub>ow</sub> method<br>laboratory experiment with<br>field sediment; calculated<br>from log K and %OC | US EPA (2009)<br>US EPA (2009)<br>Berg et al.<br>(2001)    |
|                                          |                     | 4.94;<br>5.37               | field measurements with<br>contaminated sediment;<br>calculated from log K <sub>d</sub> and<br>%OC                                           | Berg et al.<br>(2001)                                      |
| Vapour<br>pressure                       | [mPa]               | 0.7                         |                                                                                                                                              | HSDB (2005)                                                |
| Melting                                  | [°C]                | 103.5                       |                                                                                                                                              | HSDB (2005)                                                |
| Boiling point<br>Henry's law<br>constant | [°C]<br>[Pa.m³/mol] | 240<br>6.7                  | at 1.8 kPa<br>MW x VP / WS                                                                                                                   | HSDB (2005)<br>Van Vlaardingen<br>and Verbruggen<br>(2007) |

Table 6: Physico-chemical properties of TPT chloride. Bold values are used for ERL derivation.

\* The solubility of TPT chloride is dependent on the salinity, the pH and the temperature of the water.

| Darameter           | Unit                     | Value | Domark                     | Peference                             |
|---------------------|--------------------------|-------|----------------------------|---------------------------------------|
| Molocular           |                          | 267 0 |                            |                                       |
| woight              | [g/mor]                  | 307.0 |                            | HSDB (2005)                           |
| Wator               | [ma/L]                   | 1 7   |                            | HSDB (2005)                           |
| solubility          | [IIIg/ L]                | 1.2   |                            | HSDB (2005)                           |
| Solubility          |                          | 4 72  | estimated from log         | US EPA (2009)                         |
|                     |                          | 1.72  | K of 3 53                  | 03 EFA (2005)                         |
|                     |                          | 0.4   | from experimental          | US FPA (2009)                         |
|                     |                          | 011   | database                   | 00 2177 (2000)                        |
|                     |                          | 13.8  | estimated from             | US EPA (2009)                         |
|                     |                          |       | fragments                  |                                       |
|                     |                          | 1.6   | ± 0.2; saturator           | Jarvinen et al. (1988)                |
|                     |                          |       | system                     | , , , , , , , , , , , , , , , , , , , |
|                     |                          | 1     |                            | Vogue et al. (1994)                   |
| p <i>K</i> a        | [-]                      | 5.20  |                            | Biobyte (2006)                        |
| log K <sub>ow</sub> | [-]                      | 3.50  | estimated - ClogP          | Biobyte (2006)                        |
|                     |                          | 3.53  | experimental -             | Biobyte (2006)                        |
|                     |                          |       | MlogP                      |                                       |
|                     |                          | 3.53  |                            | HSDB (2005)                           |
| log K <sub>oc</sub> | [-]                      | 4.4   |                            | Vogue et al. (1994)                   |
|                     |                          | 3.5   |                            | Footprint (2011)                      |
|                     |                          | 3.0   | QSAR Sabljic               | Van Vlaardingen and                   |
|                     |                          |       | hydrophobics               | Verbruggen (2007)                     |
|                     |                          | 5.7   | estimated: MCI             | US EPA (2009)                         |
|                     |                          | 2.4   | method                     |                                       |
|                     |                          | 3.1   | estimated: K <sub>ow</sub> | US EPA (2009)                         |
| Vanaur              |                          | 0.047 |                            |                                       |
| vapour              | [IIIPa]                  | 0.047 | 25-0                       | HSDB (2005)                           |
| Molting point       | [90]                     | 110   |                            | HSDB (2005)                           |
| Boiling point       |                          | 112   |                            |                                       |
| Honry's law         | [Pa m <sup>3</sup> /mol] | 11.a. | MW v VP / WS               | Van Vlaardingen and                   |
| constant            |                          | 14    |                            | Verbruggen (2007)                     |
| constant            |                          |       |                            |                                       |

*Table 7: Physico-chemical properties of TPT hydroxide. Bold values are used for ERL derivation.* 

| Parameter               | llnit       | Value               | Remark                                                      | Reference                                   |
|-------------------------|-------------|---------------------|-------------------------------------------------------------|---------------------------------------------|
| Molecular<br>weight     | [g/mol]     | 409.0               | Kemark                                                      | Tomlin (2002)                               |
| Water<br>solubility     | [mg/L]      | 9                   | 20°C, pH 5                                                  | Tomlin (2002)                               |
|                         |             | 3.17                | estimated from log $K_{ow}$ of 4.19                         | US EPA (2009)                               |
|                         |             | 9                   | from experimental database                                  | US EPA (2009)                               |
|                         |             | 0.29                | estimated from<br>fragments                                 | US EPA (2009)                               |
| p <i>K</i> a            | [-]         | n.a.                |                                                             |                                             |
| log K <sub>ow</sub>     | [-]         | 3.46<br><b>3.43</b> | ClogP                                                       | Biobyte (2006)<br>Tomlin (2002)             |
| log K <sub>oc</sub>     | [-]         | 3.3                 |                                                             | Footprint (2011)                            |
| 5 00                    |             | 2.9                 | QSAR Sabljic<br>hydrophobics                                | Van Vlaardingen<br>and Verbruggen<br>(2007) |
|                         |             | 4.9                 | estimated: MCI<br>method                                    | US EPA (2009)                               |
|                         |             | 2.6                 | estimated: $K_{ow}$<br>method using log $K_{ow}$<br>of 3.43 | US EPA (2009)                               |
| Vapour<br>pressure      | [mPa]       | 1.9                 | 60°C                                                        | Tomlin (2002)                               |
| Melting<br>point        | [°C]        | 122-<br>123         |                                                             | Tomlin (2002)                               |
| Boiling                 | [°C]        | n.a.                |                                                             |                                             |
| Henry's law<br>constant | [Pa.m³/mol] | 0.86                | MW x VP / WS                                                | Van Vlaardingen<br>and Verbruggen<br>(2007) |

*Table 8: Physico-chemical properties of TPT acetate. Bold values are used for ERL derivation.* 

### 2.5 Behaviour and distribution in the environment

Selected environmental properties of TPT are presented in Table 9.

Table 9: Selected environmental properties of TPT.

| Parameter                                     | Unit        | Value | Remark                       | Ref.             |
|-----------------------------------------------|-------------|-------|------------------------------|------------------|
| Hydrolysis half-life                          | DT50<br>[h] | 0.07  | TPT acetate, 20°C, pH 7      | Footprint (2011) |
|                                               |             | 30    | TPT hydroxide,<br>20°C, pH 7 | Footprint (2011) |
| Photolysis half-life                          | DT50<br>[h] | 18    | TPT hydroxide, pH 7          | Footprint (2011) |
| Readily biodegradable<br>Relevant metabolites |             | No    |                              | US EPA (2009)    |

Both TPT acetate and TPT chloride hydrolyse to TPT hydroxide in water (HSDB, 2005). For the derivation of MPCs for the water and sediment compartment the physico-chemical properties of TPT hydroxide are therefore preferred.

#### 2.6 Bioconcentration and biomagnification

#### 2.6.1 Normalization

A correlation between lipid content and accumulation of TBT and TPT has not been observed. However, a better correlation for accumulation from sediment was observed if these concentrations were normalized to the organic carbon content of the samples (Stäb et al., 1996). Deviations from simple hydrophobic accumulation were also observed in modelling of food accumulation, and binding to proteins is suggested as an explanation for this (Veltman et al., 2006). It is also observed that the biomagnification of TPT is significant in contrast to TBT, despite the relatively low hydrophobicity of TPT, which indicates another accumulation mechanism instead of simple hydrophobic partitioning (Hu et al., 2006, Murai et al., 2008). No correlation was found between the lipid content of organs and the accumulated amount of TBT and TPT in these organs (Yamada and Takayanagi, 1992). As a consequence of these observations no normalization to lipid content of the organisms has been performed. All data are based on wet weight concentrations.

#### 2.6.2 Bioconcentration

Bioconcentration of TPT has been studied in a variety of organisms (see Appendix 1). When evaluating the available literature, special consideration was given to maintenance and analysis of exposure concentrations and the accomplishment of equilibrium. Studies in which concentrations were not analysed were not considered reliable. Bioconcentration factors (BCFs) estimated from the ratio between concentrations in organisms and water were only accepted as valid when actual concentrations were constant and equilibrium had been reached. BCF-values from studies in which equilibrium was not reached were only accepted as valid when reliable estimates of uptake and elimination rate constants were available. Because TPT kinetics are very slow, almost all valid data result from such kinetic studies.

Valid data on bioconcentration in biota are available for macrophytes, echinoderms, crustaceans, insects and fish. Of these taxa, especially fish are relevant for risk limit derivation. Data indicate that the internal distribution of TPT in fish differs between organs. In general, concentrations in liver and kidney are highest as compared to other parts of the body. For secondary poisoning, a distinction between organs is not relevant, since predators eat the fish as a whole. For risk limits based on human fish consumption, using whole fish BCFs may overestimate exposure in case only fillet is consumed. Consumption of other parts cannot be fully excluded. Therefore, whole body BCFs for fish are used for further calculations. Accepted data are summarised in Table 10. Kinetic data that were mostly derived from the raw data published in the studies, are plotted in Figure 1.

| Species                            | Fresh- or | BCF [L/k | g]      |         |      |         |        |   | Reference                                                         |
|------------------------------------|-----------|----------|---------|---------|------|---------|--------|---|-------------------------------------------------------------------|
|                                    | saltwater | _        |         |         |      |         |        |   |                                                                   |
|                                    |           | Minimum  | Maximum | Average | SD   | Geomean | Median | Ν |                                                                   |
| <i>Carassius<br/>auratus</i>       | Fresh     | 1085     | 1815    | 1450    | 517  | 1403    | 1450   | 2 | Tsuda et<br>al. (1988),<br>Tsuda et<br>al. (1991)                 |
| Cyprinus<br>carpio                 | Fresh     | 446      | >>6756  | 6528    | 6953 | 2841    | 4500   | 7 | NITE<br>(2011),<br>Tsuda et<br>al. (1990b)                        |
| Gnathopogon<br>caerulascens        | Fresh     | 2734     | 2734    | 2734    |      | 2734    | 2734   | 1 | Tsuda et<br>al. (1992)                                            |
| Lepomis<br>macrochirus             | Fresh     | 7809     | 7809    | 7809    |      | 7809    | 7809   | 1 | EC (1996a,<br>1996b),<br>US EPA-<br>OPTS<br>(1988)                |
| Oncorhynchus<br>mykiss<br>(larvae) | Fresh     | 566      | 566     | 566     |      | 566     | 566    | 1 | Tas et al.<br>(1990)                                              |
| Oryzias<br>latines                 | Fresh     | 4575     | 5595    | 5107    | 431  | 5092    | 5244   | 5 | Zhang et<br>al. (2008)                                            |
| Pagrus major                       | Salt      | 2987     | 3678    | 3333    | 489  | 3315    | 3333   | 2 | Yamada<br>and<br>Takayanagi<br>(1992),<br>Yamada et<br>al. (1994) |
| Pimephales<br>promelas             | Fresh     | 16265    | 18192   | 17229   | 1363 | 17202   | 17229  | 2 | EC (1996a,<br>1996b),<br>US EPA-<br>OPTS<br>(1988)                |
| Poecilia<br>reticulata             | Fresh     | 1337     | 7941    | 4733    | 3306 | 3739    | 4921   | 3 | Tas et al.<br>(1990,<br>1996),<br>Tsuda et<br>al. (1990a)         |
| Rudiarus<br>ercodes                | Salt      | 5198     | 5198    | 5198    |      | 5198    | 5198   | 1 | Yamada<br>and<br>Takayanagi<br>(1992)                             |

*Table 10: Summary of valid BCF data for the bioaccumulation of TPT in fish. Detailed data are presented in Appendix 1.* 



Figure 1: Bioconcentration of different fish species exposed to TPT: a) Carassius auratus at 3.2 µg/L TPTCl and b) at 0.14 µg/L TPTCl; c) Cyprinus carpio at 1.1-1.2 µg/L TPTCl at pH 6.0  $\blacksquare$ , 6.8  $\blacktriangle$ , and 7.8  $\bullet$  and d) at 0.855  $\bullet$  and 0.0906  $\blacksquare$  µg/L TPTOH and 0.939  $\blacktriangle$  and 0.0985  $\forall$  µg/L TPTF; e) Gnathopogon caerulescens at 0.1 µg/L; f) Lepomis macochirus at 0.49 µg/L; g) Oncorhynchus mykiss at 2.8 µg/L; h) Pagrus major at 1.65 µg/L and i) at 0.0831 µg/L; j) Poecilia reticulata at 3.6 µg/L, k) at 1.9 µg/L and l) at 0.90 µg/L; m) Rudarius ercodes at 0.148 µg/L; n) Full life-cycle study with Pimephales promelas at 0.0654  $\bullet$  and 0.231  $\blacksquare$  µg/L males, and  $\circ$  and  $\square$  females after spawning.

A few remarks can be made with regard to the studies that are considered reliable. First, it should be noted that the accumulation of TPT is a very slow process. Half-lifes from the kinetic studies vary from slightly less than 3 days to almost 50 days. Growth may influence the final outcome of the kinetic BCF. Usually, kinetic BCFs are corrected for growth. However, no data for growth were available. The BCF value for larvae of rainbow trout, which is the lowest selected value, might be affected by growth, because larvae still might grow relatively fast.

The data that result from studies, in which the bioaccumulation potential was determined in combination with a reproduction study, showed very high BCF values (up to 5700 L/kg for Japanese medaka, *Oryzias latipes*, and up to 20,000 L/kg for fathead minnow, *Pimephales promelas*).

In cases where variation in reported BCF values is small (e.g. *Oncorhynchus mykiss*, *Oryzias latipes*, *Pagrus major*) data often originate from a single experiment or from similar experiments by the same authors in which variation in characteristics of test water and organisms was limited. The studies by Tsuda et al. (1986, 1992, 1990b, 1990a, 1991, 1987a) generally show smaller BCF values than reported by other authors. Data from Tsuda et al (1990b) for common carp (*Cyprinus carpio*) lead to kinetic BCFs of 446-673 L/kg, while from the data reported by NITE kinetic BCFs ranging from 4570 to far above 7000 L/kg are derived. Similarly, the data from Tsuda et al. (1990a) for guppies (*Poecilia reticulata*) lead to a kinetic BCFs of 4920 and 7940 are derived. Differences in biological characteristics of the test species (e.g. fat content, size

and age) are also expected to contribute to variation, as well as the form in which the chemical is added. However, this is not an explanation for the large differences observed for carp, as the characteristics of the used fish are almost the same (about 9 cm and 20 g).

TPT is an organometalloid and the speciation of the compound may vary among different water types. It is noted that BCF values determined with TPT hydroxide (TPTOH) are significantly higher than those determined with TPT chloride, although the lowest BCF of all is determined with TPT hydroxide (wrongly denoted as TPTH in the study). This might be a result of speciation. However, the data to analyse this in more detail are lacking. Details on water characteristics are missing in most cases, and the available data do not allow for a further investigation into the relationship between BCF and water type. The

only data that were generated with two different species of TPT within the same test system are the BCF for carp by NITE.

In these studies, it seems that BCFs for TPT hydroxide are much higher than those obtained with TPT fluoride. However, this is mainly due to the fact that the concentration in fish of the last sampling point with TPT hydroxide (10 weeks) goes up again, while the exposure time in tests with TPT fluoride is only 8 weeks. If only 8 weeks of exposure are considered the BCF values are very similar for both TPT species.

The data of Zhang et al. (2008) indicate that for a given species and water type, there is no influence of exposure concentration on the BCF.

#### 2.6.3 Bioaccumulation and biomagnification

#### 2.6.3.1 Bioaccumulation studies

Water, sediment and blue mussels (*Mytilus galloprovinciales*) were sampled from Maizuru Bay, Japan from July 1 to 3 in 2007 (Eguchi et al., 2010). Concentrations of TPT in mussels ranged from 0.2 to 13  $\mu$ g/kg<sub>wwt</sub> at the 9 locations. Total organotin compounds ranged from 8 to 35.5  $\mu$ g/kg<sub>wwt</sub>. Concentrations of TPT in water were below the detection limit of 1 ng/L at all 7 sampling sites. This means that the bioaccumulation factor (BAF) for mussels is up to 13,000 L/kg and higher. Sediment concentrations in the bay ranged from 0.2 to 17  $\mu$ g/kg<sub>wwt</sub>. This means that the bio-sediment accumulation factor (BSAF) on basis of wet weight mussel concentrations and dry weight sediment concentrations lies in the range of 0.2-0.3.

An earlier study (February 3, 2003) from the same area (Ohji et al., 2007) reported average concentrations in blue mussels ranging from 0.09 to  $0.52 \ \mu g/kg_{wwt}$  in 8 locations. Concentrations in water ranged from the detection limit of 0.18 to 2.02 ng/L. Concentrations in sediment ranged from 0.13 to 3.27  $\mu g/kg_{dwt}$ . Paired concentrations in blue mussels and water yielded BAFs from 50 to 2000 L/kg<sub>wwt</sub>, paired concentrations in blue mussels and sediment yielded BSAFs from 0.1 to 1.2 kg<sub>dwt</sub>/kg<sub>wwt</sub>.

The concentrations of TPT were measured in water, sediment, plankton, mussels (*Mytilus edulis*), scallops (*Pecten caurinus*) and fish (*Physiculus maximowiczi*) from Otsuchi Bay, Japan in July 1996 (Harino et al., 1998). Because in only one of the water samples TPT was found above the detection limit of 3 ng/L, few conclusions can be drawn with regard to the BAF. Based on minimum, median, and maximum concentrations reported in a figure, the BAFs for mussels, scallops and fish can be estimated between 800 and 17,000 L/kg.

Low BAF values could be derived from data for water and fish from Theodore Roosevelt National Park in North Dakota (Jones-Lepp et al., 2004). The BAF values are 147 L/kg for shorthead redhorse (*Moxostoma macrolepidotum*), which is a fish from a lower trophic level and 94 L/kg for sauger (*Sander canadensis*), which is a piscivorous fish. However, water samples were grab samples and nothing is stated about particulate matter or filtration. The water concentration of 2.65  $\mu$ g/L seems extraordinarily high for a field observation. Therefore, the validity of these BAF values could be argued.

Yamada and Takayanagi (Yamada and Takayanagi, 1992) report data from the Environment Agency Japan, where TPT was found in coastal waters in concentrations ranging from 5 to 88 ng/L, in sediment from 1 to 1100  $\mu$ g/kg and in fish from 20 to 2600  $\mu$ g/kg. Based on the geometric means of these ranges this would imply a BAF of 11,000 L/kg and a BSAF of 6.9.

Common whelks (*Buccinum undatum*) from the Eastern Scheldt contained TPT in concentrations equivalent to 7.6 to 13  $\mu$ g Sn/kg<sub>wwt</sub> (Mensink et al., 1997). The concentration of total organotin compounds summed up to 65  $\mu$ g Sn/kg<sub>wwt</sub>. The concentration of TPT in the carnivorous whelks was 8.1 times higher than the concentration of TPT in mussels (*Mytilus edulis*). The concentration of TBT in mussels (*Mytilus edulis*). The concentration of TBT in mussels was 6.8 times higher than that in whelks. This indicated the potential for biomagnification of TPT in contrast to TBT that is not biomagnified. Concentrations in sediment could hardly be determined and ranged from <0.2 to 0.6 ng Sn/kg<sub>dwt</sub>. However, the detection limit for TPT in sediment, defined as three times the signal to noise ratio, is reported to be 2 ng Sn/g<sub>dwt</sub>, so the reported concentration range is probably erroneous and the real concentrations are probably a thousand times higher. In that case, the BSAF based on wet weight whelk concentrations and dry weight sediment concentrations is around 8. For mussels this value would be around 1.

The concentration of organotin was determined in several fish species from Finnish lake water and the Finnish Baltic Sea coast (Rantakokko et al., 2010). The concentrations of TPT in perch ranges from 0.5 to 151  $\mu$ g cation/kg<sub>wwt</sub> for all samples (38), with fish from lake areas being less contaminated than sea areas. The median value was 15.5  $\mu$ g cation/kg<sub>wwt</sub>. Concentrations of TPT contributed for 27 to 100% to the total amount of organotin compounds. In sediment the concentration of phenyltin compounds was only about 10% of the concentration of butyltin compounds. From this it was concluded that TPT had a higher accumulation potential than TBT.

Salmon and herring appeared to contain less organotin compounds than bream, perch, and pikeperch, probably because they forage in more open and less contaminated water of the Baltic Sea. Another indication of the elevated trophic magnification of TPT compared to TBT was the fact that TPT was the major compound in the predatory fish species salmon and perch, while TBT was the major compound in herring and pikeperch, but especially in burbot and whitefish.

#### 2.6.3.2 Food web studies

Indeed, the magnification potential of TPT is confirmed by four food web studies that are available. These are summarized below. From these studies the biomagnification factor is derived, preferably determined as a trophic magnification factor (TMF).

In a food web study from the Western Scheldt in the Netherlands (Veltman et al., 2006), TPT concentrations were measured in a number of species. These species were the mollusc species cockle (Cerastoderma edule), the annelid species lugworm (Arenicola marina), the crustacean species brown shrimp (Crangon crangon), and the fish species plaice (Pleuronectes platessa), the gobiid fish Chasmichthys gulosus, sand eel (Ammodytidae sp.), herring (Clupea harengus), European flounder (Platichthys flesus), grey gurnard (Eutrigla gurnardus), common sole (Solea solea), whiting (Merlangius merlangus), and pout/bib (*Trisopterus luscus*), and eggs of common tern (*Sterna hirundo*). Species were collected in spring 2003. The exact location of sampling is not mentioned in the study. The eggs of the common tern appeared to contain relatively low amounts of organotin compounds. Residues in eggs may not be representative of concentrations in adult birds, in which organotin compounds strongly accumulate in liver and in feathers. Further, birds are capable of metabolizing organotin compounds and they may eliminate organotin compounds by seasonal moulting.

For the aquatic food chain, TPT concentrations based on wet weight are varying from 2.1 to 21  $\mu$ g Sn/kg<sub>wwt</sub>. The reported concentration in suspended solids is 8.3  $\mu$ g Sn/kg<sub>dwt</sub> (only one value reported), which concentration can be assumed to be a factor of 10 lower on wet weight basis.

The food chain was not characterized by stable isotopes. The trophic level (TL) was estimated as suspended matter (TL=1), herbi-detrivores (TL=2: lugworm and cockle), primary carnivores (TL=3: shrimp, plaice, sand eel, herring, goby, and gurnard), primary-secondary carnivores (TL=3.5: flounder, sole, cod, whiting, and pout). With this kind of trophic level classification, all correlations,

regardless of whether these concentrations were expressed as dry weight, wet weight or lipid weight, were significant and positive and the trophic

magnification factor calculated from these data ranges from 1.74 (lipid weight) to 2.29 (wet weight, see Figure 2).



Figure 2: Trophic magnification of TPT in the Western Scheldt. Solid dots represent the aquatic food chain. Open dots are tern eggs. (data from Veltman et al. (2006))

The trophic levels can also be adapted from another study in the same area (Di Paolo et al., 2010), where at least the stable isotopes were measured for cockle, lugworm, herring, and whiting. The trophic levels for similar species were assigned the same values as these four species. If these trophic levels are used instead of the values of 2, 3, and 3.5, the trophic magnification factors are similar and range from 1.74 (dry weight) to 2.49 (wet weight). It should be noted that for the same samples all calculations for trophic magnification factors of TBT ended up around one. This again underlines the biomagnification potential of TPT in comparison with TBT. The BSAF of TPT on basis of wet weight biota concentrations and dry weight sediment concentrations is relatively constant and ranges from 0.25 to 2.5 through the whole food chain. Ri=4 for missing details on sampling location and trophic level.

In a trophic magnification study in Bohai Bay in North China, water, sediment and biota samples were taken in May, June and September 2002 (Hu et al., 2006). Fish and invertebrates were sampled from three locations in Bohai Bay, roughly separated by a distance of 50 km in total. The six phytoplankton and zooplankton samples were taken somewhat further out of the coast than the fish and invertebrates. Nevertheless, one of the samples lies well within the line of the three sampling points for fish and invertebrates. Further, the concentration range of the phytoplankton and zooplankton is relatively small (standard deviation of approximately 20%). Phytoplankton and seston mainly consisted of algae of the taxonomic groups Bacillariophyta and Pyrrophyta, zooplankton mainly consisted of small copepods (Acartia bifilosa, Paracalanus parvus, Labidocera euchaeta, and Oithona similes), which are primary herbivores. Five invertebrate species were sampled: crab (Portunus trituberculatus), burrowing shrimp (Upogebia sp.), short-necked clam (Ruditapes philippinarum), veined rapa whelk (Rapana venosa), and bay scallop (Argopecten irradians), and six fish species: weever (Lateolabras japonicus), catfish (Chaeturichthys stigmatias), bartail flathead (Platycephalus indicus), white flower croaker (Nibea albiflora), wolffish (Obontamblyopus rubicundus) and mullet (Liza so-iuy). In contrast to TBT, TPT showed significant biomagnification throughout the food chain (P<0.001). The resulting trophic magnification factor (TMF) was 3.70,

based on wet weight concentrations, a value that is even larger than that of dichlorodiphenyldichloroethylene (DDE) (3.26) and hexachlorobenzene (2.96) in the same food chain. Water samples were also taken from 14 locations, but all samples appeared to be below the detection limit of 6.8 ng/L. This implies that for the six fish species the bioaccumulation factor (BAF), is at least in excess of 1000 L/kg and for one species at least higher than 5000 L/kg. The high accumulation in biota is also evident if sediment samples are considered. Out of the 14 sampling points, TPT was only detected in four samples at concentrations near the detection limit of 0.1  $\mu$ g/kg<sub>dwt</sub>. The wet weight concentrations in fish are up to 350 times higher than this concentration. The study is assigned Ri 2, because of some uncertainty remaining for the spread of the sampling locations and the sampling period of five months.

In another trophic magnification study, biota were collected from three sites of the Seto Inland Sea in Japan (Murai et al., 2008).

At Ainan-cho, Eheme Prefecture facing the Uwa Sea, the samples were collected in April 2002 and consisted of Particulate Organic Matter (POM; mostly phytoplankton), the algal species *Sargassum piluliferum*, the crustacean species *Anisomysis ryukyuensis*, *Caprella californica*, *Caprella monoceros*, *Caprella penantis*, *Caprella scaura*, *Galathea* sp., and *Hippolytidae* sp., the echinoderms *Anthocidaris* sp. and *Echinostrephus aciculatus*, the cnidarian *Lytocarpia niger*, the molluscs *Aplysia kurodai*, *Chlamys nobilis*, *Crassostrea nippona*, *Haliotis* sp., *Mytilus galloprovincialis*, *Pinctada fucata martensii*, *Pteria penguin*, and *Tectus pyramis* and the fish *Apogon doederleini*, *Apogon semilineatus*, *Calotomus japonicus*, *Canthigaster rivulata*, *Cercamia eremia*, *Diodon holocanthus*, *Halichoeres* sp., *Platyrhina sinensis*, *Pseudolabrus eoethinus*, *Scorpaenodes littoralis*, *Takifugu niphobles*, *Thalassoma lunare*.

At Takehara, Hiroshima Prefecture facing the middle of the Seto Inland Sea, the species were collected in September 2002 and consisted of POM (<0.1 mm), the algal species *Hizikia fusiformis* and *Sargassum thunbergii*, the crustaceans *Hemigrapsus sanguineus* and *Siliella okadai*, the molluscs *Acanthopleura japonica*, *Crassostrea nippona*, *Thais clavigera*, and the fish *Conger myriaster*, *Gobiidae* sp., *Halichoeres poecilopterus*, *Halichoeres* sp., *Hexagrammos otakii*, *Hypodytes rubripinnis*, *Scorpaenopsis cirrhosa*, *Sebastes inermis*, *Stephanolepis cirrhifer*, *Takifugu poecilonotus*, and *Thamnaconus modestus*.

At Akashi Strait, Hyogo Prefecture facing the east part of the Seto Inland Sea, the species were collected in May 2003 and consisted of POM (<0.1 mm), POM (>0.1 mm), the algal species Ecklonia cava, Sargassum horneri, and Undraria pinnatifida, the crustaceans Balanus rostratus, and Caprella danilevskii, the molluscs Acanthopleura japonica, Aplysia kurodai, Batillus sp., Cellana nigrolineata, and Thais clavigera, the echinoderms Asterina pectinifera and Luidia maculate, and the fish species Halichoeres sp., Hexagrammos agrammus, Hexagrammos otakii, Repomucenus richardsoonii, and Takifugu niphobles. At all three locations a significant positive correlation was found between TPT concentration (wet weight basis) and trophic level as denoted by stable nitrogen isotopes. In contrast, such a relationship was not observed for any of the butyltin compounds. With a change in  $\delta^{15}N$  (stable nitrogen isotope ratio) of 3.4‰ per trophic level, the trophic magnification factor is 2.24 for the Ainancho ecosystem (P=0.01), 5.30 for the Takehara ecosystem (P<0.0001) and 3.90 for the Akashi Strait ecosystem (P=0.001). It has to be noted that only in approximately 70% of the samples TPT concentrations were above the limit of detection. For the remainder of the samples, which were mostly related to the lower trophic levels, the concentration was set to half of the detection limit, a choice which has obviously influenced the final outcome. For this reason, the study is assigned Ri 4.

Another food web study was performed in lake system Westeinder (Grote Poel), a shallow freshwater lake in the Netherlands (Stäb et al., 1996). Samples of water, sediment, suspended matter, invertebrates, and fish were taken in the period of 16-30 August 1993 at nine locations in the lake over a distance of about 6 km. Birds entangled in fishing nets were collected in the period from December 1992 till August 1993. The samples contained sediment, suspended matter, water, chironomids, gammarids, mysids, zebra mussel (*Dreissena polymorpha*), eel (*Anguilla anguilla*), roach (*Rutilus rutilus*), silver bream (*Abramis bjoerkna*), ruffe (*Gymnocephalus cernuus*), smelt (*Osmerus eperlanus*), tench (*Tinca tinca*), bream (*Abramis brama*), perch (*Perca fluviatilis*), pike (*Esox lucius*), and pikeperch (*Stizostedion lucioperca*). The collected birds were grebe (*Podiceps cristatus*), tufted duck (*Aythya fuligula*), and cormorant (*Phalacrocorax carbo*).

Unfortunately, trophic levels were not reported in this study. However, from a schematic representation of the food web trophic levels can be assigned to each of the boxes. In that case, suspended matter and sediment can be assigned to trophic level 1, chironomids, gammarids, and zebra mussel to trophic level 2, mysids to trophic level 2.5, roach, silver bream, ruffe, tench, smelt and bream to 3, eel to 3,5, and perch, pike, and pikeperch to 4. Cormorant and grebe can be assigned to trophic level 4.5, and tufted duck to 3. Even with this assignment of trophic levels, strong magnification of TPT could be detected if the bird data are excluded from the analysis. For the sampling locations 1 to 5, at least one representative of all levels of the food chain was available. Resulting trophic magnification factors for TPT were 2.41, 2.98, 7.65, 6.58, and 3.20. If all data of the lake are combined a strong correlation is found. The resulting TMF would be 3.72 (see Figure 3).

Other organotin compounds showed relatively low biomagnification. For TBT the TMF over the whole lake was 1.39, while the TMF was smaller than one for MBT, DBT, and MPT. DPT concentrations had a lower but positive correlation with trophic level as well, with a TMF of 2.09.

Water samples were taken, but the concentration of TPT was in all cases at or below the detection limit of 5 ng/L. This means that the wet weight BAF for omnivorous fish from trophic level 3 is  $\geq$ 7500, for benthivorous eel  $\geq$ 17,000, and for piscivorous fish from trophic level 4  $\geq$ 14,000. Concentrations in sediment were very heterogeneous and ranged from <2 to 24 µg/kg<sub>dwt</sub>. Two suspended matter samples showed much higher concentrations of 51 and 130 µg/kg<sub>dwt</sub>, despite the fact that the organic carbon content was lower in these samples than in sediment. Due to the variability in sediment concentrations, BSAF values related to sediment concentrations are not very meaningful. However, BSAF values on basis of wet weight biota concentrations and dry weight suspended matter concentrations for the two locations where suspended matter was sampled are remarkably constant and range from 0.09 for zebra mussel to 1.1 for pike.

The ratios of the TPT concentrations in grebe compared to fish and tufted duck compared to zebra mussels were lower than one. The only cormorant that was analysed showed high concentrations of organotin compounds. However, this cormorant could have foraged somewhere else. The cormorant had also very high concentrations of the degradation products of TPT.

The study is assigned Ri 4 because of missing details on trophic level, and Ri 2 for derivation of  $BMF_2$  (fish/mussel to bird/mammal).



Figure 3: Trophic magnification of TPT in Lake Westeinder. Solid dots represent the aquatic food chain. Open dots are birds. The solid line is the regression line over all individual data of the aquatic food chain. The dotted line represents the regression over the means per species. (data from Stäb et al. (1996))

In summary, there are four food web studies from six ecosystems, which all showed significant biomagnification of TPT. Three of the studies were estuarine or marine ecosystems, while one ecosystem was a freshwater lake. All studies had some shortcomings. The most reliable study in Bohai Bay had a trophic magnification factor of 3.7, but the other studies showed similar values for magnification.

|  | Table 11: Overview | of trophic ma | gnification f | factors of TPT. |
|--|--------------------|---------------|---------------|-----------------|
|--|--------------------|---------------|---------------|-----------------|

| Ecosystem       | Туре            | TMF  | Ri | Reference           |
|-----------------|-----------------|------|----|---------------------|
| Lake Westeinder | Freshwater lake | 3.72 | 4  | Stäb et al. (1996)  |
| Western Scheldt | Estuary         | 2.29 | 4  | Veltman (2006)      |
| Ainan-cho       | Sea             | 2.24 | 4  | Murai et al. (2008) |
| Takehara        | Sea             | 5.30 | 4  | Murai et al. (2008) |
| Akashi Strait   | Sea             | 3.90 | 4  | Murai et al. (2008) |
| Bohai Bay       | Sea             | 3.70 | 2  | Hu et al. (2006)    |

#### 2.6.4 Combining fresh and saltwater data

The present BCF data do not indicate that bioconcentration differs between freshwater or marine species. Tsuda et al. (1990a), observed a two-fold decrease in BCF for *Poecilia reticulata* (guppy) when exposed in saltwater as compared to freshwater. However, this might be due to changes in metabolism and osmoregulation of the guppies resulting from the transfer to saltwater, and the result is not taken into account. Only two out of ten species, for which reliable BCF values are available, are marine species (red sea bream (*Pagrus major*) and white-spotted pygmy filefish (*Rudarius ercodes*)). The BCF values derived from this study by Yamada and Takayanagi (1992) and Yamada et al. (1994) are 3000 to 5200 L/kg, which is in the middle of the range of BCF values.

In white-spotted charr (*Salvelinus leucomaenis*) from the Otsuchi region and the Miyako region in Japan, concentrations of TPT of 2.2  $\pm$  1.5 and 3.4  $\pm$  1.9 µg Sn/kg<sub>wwt</sub> were measured. Total organotin compounds were in the

order of 20 µg Sn/kg<sub>wwt</sub> (Ohji et al., 2011). Charr from the sea-run type accumulated TBT to a higher extent than freshwater-resident char. Actually, this effect was not observed for TPT. From this study it can be deduced that it would be justified to treat bioaccumulation of freshwater and saltwater together. In another study, liver from flounder living outside the sluices of Lake IJsselmeer to the Waddenzee in the Netherlands (Vethaak et al., 2011) appeared to contain more TPT than inside the sluices. For sediment, the situation was reversed, resulting in BSAF values that are a factor of 3 to 4 higher for fluctuating freshwater and saltwater environments than for purely freshwater environments. However, sediment and flounder samples were not taken simultaneously, but in different years and seasons. Given the variability in concentrations over time, no firm conclusions can be drawn from these observations.

Because there are no strong indications that bioaccumulation differs between freshwater and saltwater, data for bioaccumulation are combined and the same values are used for freshwater and saltwater.

#### 2.6.5 Overall selection of bioaccumulation data

Geometric mean BCFs for whole fish range from 566 L/kg for larvae of rainbow trout (*Oncorhynchus mykiss*) to almost 17,200 L/kg for fathead minnows (*Pimephales promelas*. The distribution of the BCFs for ten species is shown in Figure 4. The overall mean BCF for fish, calculated as the average of the lognormal distribution of the geometric mean per species, is 3500 L/kg. This value is taken forward for further calculations.



Figure 4: Species distribution of BCF values.

The value of 3.7 obtained from the Bohai-study with Ri 2 (see Table 11) is selected as  $BMF_1$ , and is considered representative for both freshwater and marine water. Because of the absence of magnification of TPT in birds, the value of  $BMF_2$  is 1 kg/kg.

Combining the selected BCF value of 3500 L/kg and the  $BMF_1$  of 3.7 kg/kg, the BAF value should be equal to 13,000 L/kg. Very few data on bioaccumulation factors are available, especially because the data are hampered by the fact that concentrations of TPT in organisms were below the detection limit (see section 2.6.3.1). However, these data do not contradict the estimated BAF value of 13,000 L/kg. Moreover, the ranges reported from Japanese coastal waters lead to an estimate of 11,000 L/kg for the BAF, which is a value similar to the

derived BAF value of 13,000 L/kg. Therefore, the final selected values are a BCF of 3500 L/kg and a  $BMF_1$  value of 3.7 kg/kg. The  $BMF_2$  value is 1 kg/kg.

#### 2.7 Human toxicology

TPT acetate and TPT hydroxide are designated R24/25, R26, R37/38, R40, R41, R48/23, R63, R50/53, Carcinogenity Cat. 3 and Reproduction Cat. 3 (ESIS, 2010). In the new EU-GHS system, these compounds are classified as H351, H361d\*\*\*, H330, H331, H301, H372\*\*, H335, H315, H318, H400, H410, carc. cat. 2 and repr. cat. 2 (ECHA, 2012).

A group TDI for organotin compounds is available, which is based on immunotoxic effects in rats observed in chronic feeding studies (EFSA, 2004). The standard is valid for the sum of tributyltin (TBT), dibutyltin (DBT), TPT and di-*n*-octyltin (DOT). The TDI is presented as a group standard since similar mode of action and immunotoxic potency for the four compounds is assumed. The immunotoxic effects are assumed to be additive. This TDI was derived by EFSA and recently adopted as human toxicological MPR (Maximum Permissible Risk level) in RIVM Report nr. 711701092 (Tiesjema and Baars, 2010). The study from which the NOAEL was used to derive this TDI, was performed with bis(tributyltin) oxide (TBTO), hence the group TDI is expressed as 0.25 µg TBTO/kg<sub>bw</sub>/day based on molecular mass of TBTO.

#### 2.7.1 Recalculation of TDI for other compounds

The molecule bis(tributyltin) oxide contains two active (tributyltin) moieties. One TBTO molecule is thus assumed equitoxic to two TBT molecules. Similarly, based on the equitoxic potency assumed for this group standard, one molecule TBTO is equitoxic with two DBT, two TPT or two DOT molecules.

As an example, EFSA also expressed the group TDI as Sn and as TBT-Chloride. This was done as follows.

TDI expressed as Sn by EFSA

One molecule of TBTO contains two molecules of Sn, the TDI can be expressed as:

 $0.25 \times 2^*$  mol. weight [Sn]/mol. weight [TBTO] =  $0.25 * 2 * 118.71/596.11 = 0.1 \ \mu g \ Sn/kg_{bw}/day$ .

TDI expressed as TBT-Chloride by EFSA Since one molecule of TBTO (bis(tributyltin) oxide) contains two tributyltin molecules, the TDI can be expressed in TBT Chloride as:  $0.25 \times 2^*$  mol. weight [TBT-Cl]/mol. weight [TBTO] =  $0.25 * 2 * 325.51/596.11 = 0.27 \ \mu g \ TBT-Cl/kg_{bw}/day.$ 

Standard expressed as TPT<sup>+</sup> for this report In the same way, the standard of 0.25  $\mu$ g TBTO/kg<sub>bw</sub>/day can be recalculated into TPT<sup>+</sup> as:  $0.25 \times 2^*$  mol. weight [TPT<sup>+</sup>]/mol. weight [TBTO] = 0.25 \* 2 \* 350.02/ 596.11 = 0.29  $\mu$ g TPT<sup>+</sup>/kg<sub>bw</sub>/day.

#### 2.8 Trigger values

This section reports on the trigger values for  $\mathsf{ERL}_{\mathsf{water}}$  derivation (as demanded in the WFD).

| Parameter                     | Value             | Unit                     | Method/Source                   | Derived at section    |
|-------------------------------|-------------------|--------------------------|---------------------------------|-----------------------|
| Log K <sub>p,susp-water</sub> | 3.0 <sup>a</sup>  | [-]                      | $K_{oc} \times f_{OC,susp}^{b}$ | K <sub>oc</sub> : 2.4 |
| BCF                           | 3500              | [L/kg]                   |                                 | 2.6                   |
| BMF                           | 3.7               | [kg/kg]                  |                                 | 2.6                   |
| Log K <sub>ow</sub>           | 3.53 <sup>c</sup> | [-]                      |                                 | 2.4                   |
| R-phrases                     | 40 + 63           | [-]                      |                                 | 2.7                   |
| A1 value                      | -                 | $\left[ \mu g/L \right]$ |                                 |                       |
| DW standard                   | -                 | [µg/L]                   |                                 |                       |

Table 12: TPT: collected properties for comparison to MPC triggers.

 $^{\rm a}$  Calculated from the mean of experimental log  $K_{\rm oc}$  4.4 and 3.5 for TPT hydroxide.

<sup>b</sup>  $f_{OC,susp} = 0.1 \text{ kg}_{OC}/\text{kg}_{solid}$  (EC, 2003).

<sup>c</sup> Log K<sub>ow</sub> for TPT hydroxide.

- TPT has a log  $K_{p, susp-water} \ge 3$ ; derivation of an MPC<sub>sediment, eco</sub> is triggered.
- TPT has a log  $K_{p, susp-water} \ge 3$ ; expression of the MPC<sub>water</sub> as MPC<sub>susp, water</sub> is required.
- TPT has a BCF >100; assessment of secondary poisoning is triggered.
- TPT is classified H351 (R40) and H361 (R63). Therefore, an MPC<sub>water</sub> for human health via food (fish) consumption (MPC<sub>water, hh food</sub>) has to be derived.
- For TPT, no compound-specific A1 value or Drinking Water value is available from Council Directives 75/440, EEC and 98/83/EC, respectively. Therefore, a provisional drinking water limit is derived.

RIVM Report 601714018

#### 3 Water: ecotoxicity data and derivation of ERLs

#### 3.1 Laboratory data

The aggregated ecotoxicity data for freshwater and marine species are presented in Table 13 and Table 14. All values are expressed on the basis of the TPT-ion. Detailed aquatic toxicity data for TPT are tabulated in Appendix 2.

Table 13: TPT: selected freshwater toxicity data for ERL derivation for the TPT ion

| Chronic <sup>a</sup>   | NOEC/EC10            | Acute <sup>a</sup>        | L(E)C50            |
|------------------------|----------------------|---------------------------|--------------------|
| species                | (µg   P /L)          | species                   | (µg   P /L)        |
| Algae                  |                      | Algae                     |                    |
| Scenedesmus obliguus   | 2.3                  | Scendesmus obliguus       | 27                 |
| Scenedesmus vacuolatus | 44.5                 | Scenedesmus vacuolatus    | 102                |
| Macrophyta             |                      | Macrophyta                |                    |
| Lemna minor            | 0.9 <sup> n</sup>    | Lemna minor               | 12 <sup>n</sup>    |
| Lemna polyrhiza        | 2.2 <sup>c</sup>     | Lemna polyrhiza           | 24 <sup>c,n</sup>  |
|                        |                      | Platyhelminthes           |                    |
|                        |                      | Dugesia sp.               | 17.9 <sup>d</sup>  |
|                        |                      | Polycellis niger/tenius   | 19.9 <sup>d</sup>  |
| Mollusca               |                      | Mollusca                  |                    |
| Marisa cornuarietis    | 0.016 <sup>b</sup>   | Physa fontinalis          | 10.2 <sup>d</sup>  |
|                        |                      | Planorbis contortis       | 6.0 <sup>d</sup>   |
|                        |                      | Annelida                  |                    |
|                        |                      | Tubifex sp.               | 11.0 <sup>d</sup>  |
| Crustacea              |                      | Crustacea                 |                    |
|                        |                      | Ceriodaphnia dubia        | 10.8               |
| Daphnia magna          | 1.1 <sup>i</sup>     | Daphnia magna             | 15.8 <sup>e</sup>  |
|                        |                      | Daphnia pulex             | 13.8               |
|                        |                      | Gammarus pulex            | 10.8 <sup>d</sup>  |
| Insecta                |                      | Insecta                   |                    |
| Chironomus riparius    | 0.52 <sup>m</sup>    | Anopheles stephensi       | 42 <sup>f</sup>    |
|                        |                      | Cloeon dipterum           | 144.5 <sup>d</sup> |
|                        |                      | Endochironomus albipennis | 259.2 <sup>d</sup> |
| Pisces                 |                      | Pisces                    |                    |
|                        |                      | Cyprinus carpio           | 36.2               |
| Oncorhynchus mykiss    | 0.18                 | Oncorhynchus mykiss       | 23.9 <sup>g</sup>  |
| Oryzias latipes        | 0.00043 <sup>1</sup> | Oryzias latipes           | 50.5               |
| Phoxinus phoxinus      | 0.2 <sup>ĸ</sup>     |                           |                    |
| Pimephales promelas    | 0.154                | Pimephales promelas       | 6.4 <sup> n</sup>  |
| Amphibia               |                      |                           |                    |
| Pelophylax             | 0.11                 |                           |                    |
| lessonae/esculenta     |                      |                           |                    |

For detailed information see Appendix 1.

b Most sensitive endpoint: spawning mass production

- с Most sensitive endpoint: growth rate
- d Most sensitive exposure period: 96h
- e Most sensitive exposure period: 48h
- f Most sensitive stadium: 2<sup>nd</sup> instar and most toxic species TPT-Ac
- g Geometric mean of 14.3 and 40.1  $\mu\text{g/L}$
- h
- Geometric mean of 9.2, 6.8, 5.1, 5.7 and 5.7  $\mu$ g/L Most sensitive endpoint: mortality; geometric mean of 0.73, 0.86 and 2.2  $\mu$ g/L i
- j Most sensitive endpoint: larval survival
- k Most sensitive endpoint: mortality and morphological deformities
- 1 Most sensitive exposure period: 183 d
- m Most sensitive endpoint: development rate

n Endpoint based on combined low and high concentration range
# Table 14: TPT: selected marine toxicity data for ERL derivation for the TPT ion.

| Chronic <sup>a</sup>     | NOEC/EC10          | Acute <sup>a</sup>                 | L(E)C50         |
|--------------------------|--------------------|------------------------------------|-----------------|
| Taxonomic group/species  | (µg TPT/L)         | Taxonomic group/species            | (µg TPT/L)      |
|                          |                    | <b>Bacteria</b><br>Vibrio fischeri | 40 <sup>b</sup> |
| Algae                    |                    |                                    |                 |
| Pavlova lutheri          | 0.04               |                                    |                 |
| Mollusca                 |                    |                                    |                 |
| Nucella lapillus         | 0.15               |                                    |                 |
| Crustacea                |                    |                                    |                 |
| Rhithropanopeus harrisii | 9.5                |                                    |                 |
| Echinodermata            |                    |                                    |                 |
| Anthocidaris crassispina | 245 <sup>e</sup>   |                                    |                 |
| Paracentrotus lividus    | 1.0                |                                    |                 |
| Ophiodermata brevispina  | 0.011 <sup>d</sup> |                                    |                 |
|                          |                    | Pisces                             |                 |
|                          |                    | Chasmichthys dolichognathus        | 19 <sup>c</sup> |

<sup>a</sup> For detailed information see Appendix 1

<sup>b</sup> Geometric mean of 18 and 87 µg/L

 $^{\rm c}$  Geometric mean of 17, 20 and 20  $\mu g/L$ 

 $^d$   $\,$  Geometric mean of 0.009 and 0.0126  $\mu g/L$ 

<sup>e</sup> Most sensitive endpoint: embryo development

The lowest chronic value is an EC10 of 0.43 ng/L for *Oryzias latipes*. It should be noted that this value is almost a factor of 1000 lower than other chronic endpoints for fish species. This seems unrealistic and therefore an expert within the RIVM on the field of fish testing has been consulted and the author of the publication has been contacted if he could confirm the units of the endpoint reported. The large difference can be explained from the different exposure scenarios between the tests. The main difference is that exposure in this study was performed through maternal transfer, while in the other studies the eggs or fry were exposed directly. It was confirmed by the expert that the difference in exposure is an acceptable explanation for the differences observed. The reported units were confirmed by the author after email communication. For ibuprofen it has also been shown that difference in exposure and difference in the period of observation can result in NOECs for reproduction differing from each other with two orders of magnitude (Flippin et al., 2007, Han et al., 2010).

#### 3.2 Field and mesocosm data

A summary of field studies is presented in Appendix 3. Although some of these studies were considered reliable, they did not result in endpoints relevant for derivation of the  $MPC_{fw, eco}$  or  $MAC_{fw, eco}$ .

### 3.3 Treatment of fresh- and saltwater data

According to the new WFD guidance (EC, 2011), data from fresh- and saltwater tests should be pooled unless there are indications that sensitivity of species differs between the two compartments. For metals, however, data should be kept separated. TPT is an organometalloid, and the speciation of the compound may vary among different water types. The present data, however, do not indicate that there is a consistent difference between freshwater and marine species with respect to their sensitivity towards TPT. Therefore, the combined dataset will be used for derivation of risk limits. This is consistent with the use of a combined dataset for derivation of water quality standards for di- and

tributyltin compounds by the International Commission of the Protection of the Rhine (ICPR) and the European Commission, respectively (EC, 2005, ICPR, 2009).

#### 3.4 Derivation of the MPC<sub>fw</sub> and MPC<sub>sw</sub>

- 3.4.1 MPC<sub>fw, eco</sub> and MPC<sub>sw, eco</sub>
- 3.4.1.1 Assessment factor method

The acute dataset is complete (algae, *Daphnia* and fish present). Chronic values are present for 18 species from eight taxonomic groups and three trophic levels.

According to the guidance an assessment factor of 10 should be applied to the lowest endpoint, this results in an MPC<sub>fw, eco</sub> of 0.043 ng/L. As stated in the introduction, endpoints from studies in which the substance was not measured during the test were considered unreliable. This was the case for many of the studies assessed and also considered studies which had lower endpoints than the chronic endpoints presented in Table 13 and Table 14. However, only one of the unreliable endpoints was lower than the lowest reliable endpoint of 0.43 ng/L. This endpoint (0.05 ng/L for *Indoplanorbis exustus*) was also considered unreliable because a blank control was not included, and the 'true' endpoint might have been higher. Therefore, the MPC<sub>fw, eco</sub> of 0.043 ng/L is considered to be sufficiently protective.

On the basis of the combined dataset, the  $MPC_{sw, eco}$  is also derived from the lowest reliable endpoint of 0.43 ng/L for *O. latipes*. Since NOECs for three additional marine taxonomic groups are available (molluscs, echinoderms and a marine crab), no additional assessment factor is necessary. The  $MPC_{sw, eco}$  is 0.043 ng/L.

### 3.4.1.2 Species sensitivity distribution method

The MPC<sub>fw, eco</sub> can also be derived by applying a Species Sensitivity Distribution (SSD) to the chronic data. This is allowed when at least 10 values (preferably 15) are available for different species covering at least eight taxonomic groups. With the chronic dataset covering 18 species, the eight taxonomic groups covered and their representatives in the present dataset are as follows:

- Fish: represented by Oryzias latipes (family Adrianichthyidae).
- A second family in the phylum Chordata: represented by *Oncorhynchus mykiss* (family Salmonidae).
- Crustaceans: represented by Daphnia magna.
- Insects: represented by Chironomus riparius.
- A family in another phylum than Arthropoda or Chordata: represented by the mollusc *Marisa cornuarietis*.
- A family in any order of insect or any phylum not already represented: represented by the echinoderms *Paracentrotus lividus* and *Ophiodermata brevispina*.
- Algae: represented by *Scenedesmus obliquus, Scenedesmus vacuolatus* and *Pavlova lutheri.*
- Macrophyta: represented by Lemna minor and Lemna polyrhiza.

With this coverage, the requirements for the SSD method are met. The SSD method is applied using EtX 2.0 (see Figure 5). The fit is accepted at all levels by all three statistical methods available in the program. The obtained HC5 is 2.3 ng/L with a lower limit of 0.21 ng/L and an upper limit of 11 ng/L. The HC5 exceeds the EC10 for *Oryzias latipes*, if other fish species had been tested in a similar way it is likely that more endpoints in the dataset would be lower than the current HC5. Considering this fact in combination with the fact

that the lower limit is more than a factor of 10 lower than the HC5, it is not considered justified to use the default assessment factor of 5. Instead, an assessment factor of 10 is applied, resulting in an MPC<sub>fw, eco</sub> of 0.23 ng/L. Since NOECs for three additional marine taxonomic groups are available in the SSD dataset, the MPC<sub>sw. eco</sub> is equal to the MPC<sub>fw. eco</sub>.



Figure 5: Species sensitivity distribution with chronic toxicity data for TPT.

#### 3.4.1.3 Final choice of the MPC<sub>fw, eco</sub> and the MPC<sub>sw, eco</sub>

The use of the SSD method is preferred over the assessment factor method, since it makes use of all available data. The value from this method (0.23 ng/L) is close to the lowest detection limit reported of 1.7 ng/L (RIWA, 2010). From this point of view, the value from the AF method (0.043) would also be less practical since it is much lower than the detection limit. Therefore, the MPC<sub>fw, eco</sub> is 0.23 ng/L and the MPC<sub>sw, eco</sub> is 0.23 ng /L, both expressed on the basis of the TPT-ion.

# 3.4.2 MPC<sub>fw, secpois</sub> and MPC<sub>sw, secpois</sub>

Derivation of ERLs for secondary poisoning is required (see section 2.8). From an efficiency point of view, it is at first considered if the MPC<sub>water, hh food</sub> is protective for exposure through secondary poisoning. Therefore, a calculation has been performed starting with the chronic NOAEL of 0.025 mg/kg<sub>bw</sub>/day for immunotoxicity of tributyltin oxide to rats which is the basis of the TL<sub>hh</sub> as given in section 2.7. If this NOAEL is recalculated to TPT according the method given section 2.7, the NOAEL for TPT would be 0.029 mg/kg<sub>bw</sub>/day. Immunotoxicity is not a relevant parameter for population dynamics and therefore this value can be taken as a worst case estimate for the toxicity of TPT to birds and mammals which are exposed through secondary poisoning. Using the default conversion factor of 20 to express the NOAEL as a concentration in food, the worst case NOAEC is 0.029 x 20 = 0.58 mg/kg<sub>food</sub>. Applying an assessment factor of 30, the worst case MPC<sub>oral, min</sub> will then be 0.58 / 30 = 0.019 mg/kg<sub>food</sub>. This value is lower than NOEC-values of 10 and >3 mg/kg<sub>food</sub> for both bobwhite quail and mallard that are reported in the registration dossiers for TPT as plant protection product, which is an indication that the worst case  $MPC_{oral, min}$  is indeed protective for birds. The calculated worst case  $MPC_{oral, min}$  value is higher than the  $MPC_{biota, hh, food}$  as calculated below in section 3.4.3. The  $MPC_{fw, secpois}$  is derived with the same BCF and BMF<sub>1</sub> as used for the calculation of the  $MPC_{water, hh food}$ . Since no additional BMF is necessary for the saltwater compartment environment,  $MPC_{sw, secpois}$  will also be covered by the  $MPC_{water, hh food}$ . It is concluded that derivation of an MPC for secondary poisoning of TPT is not necessary.

# 3.4.3 MPC<sub>water, hh food</sub>

Derivation of MPC<sub>water, hh food</sub> for TPT is triggered (see section 2.8). Furthermore, the importance of the route of fish consumption for humans for organotin compounds was shown in a Finnish study (Airaksinen et al., 2010). It appeared that with an average consumption for the Finnish population of 45 g of fish per day, the consumption of fish filled 1.3% of the TDI. Of this amount the daily intake of only 10 g domestic wild fish contributed to 61% of the intake of organotin compounds, while the intake of domestic farmed fish contributed to only 4% and imported fish contributed to 35%. Domestic wild fish from Finland appeared to contain 1.9 to 31  $\mu$ g/kg<sub>wwt</sub> total organotin compounds. The most important sources were domestic perch and imported rainbow trout and salmon. These fish species are indeed predatory fish that are rather high in the aquatic food chain.

The MPC<sub>water, hh food</sub> is calculated using Equation 15 of the INS-Guidance. The TL<sub>hh</sub> used as given in section 2.7, is derived from a TDI for organotin compounds in general assuming that exposure of organotin is fully attributed to TPT. With the TL<sub>hh</sub> of 0.29 µg TPT/kg<sub>bw</sub>/day, the MPC<sub>hh food</sub> becomes  $(0.1 \times 0.29 \times 70) / 0.115 = 17.7 µg/kg$ . Using the estimated BCF of 3500 L/kg and a BMF<sub>1</sub> of 3.7 kg/kg (section 2.6), the MPC<sub>water, hh food</sub> is calculated according to Equation 16 of the INS-Guidance as 17.7 /  $(3500 \times 3.7) = 0.0014 µg/L = 1.4 ng TPT/L$ . The MPC<sub>water, hh food</sub> is valid for the fresh- and the saltwater compartment.

#### 3.4.4 Selection of the MPC<sub>fw</sub> and MPC<sub>sw</sub>

The lowest of the individual MPCs based on direct exposure, secondary poisoning or human consumption of fishery products should be selected as the final MPC. These are the MPC<sub>fw, eco</sub> of 0.23 ng TPT/L and the MPC<sub>sw, eco</sub> of 0.23 ng TPT/L.

TPT has a log  $K_{p, susp-water} \ge 3$ ; expression of the MPC<sub>water</sub> as MPC<sub>SPM, water</sub> is required. The MPC<sub>SMP, fw</sub> and MPC<sub>SMP, sw</sub> are calculated according to:

 $MPC_{SPM, water} = MPC_{water, dissolved} \times K_{p, susp-water, Dutch standard}$ 

For this calculation,  $K_{p,susp-water,Dutch \, standard}$  is calculated from the log  $K_{oc}$  of 4.0 (mean of experimental log  $K_{oc}$  4.4 and 3.5 for TPT hydroxide) as given in Table 12. With an  $f_{OC,susp,\,Dutch \, standard}$  of 0.1176 the  $K_{p, \, susp-water,\,Dutch \, standard}$  can be calculated to 1176 L/kg. With this value the  $MPC_{SPM, \, fw}$  and  $MPC_{SPM, \, sw}$  are 0.27  $\mu g$  TPT/kg<sub>dwt</sub>.

#### 3.5 Derivation of the MPC<sub>dw, hh</sub>

Since TPT has been used as a pesticide, the EU drinking water standard of 0.1  $\mu$ g/L can be used as MPC<sub>dw, hh. provisional</sub>. Since this value is less stringent than

the MPC<sub>fw</sub> derived, derivation of a separate  $MPC_{dw, hh}$  is not necessary (EC, 2011).

# 3.6 Derivation of the NC<sub>fw</sub> and NC<sub>sw</sub>

The NC<sub>fw</sub> and NC<sub>sw</sub> are derived by dividing the MPC<sub>fw</sub> and MPC<sub>sw</sub> by a factor of 100. The NC<sub>fw</sub> and NC<sub>sw</sub> are 2.3 pg TPT/L. The NC<sub>SPM. fw</sub> and NC <sub>SPM. sw</sub> are 2.7 ng TPT/kg<sub>dwt</sub>.

# 3.7 Derivation of the MAC<sub>fw, eco</sub> and MAC<sub>sw, eco</sub>

#### 3.7.1 Assessment factor method

The acute dataset is complete and values are present for 22 species from 9 taxonomic groups and 3 trophic levels. The lowest acute value is an LC50 of 6.0  $\mu$ g TPT/L for *Planorbis contortis*. According to the guidance an assessment factor of 10 can be applied when the potentially most sensitive taxonomic group is represented in the dataset. Although TPT has no specific mode of action, this is considered the case in view of the size of the dataset which covers a wide range of different taxa. This results in a MAC<sub>fw, eco</sub> of 0.6  $\mu$ g TPT/L. As stated in the introduction, endpoints from studies in which the substance was not measured during the test were considered unreliable. This was the case for many of the studies assessed and also considered studies which had lower endpoints than the acute endpoints presented in Table 13 and Table 14. Most of the rejected studies had additional deficiencies. None of the studies that were rejected solely because of missing analytical data did result in endpoints below the MAC<sub>fw, eco</sub> of 0.6  $\mu$ g TPT/L. This MAC<sub>fw, eco</sub> is therefore considered to be sufficiently protective.

The MAC<sub>sw, eco</sub> should be derived with an additional assessment factor of 10 since acute endpoints for specific marine taxonomic groups are not available. However, the chronic data for specifically marine taxa show that these are not more sensitive to TPT than freshwater taxa. Therefore the additional assessment factor is not considered necessary and the MAC<sub>sw, eco</sub> is set to 0.6  $\mu$ g TPT/L.

#### 3.7.2 Species sensitivity distribution method

The MAC<sub>fw, eco</sub> can also be derived by applying an SSD to the acute data. For this the same criteria apply as for the SSD with chronic data (see section 3.3.1.2). With the acute dataset covering 22 species, the 8 taxonomic groups covered and their representatives in the present dataset are as follows:

- Fish: represented by Oryzias latipes (family Adrianichthyidae).
- A second family in the phylum Chordata: represented by *Oncorhynchus mykiss* (family Salmonidae).
- Crustaceans: represented by Daphnia magna.
- Insects: represented by Endochironomus albipennis.
- A family in another phylum than Arthropoda or Chordata: represented by the mollusc *Planorbis contortis*.
- A family in any order of insect or any phylum not already represented: represented by the bacteria *Vibrio fischeri*.
- Algae: represented by Scenedesmus obliquus and Scenedesmus vacuolatus.
- Macrophyta: represented by Lemna minor and Lemna polyrhiza.

With this coverage, the requirements for the application of the SSD method are met. The SSD method is applied using EtX 2.0 (see Figure 6). The fit is accepted at all levels by all three statistical methods available in the program. The obtained HC5 is 4.7  $\mu$ g TPT/L with a lower limit of 2.4  $\mu$ g/L and an upper limit of

7.4  $\mu g/L.$  Application of the default assessment factor 10 results in a  $MAC_{fw,\,eco}$  of 0.47  $\mu g$  TPT/L.

An additional assessment factor for the  $MAC_{sw, eco}$  is not considered necessary (see section 2.8). Therefore, the  $MAC_{sw, eco}$  is equal to the  $MPC_{fw, eco}$ .



Figure 6: Species sensitivity distribution with acute toxicity data for TPT.

# 3.7.3 Final choice of the MAC<sub>fw, eco</sub> and the MAC<sub>sw, eco</sub>

The use of the SSD method is preferred over the assessment factor method (EC, 2011). Therefore, the MAC<sub>fw, eco</sub> is 0.47  $\mu$ g TPT/L and the MAC<sub>sw, eco</sub> is 0.47  $\mu$ g TPT/L.

# 3.8 Derivation of the SRC<sub>aquatic, eco</sub>

The SRC<sub>aquatic, eco</sub> is determined by the HC50 of 0.40 µg TPT/L from the SSD with chronic data. This HC50 has a lower limit of 0.11 µg/L and a higher limit of 1.4 µg/L. Since there are sufficient chronic data available, a comparison with acute data is not necessary. Therefore is the SRC<sub>aquatic, eco</sub> 0.40 µg TPT/L. The SRC<sub>aquatic, eco</sub> is valid for fresh- and saltwater compartments.

# 4 Sediment: Toxicity data derivation of ERLs

### 4.1 Sediment toxicity data

The endpoints for sediment are presented in Table 15. All values are expressed on the basis of the TPT-ion. Detailed sediment toxicity data for TPT are tabulated in Appendix 2.

| Table 15: TPT: selected sediment toxicity data for ERL derivation for the TPT ion. |
|------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------|

| Chronic <sup>a</sup> | NOEC/EC10                   | Acute <sup>a</sup>  | L(E)C50                     |
|----------------------|-----------------------------|---------------------|-----------------------------|
| Taxonomic            | (µg TPT/kg <sub>dwt</sub> ) | Taxonomic           | (µg TPT/kg <sub>dwt</sub> ) |
| group/species        |                             | group/species       |                             |
| Mollusca             |                             | Insecta             |                             |
| Potamopyrgus         | 0.22                        | Chironomus riparius | 2800 <sup>b</sup>           |
| antipodarum          |                             |                     |                             |
| Ephoron virgo        | 23 <sup>c</sup>             |                     |                             |

<sup>a</sup> for detailed information see Appendix 2

<sup>b</sup> geometric mean of 3.10 mg/kg<sub>dwt</sub> and 2.49 mg/kg<sub>dwt</sub>

<sup>c</sup> Most sensitive endpoint: survival

# 4.2 Derivation of the MPC<sub>sediment</sub>

A chronic endpoint is available for one sediment organism (mollusc) and two acute endpoints for two insects are available. Since only one chronic endpoint is available, an assessment factor of 100 is applied to this value. This results in an MPC<sub>sediment, fw</sub> of 0.22 / 100 = 2.2 ng TPT/kg<sub>dwt</sub>. According to the INS guidance, when long-term toxicity data are available, a comparison with a value derived from the MPC<sub>fw, eco</sub> through equilibrium partition is not necessary.

Since it is concluded that marine species are not more sensitive to TPT than freshwater species, the  $MPC_{sediment, sw}$  is equal to the  $MPC_{sediment, fw}$ .

# 4.3 Derivation of the NC<sub>sediment</sub>

The NC<sub>sediment, fw</sub> is set a factor 100 below the MPC<sub>sediment, fw</sub> at 0.022 ng TPT/kg<sub>dwt</sub>. The NC<sub>sediment, sw</sub> is also 0.022 ng TPT/kg<sub>dwt</sub>.

# 4.4 Derivation of the SRC<sub>sediment, eco</sub>

Based on the two NOECs available, the SRC<sub>sediment, eco</sub> is 2.2 µg TPT/kg<sub>dwt</sub>. For comparison, the SRC<sub>sediment, eco</sub> is also derived by the equilibrium partition method (EqP) using the SRC<sub>aquatic, eco</sub> of 0.40 µg/L and the log K<sub>oc</sub> of 4.0 (mean of experimental log K<sub>oc</sub> 4.4 and 3.5 for TPT hydroxide). This results in an SRC<sub>sediment, eco</sub> of 236 µg TPT/kg<sub>dwt</sub>. The SRC<sub>sediment, eco</sub> based on the acute value divided by 10 is 280 µg TPT/kg<sub>dwt</sub>. The SRC<sub>sediment, eco</sub> is set to the lowest value: 2.2 µg/kg<sub>dwt</sub> for standard Dutch sediment with 10% organic matter (OM). The SRC<sub>sediment, eco</sub> is valid for the marine and the freshwater environment.

5

# Comparison of derived ERLs with monitoring data

It should be considered that TPT will not occur on its own but as part of a mixture of organotin compounds. Therefore, the occurrence of mixture toxicity should be considered when performing a risk assessment. Organotin compounds are a group of substances of which the mechanisms of toxicity are comparable. Therefore, the risk assessment for every environmental compartment should be based on concentration addition for every organotin compound determined and not on TPT alone. However, since only ERLs for TPT are derived in this report, only these are compared with monitoring data.

The RIWA (Dutch Association of River Water companies) reports monitoring data for TPT. For the years 2006 to 2009 no concentrations of TPT exceeding the detection limit have been reported. However, since the detection limits (ranging from 1.7 to 5 ng/L) are higher than the MPC and NC for fresh surface water, it cannot be stated for sure that these limits are not exceeded in Dutch fresh surface waters.

Monitoring data for the marine environment are available in the database of Rijkswaterstaat (<u>www.waterbase.nl</u>). In this database, many measured concentrations of the TPT-cation in suspended matter in seawater exceed the reporting limit of 3  $\mu$ g TPT/kg<sub>dwt</sub>, and values are reported up to a concentration of 10  $\mu$ g/kg<sub>dwt</sub>. In marine sediment, almost all measured concentrations exceed the reporting limit with values up to 57  $\mu$ g TPT/kg<sub>dwt</sub>. Since the NC, MPC and SRC for suspended matter and sediment derived in this report are lower than the respective reporting limits, it can be concluded that the derived ERLs are likely to be exceeded in many cases in the Dutch marine water and sediment.

An analysis of 56 zebra mussel (*Dreissena polymorpha*) samples from different freshwater systems in the Netherlands yielded concentrations recalculated to fresh weight of 2.4 to 140  $\mu$ g Sn/kg<sub>wwt</sub> (Stäb et al., 1995). The median value is 11.4  $\mu$ g Sn/kg<sub>wwt</sub>. This median value is close to the maximum permissible concentrations in food of 6.0 and 6.5  $\mu$ g Sn/kg<sub>food</sub> (17.7 and 19  $\mu$ g TPT/kg<sub>food</sub>) as calculated for the assessment of human health and secondary poisoning respectively.

# Conclusions

6

In this report, the risk limits Negligible Concentration (NC), Maximum Permissible Concentration (MPC), Maximum Acceptable Concentration for ecosystems ( $MAC_{eco}$ ), and Serious Risk Concentration for ecosystems ( $SRC_{eco}$ ) are derived for TPT in water, groundwater and sediment. Monitoring data indicates that the derived ERLs for marine water and sediment are likely to be exceeded. For freshwater surface water it is unsure if the derived MPC and NC are exceeded since these levels are lower than the reporting limits. It should be mentioned that TPT will not occur on its own but as part of other organotin compounds. For organotins, additive effects (mixture toxicity) should not be ruled out and the total group of organotins should be assessed by application of concentration addition. Furthermore, it should be mentioned that TPT has PBT properties. For this, it is advised that the compound is considered in other relevant frameworks.

The ERLs for the TPT-cation that were obtained are summarised in the table below.

| ERL                                   | unit                 | value |                        |                       |                       |
|---------------------------------------|----------------------|-------|------------------------|-----------------------|-----------------------|
|                                       |                      | MPC   | NC                     | MAC <sub>eco</sub>    | SRC <sub>eco</sub>    |
| fresh water <sup>a</sup>              | ng/L                 | 0.23  | 2.3 x 10 <sup>-3</sup> | 4.7 x 10 <sup>2</sup> | 4.0 x 10 <sup>2</sup> |
| susp. matter fresh water <sup>b</sup> | µg/kg <sub>dwt</sub> | 0.27  | 2.7 x 10 <sup>-3</sup> |                       |                       |
| salt water                            | ng/L                 | 0.23  | 2.3 x 10 <sup>-3</sup> | 4.7 x 10 <sup>2</sup> | 4.0 x 10 <sup>2</sup> |
| susp. matter salt water <sup>b</sup>  | µg/kg <sub>dwt</sub> | 0.27  | 2.7 x 10⁻³             |                       |                       |
| sediment fresh water <sup>c</sup>     | ng/kg <sub>dwt</sub> | 2.2   | 0.022                  |                       | 2.2 x 10 <sup>3</sup> |
| sediment salt water <sup>c</sup>      | ng/kg <sub>dwt</sub> | 2.2   | 0.022                  |                       | 2.2 x 10 <sup>3</sup> |

Table 16: Derived MPC, NC, MAC<sub>eco</sub>, and SRC<sub>eco</sub> values for TPT.

 $^a$  From the MPC\_{fw,\,eco}, MPC\_{fw,\,secpois} and MPC\_{hh,\,food,\,water} the lowest one is selected as the 'overall' MPC\_water.

 $^{\rm b}\,{\rm Expressed}$  on the basis of Dutch standard suspended matter.

<sup>c</sup> Expressed on the basis of Dutch standard sediment.

# References

- Airaksinen R, Rantakokko P, Turunen AW, Vartiainen T, Vuorinen PJ, Lappalainen A, Vihervuori A, Mannio J, Hallikainen A. 2010. Organotin intake through fish consumption in Finland. Environmental Research. 110: 544-547.
- Alabaster JS. 1969. Survival of fish in 164 herbicides, insecticides, fungicides, wetting agents and miscellaneous substances. International Pest Control. March/April: 29-35.
- Albanis T, Allera A, Bachmann J, Barbaglio A, Berntsson P, Dittmann N, Carnevali DC, Ciceri F, Dagnac T, Duft M, Falandysz J, Galassi S, Hala D, Janer G, Jeannot R, Jobling S, King I, Klingmüller D, Kloas W, Kusk KO, Lavado R, Lo S, Lutz I, Oehlmann J, Oredsson S, Porte C, Rand-Weaver M, Sakkas V, Schmitt C, Schulte-Oehlmann U, Sugni M, Tyler C, Van Aerle R, Van Ballegoy C, Wollenberger L. 2006. Comparative research on endocrine disrupters - phylogenetic approach and common principles focusing on androgenic/antiandrogenic compounds - Final publishable report executive summary on the project results. Frankfurt: COMPRENDO.
- Anonimous. 2009. Stroomgebiedbeheerplan Eems 2009-1015. The Hague: Ministry of Traffic and Watermangement.
- Argese E, Bettiol C, Volpi Ghirardini A, Fasolo M, Giurin G, Ghetti PF. 1998. Comparison of in vitro submitochondrial particle and microtox (R) assays for determining the toxicity of organotin compounds. Environmental Toxicology and Chemistry. 17: 1005-1012.
- Arizzi Novelli A, Argese E, Tagliapietra D, Bettiol C, Volpi Ghirardini A. 2002. Toxicity of tributyltin and triphenyltin to early life-stages of *Paracentrotus lividus* (Echinodermata: Echinoidea). Environmental Toxicology and Chemistry. 21: 859-864.
- Avery SV, Miller ME, Gadd GM, Codd GA, Cooney JJ. 1991. Toxicity of organotins towards cyanobacterial photosynthesis and nitrogen fixation. FEMS Microbiology Letters. 84: 205-210.
- Bao ML, Dai G, Pantani F. 1997. Effect of dissolved humic material on the toxicity of tributyltin chloride and triphenyltin chloride to *Daphnia magna*. Bulletin of Environmental Contamination and Toxicology. 59: 671-676.
- Barbaglio A, Mozzi D, Sugni M, Tremolada P, Bonasoro F, Lavado R, Porte C, Candia Carnevali MD. 2006. Effects of exposure to ED contaminants (TPT-CL and Fenarimol) on crinoid echinoderms: comparative analysis of regenerative development and correlated steroid levels. Marine Biology. 149: 65-77.
- Barroso CM, Reis-Henriques MA, Ferreira MS, Moreira MH. 2002. The effectiveness of some compounds derived from antifouling paints in promoting imposex in *Nassarius reticulatus*. Journal of the Marine Biological Association of the United Kingdom. 82: 249-255.
- Berg M, Arnold CG, Muller SR, Mühlemann J, Schwarzenbach RP. 2001. Sorption and desorption behavior of organotin compounds in sediment-pore water systems. Environmental Science and Technology. 35: 3151-3157.
- Biobyte. 2006. Bio-Loom for Windows (computer program). Version 1.5. Claremont, USA, Biobyte Corp.
- Callow ME, Millner PA, Evans LV. 1979. Organotin resistance in green seaweeds. International Seaweed Symposium. Santa Barbara, USA.
- Clark JR, Patrick JMJ, Moore JC, Lores EM. 1987. Waterborne and sedimentsource toxicities of six organic chemicals to grass shrimp (*Palaemonetes*

*pugio*) and amphioxus (*Branchiostoma caribaeum*). Archives of Environmental Contamination and Toxicology. 16: 401-407.

Cotta-Ramusino M, Doci A. 1987. Acute toxicity of brestan and fentin acetate on some freshwater organisms. Bulletin of Environmental Contamination and Toxicology. 38: 647-652.

Crommentuijn T, Kalf DF, Polder MD, Posthumus R, Van de Plassche EJ. 1997. Maximum Permissible Concentrations and Negligible Concentrations for pesticides Bilthoven, The Netherlands: RIVM. Report no. 601501002.

- De Haas EM, Roessink I, Verbree B, Koelmans AA, Kraak MHS, Admiraal W. 2005. Influence of sediment quality on the responses of benthic invertebrates after treatment with the fungicide triphenyltin acetate. Environmental Toxicology and Chemistry. 24: 1133-1139.
- De Vries H, Penninks AH, Snoeij NJ, Seinen W. 1991. Comparative toxicity of organotin compounds to rainbow trout (*Oncorhynchus mykiss*) yolk sac fry. Science of the Total Environment. 103: 229-243.
- Di Paolo C, Gandhi N, Bhavsar SP, Van den Heuvel-Greve MJ, Koelmans AA. 2010. Black carbon inclusive multichemical modeling of PBDE and PCB biomagnification and -transformation in estuarine food webs. Environmental Science and Technology. 44: 7548-7554.
- Dimitrou P, Castritsi-Catharios J, Miliou H. 2003. Acute toxicity effects of tributyltin chloride and triphenyltin chloride on gilthead seabream, *Sparus aurata* L., embryos. Ecotoxicology and Environmental Safety. 54: 30-35.
- Duft M, Tillmann M, Schulte-Oehlmann U, Markert B, Oehlmann J. 2002. Entwicklung eines Sedimentbiotests mit der Zwergdeckelschnecke *Potamopyrgus antipodarum* (Gastropoda: Prosobranchia). UWSF - Z Umwelchem Okotox. 14: 12-17.
- Duft M, Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J. 2003. Toxicity of triphenyltin and tributyltin to the freshwater mudsnail *Potamopyrgus antipodarum* in a new sediment biotest. Environmental Toxicology and Chemistry. 22: 145-152.
- Duft M, Schmitt C, Bachmann J, Brandelik C, Schulte-Oehlmann U, Oehlmann J. 2007. Prosobranch snails as test organisms for the assessment of endocrine active chemicals - an overview and a guideline proposal for a reproduction test with the freshwater mudsnail *Potamopyrgus antipodarum*. Ecotoxicology. 16: 169-182.
- EC. 1996a. Monograph prepared in the context of the inclusion of the following active substance in Annex I of the Council Directive 91/414/EEC. Active substance: fentin acetate, Rapporteur Member State: United Kingdom. Brussels: European Commission - Health & Consumer Protection Directorate-General.
- EC. 1996b. Monograph prepared in the context of the inclusion of the following active substance in Annex I of the Council Directive 91/414/EEC. Active substance: fentin hydroxide, Rapporteur Member State: United Kingdom. Brussels: European Commission - Health & Consumer Protection Directorate-General.
- EC. 2001. Addendum to the Report and Proposed Decision of the United Kingdom made to the European Commission under Article 7(1) of Regulation 3600/92. Active substance: fentin hydroxide. Brussels: European Commission - Health & Consumer Protection Directorate-General.
- EC. 2003. Technical Guidance Document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European

Parliament and of the Council concerning the placing of biocidal products on the market. Ispra, Italy: European Commission Joint Research Centre.

- EC. 2005. Environmental Quality Standards (EQS). Substance data sheet Priority substance no. 30. Tributyltin compounds (TBT-ion). Final version. Brussels: European Commission.
- EC. 2011. Technical guidance for deriving environmental quality standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. Brussels: European Communities.
- ECHA. 2012. Website of the European chemicals agency. Helsinky.
- EFSA. 2004. Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the Commission to assess the health risks to consumers associated with exposure to organotins in foodstuffs. The EFSA journal. 102: 1-119.
- Eguchi S, Harino H, Yamamoto Y. 2010. Assessment of antifouling biocides contaminations in Maizuru Bay, Japan. Archives of Environmental Contamination and Toxicology. 58: 684-693.
- El Hassani LH, Frenich AG, Martínez Vidal JL, Sánchez Muro MJ, Benajiba MH. 2005. Study of the accumulation of tributyltin and triphenyltin compounds and their main metabolites in the sea bass, *Dicentrachus labrax*, under laboratory conditions. Science of the Total Environment. 348: 191-198.
- Eng G, Whitmyer C, Sina B, Ogwuru N. 1999. Insecticidal effects of triorganotin (IV) compounds on the *Anopheles stephensi* mosquito larvae. Main Group Metal Chemistry. 22: 311-314.
- ESIS. 2010. European chemical Substances Information System. European Commission, Joint Research Centre, Institute for health and consumer protection.
- Fargašová A. 1996. Inhibitive effect of organotin compounds on the chlorophyll content of the green freshwater alga *Scenedesmus quadricauda*. Bulletin of Environmental Contamination and Toxicology. 57: 99-106.
- Fargašová A, Drtil M. 1996. Respirometric toxicity test: Freshwater alga *Scenedesmus quadricauda* sensitivity to organotin compounds. Bulletin of Environmental Contamination and Toxicology. 56: 993-999.
- Fargašová A, Kizlink J. 1996a. Acute toxic effects of organotin compounds on benthic organisms: *Tubifex tubifex* and *Chironomus plumosus*. Biologia, Bratislava. 51: 677-681.
- Fargašová A, Kizlink J. 1996b. Effect of organotin compounds on the growth of the freshwater alga *Scenedesmus quadricauda*. Ecotoxicology and Environmental Safety.
- Fargašová A. 1997a. Comparative study of ecotoxicological effect of triorganotin compounds on various biological samples. Ecotoxicology and Environmental Safety. 36: 38-42.
- Fargašová A. 1997b. The effects of organotin compounds on growth, respiration rate, and chlorophyll A content of *Scenedesmus quadricauda*. Ecotoxicology and Environmental Safety. 37: 193-198.
- Fargašová A. 2002. Structure-affected algicidal activity of triorganotin compounds. Bulletin of Environmental Contamination and Toxicology. 69: 756-762.
- Fent K, Lovas R, Hunn J. 1991. Bioaccumulation, elimination and metabolism of triphenyltin chloride by early life stages of minnows *Phoxinus phoxinus*. Naturwissenschaften. 78: 125-127.
- Fent K, Meier W. 1994. Effects of triphenyltin on fish early life stages. Archives of Environmental Contamination and Toxicology. 27: 224-231.

- Fioramonti E, Semlitsch RD, Reyer H-U, Fent K. 1997. Effects of triphenyltin and pH on the growth and development of *Rana lessonae* and *Rana esculenta* tadpoles. Environmental Toxicology and Chemistry. 16: 1940-1947.
- Flippin JL, Huggett D, Foran CM. 2007. Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquatic Toxicology. 81: 73-78.
- Footprint. 2011. Pesticide Properties Database. University of Hertfordshire.
- Gobas FAPC, Zhang X. 1992. Measuring bioconcentration factors and rate constants of chemicals in aquatic organisms under conditions of variable water concentrations and short exposure time. Chemosphere. 25: 1961-1971.
- Goel HC, Prasad R. 1978. Action of molluscicides on freshly laid eggs of the snail *Indoplanorbis exustus* (Deshayes). Indian J. Exp. Biol. 16: 620-622.
- Han S, Choi K, Kim J, Ji K, Kim S, Ahn B, Yun J, Khim JS, Zhang X, Giesy JP.
  2010. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (*Oryzias latipes*) and freshwater cladocerans *Daphnia magna* and *Moina macrocopa*. Aquatic Toxicology.
  98: 256-264.
- Harino H, Fukushima M, Yamamoto Y, Kawai S, Miyazaki N. 1998. Contamination of butyltin and phenyltin compounds in the marine environment of Otsuchi Bay, Japan. Environmental Pollution. 101: 209-214.
- Horiguchi T, Imai T, Cho HS, Shiraishi H, Shibata Y, Morita M, Shimizu M. 1998.
   Acute toxicity of organotin compounds to the larvae of the rock shell, *Thais clavigera*, the disk abalone, *Haliotis discus discus* and the giant abalone, *Haliotis madaka*. Marine Environmental Research. 46: 469-473.
- Horiguchi T, Kojima M, Kaya M, Matsuo T, Shiraishi H, Morita M, Adachi Y. 2002. Tributyltin and triphenyltin induce spermatogenesis in ovary of female abalone, *Haliotis gigantea*. Marine Environmental Research. 54: 679-684.
- HSDB. 2005. Hazardous Substances Data Bank (HSDB) Datasheet on triphenyltin hydroxide. 2005 ed., National Library of Medicine's
- Hu J, Zhen H, Wan Y, Gao J, An W, An L, Jin F, Jin X. 2006. Trophic magnification of triphenyltin in a marine food web of Bohai Bay, North China: Comparison to tributyltin. Environmental Science and Technology. 40: 3142-3147.
- Huang G, Bai Z, Dai S, Xie Q. 1993. Accumulation and toxic effect of organometallic compounds on algae. Applied Organometallic Chemistry. 7: 373-380.
- Huang G, Dai G, Sun H. 1996. Toxic effects of organotin species on algae. Applied Organometallic Chemistry. 10: 377-387.
- Huang G, Song Z, Liu G, Zhang W. 2002. Toxic effect of triphenyltin chloride on the alga *Spirulina subsalsa*. Applied Organometallic Chemistry. 16: 117-122.
- ICPR. 2009. Afleiding van milieukwaliteitsnormen voor Rijnrelevante stoffen. Internationale Commissie ter Bescherming van de Rijn. Report no. 164.
- Inaba K, Shiraishi H, Soma Y. 1995. Effects of salinity, pH and temperature on aqueous solubility of four organotin compounds. Water Research. 29: 1415-1417.
- INS. 1999. Setting integrated environmental quality standards for substances in the Netherlands. Environmental quality standards for soil, water and air (updated version of original document December 1997). The Haque, the Netherlands: Interdepartmental Working Party on Setting Integrated Environmental Quality Standards for Substances.

- Itow T, Loveland RE, Botton ML. 1998. Developmental abnormalities in horseshoe crab embryos caused by exposure to heavy metals. Archives of Environmental Contamination and Toxicology. 35: 33-40.
- Janer G, Bachmann J, Oehlmann J, Schulte-Oehlmann U, Porte C. 2006. The effect of organotin compounds on gender specific androstenedione metabolism in the freshwater ramshorn snail *Marisa cornuarietis*. Journal of Steroid Biochemistry and Molecular Biology. 99: 147-156.
- Jarvinen AW, Tanner DK, Kline ER, Knuth ML. 1988. Acute and chronic toxicity of triphenyltin hydroxide to fathead minnows (*Pimephales promelas*) following brief or continuous exposure. Environmental Pollution. 52: 289-301.
- Johnson WW, Finley MT. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates - Summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78, Washington DC, USA, United States department of the interior fish and wildlife service.
- Jones-Lepp TL, Varner KE, Heggem D. 2004. Monitoring dibutyltin and triphenyltin in fresh waters and fish in the United States using microliquid chromatography-electrospray/Ion trap mass spectrometry. Arch.Environ.Contam.Toxicol. 46: 90-95.
- Klimisch HJ, Andreae M, Tillman U. 1997. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology. 25: 1-5.
- Kline E, Jarvinen A, Knuth M. 1989. Acute toxicity of triphenyltin hydroxide to three cladoceran species. Environmental Pollution. 56.
- Könemann H. 1981. Fish toxicity tests with mixtures of more than two chemicals: A proposal for a quantitative approach and experimental results. Toxicology. 19: 229-238.
- Kumar Das VG, Kuan LY, Sudderuddin KI, Chang CK, Thomas V, Yap CK, Lo MK, Ong GC, NG WK, Hoi-Sen Y. 1984. The toxic effects of triorganotin (IV) compounds on the culicine mosquito, *Aedes aegypti* (L.). Toxicology. 32: 57-66.
- Kuroshima R, Kakuno A, Koyama J. 1997. Effects of triphenyltin on the potential activities of trypsinogen and chymotrypsinogen of Red Sea Bream. Bull.Jpn.Soc.Sci.Fish.(Nippon Suisan Gakkaishi). 63: 85-89.
- Laughlin RJ, W F, Johannesen R, Guard H, Brinckman F. 1984. Predicting toxicity using computed molecular topologies: the example of triorganotin compounds. Chemosphere. 13: 575-584.
- Laughlin RJ, Johannesen R, W F, Guard H, Brinckman F. 1985. Structure-activity relationships for organotin compounds. Environmental Toxicology and Chemistry. 4: 343-351.
- Lavado R, Sugni M, Candia Carnevali MD, Porte C. 2006. Triphenyltin alters androgen metabolism in the sea urchin *Paracentrotus lividus*. Aquatic Toxicology. 79: 247-256.
- Lepper F. 2005. Manual on the methodological framework to derive environmental quality standards for priority substances in accordance with article 16 of the Water Framework Directive (2000/60/EC). Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology.
- Lindén E, Bengtsson B-E, Svanberg O, Sundström G. 1979. The acute toxicity of 78 chemicals and pesticide formulations against two brackish water organisms, the bleak (*Alburnus alburnus*) and the harpaticoid *Nitocra spinipes*. Chemosphere. 11/12: 843-851.
- Lo C-C, Hsieh T-T. 2000. Acute toxicity to the golden apple snail and estimated bioconcentration potential of triphenylphosphine oxide and series of

related compounds. Bulletin of Environmental Contamination and Toxicology. 65: 104-111.

- Looser PW, Bertschi S, Fent K. 1998. Bioconcentration and bioavailability of organotin compounds: influence of pH and humic substances. Applied Organometallic Chemistry. 12: 601-611.
- Ma J, Lin F, Qin W, Wang P. 2004. Differential response of four cyanobacterial and green algal species to triazophos, fentin acetate, and ethephon. Bulletin of Environmental Contamination and Toxicology. 73: 890-897.
- Macken A, Giltrap M, Foley B, McGovern E, McHugh B, Davoren M. 2008. A model compound study: the ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays. Environmental Pollution. 153: 627-637.
- Marsot P, Pelletier É, St-Louis R. 1995. Effects of triphenyltin chloride on growth of the marine microalga *Pavlova lutheri* in continuous culture. Bulletin of Environmental Contamination and Toxicology. 54: 389-395.
- Maruyama T, Sun D, Hashimoto S, Miura A. 1991. Toxic effects of triorganotins on the adhesion and germination-growth of conchospores of *Porphyra yezoensis*, Red arga. Marine Pollution Bulletin. 23: 729-731.
- Mayer FJ. 1974. Pesticides as Pollutants. In: Liptak BG (Ed.) Environmental Engineer's Handbook. pp. 405-418. Radnor, USA, Chilton Book Co.
- Mayer FLJ, Ellersieck MR (Eds.). 1986. Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resource Publication 160, Washington, D.C., USA, United States Department of the Interior. Fish and Wildlife Service.
- Mendo SA, Nogueira PR, Ferreira SCN, Silva RG. 2003. Tributyltin and triphenyltin toxicity on benthic estuarine bacteria. Fresenius Environmental Bulletin. 12: 1361-1368.
- Meng P-J, Han B-C, Hsu W-K, Chuang A, Cheng J-H, Hung T-C. 2003. Bioaccumulation and elimination of tributyltin and triphenyltin in oysters and rock shells in Taiwan. Journal of Food and Drug Analysis. 11: 96-101.
- Mensink BP, van Hattum B, ten Hallers-Tjabbes CC, Everaarts JM, Kralt H, Vethaak AD, Boon JP. 1997. Tributyltin causes imposex in the common whelk, *Buccinum undatum* : mechanism and occurrence. Den Burg: NIOZ.
- Miyoshi N, Kawano T, Tanaka M, Kadono T, Kosaka T, Kunimoto M, Takahashi T, Hosoya H. 2003. Use of *Paramecium* species in bioassays for environmental risk management: Determination of IC50 values for water pollutants. Journal of Health Science. 49: 429-435.
- Mooney HM, Patching JW. 1995. Triphenyltin inhibits photosynthesis and respiration in marine microalgae. Journal of Industrial Microbiology. 14: 265-270.
- Moschino V, Marin MG. 2002. Spermiotoxicity and embryotoxicity of triphenyltin in the sea urchin *Paracentrotus lividus* Lmk. Applied Organometallic Chemistry. 16: 175-181.
- Murai R, Sugimoto A, Tanabe S, Takeuchi I. 2008. Biomagnification profiles of tributyltin (TBT) and triphenyltin (TPT) in Japanese coastal food webs elucidated by stable nitrogen isotope ratios. Chemosphere. 73: 1749-1756.
- Murkowski A, Skorska E. 2010. Effect of  $(C_6H_5)_3$ PbCl and  $(C_6H_5)_3$ SnCl on delayed luminescence intensity, evolving oxygen and electron transport rate in photosystem II of *Chlorella vulgaris*. Bull.Environ.Contam.Toxicol. 84: 157-160.

- Nagase H, Hamasaki T, Sato T, Kito H, Yoshioka Y, Ose Y. 1991. Structureactivity relationships for organotin compounds on the red killifish *Oryzias latipes*. Applied Organometallic Chemistry. 5: 91-97.
- Nguyen H, Ogwuru N, Duong Q, Eng G. 2000a. Toxicity of triorganotin compounds to the brine shrimp, *Artemia salina*. Applied Organometallic Chemistry. 14: 349-354.
- Nguyen TT, Ogwuru N, Eng G. 2000b. Tolerance of *Aedes aegypti* larvae to triorganotins. Applied Organometallic Chemistry. 14: 345-348.
- NITE. 2011. Biodegradation and bioconcentration of the existing chemical substances under the chemical substances control law. National Institute of Technology and Evaluation.
- Oehlmann J, Di Benedetto P, Tillmann M, Duft M, Oetken M, Schulte-Oehlmann U. 2007. Endocrine disruption in prosobranch molluscs: evidence and ecological relevance. Ecotoxicology. 16: 29-43.
- Ogwuru N, Duong Q, Song X, Eng G. 2001. Toxic effects of triorganotin compounds on the *Anopheles stephensi* mosquito and larvae. Main Group Metal Chemistry. 24: 775-779.
- Ohji M, Arai M, Midorikawa S, Harino H, Masuda R, Miyazaki N. 2007. Distribution and fate of organotin compoundsin Japanese coastal waters. Water Air and Soil Pollution. 178: 255-265.
- Ohji M, Harino H, Arai T. 2011. Differences in organotin accumulation in relation to life history in the white-spotted charr Salvelinus leucomaenis. Marine Pollution Bulletin. 62: 318-326.
- Oliveira-Filho EC, Geraldino BR, Coelho DR, De-Carvalho RR, Paumgartten FJR. 2010. Comparative toxicity of *Euphorbia milii* latex and synthetic molluscicides to *Biomphalaria glabrata* embryos. Chemosphere. 81: 218-227.
- Portmann JE, Wilson KW. 1971. The toxicity of 140 substances to the brown shrimp and other marine animals. Shellfish information Leaflet. Burnham-on-Crouch, UK: Ministry of Agriculture, Fisheries and Food, Fisheries Laboratory.
- Rantakokko P, Hallikainen A, Airaksinen R, Vuorinen PJ, Lappalainen A, Mannio J, Vartiainen T. 2010. Concentrations of organotin compounds in various fish species in the Finnish lake waters and Finnish coast of the Baltic Sea. Science of the Total Environment. 408: 2474-2481.
- Rehage JS, Lynnn SG, Hammond JI, Palmer BD, Sih A. 2002. Effects of larval exposure to triphenyltin on the survival, growth, and behavior of larval and juvenile *Ambystoma barbouri* salamanders. Environmental Toxicology and Chemistry. 21: 807-815.
- RIWA. 2010. Jaarrapport 2009 De Rijn. Nieuwegein: RIWA Vereniging van Rivierwaterbedrijven.
- Roessink I, Belgers JDM, Crum SJH, Van Den Brink PJ, Brock TCM. 2006a. Impact of triphenyltin acetate in microcosms simulating floodplain lakes. II. Comparison of species sensitivity distributions between laboratory and semi-field. Ecotoxicology. 15: 411-424.
- Roessink I, Crum SJH, Bransen F, Van Leeuwen E, Van Kerkum F, Koelmans AA, Brock TCM. 2006b. Impact of triphenyltin acetate in microcosms simulating floodplain lakes. I. Influence of sediment quality. Ecotoxicology. 15: 267-293.
- Roessink I. 2008. Interactions between nutrients and toxicants in shallow freshwater ecosystems. Wageningen, Wageningen University.
- Schaefer CH, Miura T, Wilder WH. 1981. Biological activities of two new substituted benzamides against mosquitoes and nontarget organisms. Journal of Economic Entomology. 74: 658-661.

- Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J, Watermann B, Scherf
   S. 2000. Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part II: Triphenyltin as a xeno-androgen. Ecotoxicology. 9: 399-412.
- Schwaiger J, Fent K, Stecher H, Ferling H, Negele RD. 1996. Effects of sublethal concentrations of triphenyltinacetate on rainbow trout (*Oncorhynchus mykiss*). Archives of Environmental Contamination and Toxicology. 30: 327-334.
- Semlitsch RD, Foglia M, Mueller A, Steiner I, Fioramonti E, Fent K. 1995. Shortterm exposure to triphenyltin affects the swimming and feeding behavior of tadpoles. Environmental Toxicology and Chemistry. 14: 1419-1423.
- Shim WJ, Hong SH, Agafonova IG, Aminin DL. 2006. Comparative toxicities of organotin compounds on fertilization and development of sea urchin (*Anthocidaris crassispina*). Bulletin of Environmental Contamination and Toxicology. 77: 755-762.
- Shimizu A, Kimura S. 1991. Acute toxicity of triphenyltin chloride (TPTC) to the saltwater goby, *Chasmichthys dolichognathus* in natural seawater and artificial seawater. Bull. Natl. Res. Inst. Fish. Sci. 2: 33-39.
- Song Z, Huang G. 2005. Toxic effect of triphenyltin on *Lemna polyrhiza*. Applied Organometallic Chemistry. 19: 807-810.
- Song ZH, Huang GL. 2001. Effect of triphenyltin on duckweed *Lemna minor*. Bulletin of Environmental Contamination and Toxicology. 67: 368-375.
- Stäb JA, Frenay M, Freriks IL, Brinkman UAT, Cofino WP. 1995. Survey of nine organotin compounds in the Netherlands using the zebra mussel (*Dreissena polymorpha*) as biomonitor. Environmental Toxicology and Chemistry. 14: 2023-2032.
- Stäb JA, Traas TE, Stroomberg G, van Kesteren J, Leonards IE, van Hattum IB, Brinkman UAT, Cofino WE. 1996. Determination of organotin compounds in the foodweb of a shallow freshwater lake in the Netherlands. Arch.Environ.Contam.Toxicol. 31: 319-328.
- Stasinakis AS, Thomaidis NS, Lekkas TD. 2001. Toxicity of organotin compounds to activated sludge. Ecotoxicology and Environmental Safety. 49: 275-280.
- Steinhäuser KG, Amann W, Späth A, Polenz A. 1985. Untersuchungen zur aquatischen Toxiczität zinnorganischer Verbindungen. Vom Wasser. 65: 203-214.
- Strmac M, Braunbeck T. 1999. Effects of triphenyltin acetate on survival, hatching success, and liver ultrastructure of early life stages of zebrafish (*Danio rerio*). Ecotoxicology and Environmental Safety. 44: 25-39.
- Sugni M, Mozzi D, Barbaglio A, Bonasoro F, Candia Carnevali MD. 2007. Endocrine disrupting compounds and echinoderms: new ecotoxicological sentinels for the marine ecosystem. Ecotoxicology. 16: 95-108.
- Sugni M, Tremolada P, Porte C, Barbaglio A, Bonasoro F, Candia Carnevali MD. 2010. Chemical fate and biological effects of several endocrine disrupters compounds in two echinoderm species. Ecotoxicology. 19: 538-554.
- Sun H, Huang G, Dai S. 1996. Adsorption behaviour and QSPR studies of organotin compounds on estuarine sediment. Chemosphere. 33: 831-838.
- Suzuki T, Yamamoto I, Yamada H, Kaniwa N, Kondo K, Murayama M. 1998. Accumulation, metabolism, and depuration of organotin compounds in the marine mussels *Mytilus graynus* and *Mytilus edulis* under natural conditions. Journal of Agricultural and Food Chemistry. 46: 304-313.

- Tas J, Opperhuizen A, Seinen W. 1990. Uptake and elimination kinetics of triphenyltin hydroxide by two fish species. Toxicol.Environ.Chem. 28: 129-141.
- Tas JW, Hermens JLM, Van den Berg M, Seinen W. 1989. Bioconcentration and elimination of triphenyltin hydroxide in fish. Marine Environmental Research. 28: 215-218.
- Tas JW, Seinen W, Opperhuizen A. 1991. Lethal body burden of triphenyltin chloride in fish: preliminary results. Comparative Biochemistry and Physiology. 100C: 59-60.
- Tas JW, Keizer A, Opperhuizen A. 1996. Bioaccumulation and lethal body burden of four triorganotin compounds. Bulletin of Environmental Contamination and Toxicology. 57: 146-154.
- Tiesjema B, Baars AJ. 2010. Re-evaluation of some human toxicological Maximum Permissible Risk levels earlier evaluated in the period 1991-2001. Bilthoven, The Netherlands: RIVM. Report no. 711701092.
- Tomlin CDS (Ed.) 2002. The e-pesticide manual, Alton, UK, British crop protection council.
- Tooby TE, Hursey PA, Alabaster JS. 1975. The acute toxicity of 102 pesticides and miscellaneous substances to fish. Chemistry and Industry. June: 523-526.
- Tremolada P, Bristeau S, Mozzi D, Sugni M, Barbaglio A, Dagnac T, Candia Carnevali MD. 2005. A simple model to predict compound loss processes in aquatic ecotoxicological tests: calculated and measured TPT-Cl levels in water and biota. Int. J. Env. Anal. Chem. 86: 171-184.
- Tremolada P, Bristeau S, Mozzi D, Sugni M, Barbaglio A, Dagnac T, Candia Carnevali MD. 2006. A simple model to predict compound loss processes in aquatic ecotoxicological tests: calculated and measured triphenyltin levels in water and biota. Intern. J. Environ. Anal. Chem. 86: 171-184.
- Treuner AB, Horiguchi T, Takiguchi N, Imai T, Morita M. 2005. Sublethal effects of tributyltin and triphenyltin on larvae of four species of marine gastropods, the abalone *Haliotis madaka*, *H. gigantea* and *H. discus discus* and the topshell *Batillus cornutus* from Japan. Pollutant responses in marine organisms. Alessandria Italy.
- Tsuda T. 1986. Bioconcentration of butyltin compounds by round crucian carp. Toxicological and Environmental Chemistry. 12: 137-143.
- Tsuda T, Nakanishi H, Aoki S, Takebayashi J. 1987a. Bioconcentration and metabolism of phenyltin chlorides in carp. Water Research. 21: 949-953.
- Tsuda T, Nakanishi H, Aoki S, Takebayashi J. 1987b. Determination of butyltin and phenyltin compounds in biological and sediment samples by electron-capture gas chromatography. Journal of Chromatography A. 387: 361-370.
- Tsuda T, Wada M, Aoki S, Matsui Y. 1988. Bioconcentration, excretion and metabolism of bis(tri-n-butyltin)oxide and triphenyltin chloride by gold fish. Toxicol.Environ.Chem. 18: 11-20.
- Tsuda T, Aoki S, Kojima M, Harada H. 1990a. Differences between freshwater and seawater-acclimated guppies in the accumulation and excretion of tri-*n*-butyltin chloride and triphenyltin chloride. Water Research. 24: 1373-1376.
- Tsuda T, Aoki S, Kojima M, Harada H. 1990b. The influence of pH on the accumulation of tri-*N*-butyltin chloride and triphenyltin chloride in carp. Comparative Biochemistry and Physiology. 95C: 151-153.
- Tsuda T, Aoki S, Kojima M, Harada H. 1991. Accumulation of tri-*n*-butyltin chloride and triphenyltin chloride by oral and via gill intake of goldfish *(Carassius auratus)*. Comparative Biochemistry and Physiology. 99c: 69-72.

- Tsuda T, Aoki S, Kojima M, Fujita T. 1992. Accumulation and excretion of tri-*n*butyltin chloride and triphenyltin chloride by willow shiner. Comparative Biochemistry and Physiology. 101C: 67-70.
- Tsunemasa N, Okamura H. 2011. Effects of organotin alternative antifoulants on oyster embryo. Arch.Environ.Contam.Toxicol. 61: 128-134.
- UNEP. 1989. Assessment of organotin compounds as marine pollutants in the Mediterranean. Athens: United Nations Environment Program.
- US EPA-OPTS. 1988. EEB review of triphenyltin accumulation study. Record number 216537 file number 8340-17. Washington: US Environmental Protection Agency - Office of Pesticides and Toxic Substances.
- US EPA. 2009. EPI Suite (computer program). Version 4.0. Washington, DC, U.S. Environmental Protection Agency (EPA) Office of Pollution Prevention Toxics and Syracuse Research Company (SRC).
- Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of 'International and national environmental quality standards for substances in the Netherlands' (INS). Bilthoven, The Netherlands: RIVM. Report no. 601782001.
- Veltman K, Huijbregts MAJ, Van den Heuvel-Greve MJ, Vethaak AD, Hendriks AJ. 2006. Organotin accumulation in an estuarine food chain: comparing field measurements with model estimations. Marine Environmental Research. 61: 511-530.
- Vethaak AD, Jol GJ, Martinez-Gomez C. 2011. Effects of cumulative stress on fish health near freshwater outlet sluices into the sea: A case study (1988–2005) with evidence for a contributing role of chemical contaminants. Integrated Environmental Assessment and Management. 7: 445-458.
- Vighi M, Calimari D. 1985. QSAR's for organotin compounds on *Daphnia magna*. Chemosphere. 14: 1925-1932.
- Visser JT, Linders JBHJ. 1992. Fentin acetate. Bilthoven: RIVM. Report no. 92/670104/006.
- Vogue PA, Kerle EA, Jenkins JJ. 1994. OSU Extension Pesticide Properties Database. Corvallis, USA: National Pesticide Information Center.
- VROM. 2004. (Inter)nationale Normen Stoffen. The Hague: Ministry of Housing, Spatial Planning and the Environment.
- Walsh GE, McLaughlan LL, Lores EM, Louie MK, Deans CH. 1985. Effects of organotins on growth and survival of two marine diatoms, *Skeletonema costatum* and *Thalassiosira pseudonana*. Chemosphere. 14: 383-392.
- Walsh GE, McLaughlin LL, Louie MK, Deans CH, Lores EM. 1986. Inhibition of arm regeneration by *Ophioderma brevispina* (Echinodermata, Ophiuroidea) by tributyltin oxide and triphenyltin oxide. Ecotoxicology and Environmental Safety. 12: 95-100.
- Walter H, Consolaro F, Gramatica P, Scholze M, Altenburger R. 2002. Mixture toxicity of priority pollutants at no observed effect concentrations (NOECs). Ecotoxicology. 11: 299-310.
- Wong PTS, Chau YK, Kramar O, Bengert GA. 1982. Structure-toxicity relationship of tin compounds on algae. Canadian Journal of Fisheries and Aquatic Sciences. 39: 483-488.
- Xu J, Li M, Mak NK, Chen F, Jiang Y. 2011. Triphenyltin induced growth inhibition and antioxidative responses in the green microalga *Scenedesmus quadricauda*. Ecotoxicology. 20: 73-80.
- Yamada H, Takayanagi K. 1992. Bioconcentration and elimination of bis(tributyltin)oxide (TBTO) and triphenyltin chloride (TPTCI) in several marine fish species. Water Research. 26: 1589-1595.

- Yamada H, Tateishi M, Takayanagi K. 1994. Bioaccumulation of organotin compounds in the red sea bream (*Pagrus major*) by two uptake pathways: dietary uptake and direct uptake from water. Environmental Toxicology and Chemistry. 13: 1415-1422.
- Zhang Z, Hu J, Zhen H, Wu X, Huang C. 2008. Reproductive inhibition and transgenerational toxicity of triphenyltin on medaka (*Oryzias latipes*) at environmentally relevant levels. Environmental Science and Technology. 42: 8133-8139.
- Zhihui S, Guolan H. 2000. Toxicity of triphenyltin to *Spirulina subsalsa*. Bulletin of Environmental Contamination and Toxicology. 64: 723-728.

# Appendix 1. Data on bioconcentration

| Legend to data tables | Species                                                                                                                                                                                                |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | properties                                                                                                                                                                                             |
| Test type             | S = static; R = renewal; F = flow-through                                                                                                                                                              |
| Test water            | am = artificial medium; dtw = dechlorinated tap water; dw = de-ionised/dechlorinated/distilled water; nw = natural water; rw = reconstituted (sea)water; rtw = reconstituted tap water; tw = tap water |
| BCF-method            | Corg/Cw; Cf/Cw = BCF based on ratio between concentrations in organism/organ/fish and water; kinetics = BCF based on uptake and elimination rate constants                                             |
| Ri                    | Reliability index, see section 2.2                                                                                                                                                                     |

# Table A1.1: Bioconcentration factors for aquatic organisms.

| Species              | Species                 | Analysis               | Test | Test     | Purity | Test  | pН | Hardness          | Salinity | Temp. | Exp. | Exp.   | BCF        | BCF                        | Method   | Ri | Notes       | Ref                     |
|----------------------|-------------------------|------------------------|------|----------|--------|-------|----|-------------------|----------|-------|------|--------|------------|----------------------------|----------|----|-------------|-------------------------|
|                      | properties              |                        | type | compound | [%]    | water |    | CaCO <sub>3</sub> | [%0]     | [°C]  | time | conc.  | [] /ka]    | type                       |          |    |             |                         |
| Algae                |                         |                        |      |          | [,0]   |       |    | [IIIg/ L]         | [ /00 ]  |       |      |        | [L/ Kgwwt] |                            |          |    |             |                         |
| Scenedesmus obliquus | log-phase               | HPLC                   | S    | TPT-CI   | 1      | am    |    |                   |          | 25    | 96 h | 1      | 1.14E+05   |                            | Corg/Cw  | 3  | 18,59       | Huang et al.(1993)      |
| Macrophyta           |                         |                        |      |          |        |       |    |                   |          |       |      |        |            |                            |          |    |             |                         |
| Lemna minor          | from the field          | LS-5 lumin.<br>spectr. | R    | ТРТ      |        | am    |    |                   |          | 25    | 8 d  | 2      | 5.45       |                            | Corg/Cw  | 2  | 19,20,21    | Song and Huang (2001)   |
| Lemna minor          | from the field          | LS-5 lumin.<br>spectr. | R    | ТРТ      |        | am    |    |                   |          | 25    | 8 d  | 5      | 2.76       |                            | Corg/Cw  | 2  | 19,20,21    | Song and Huang (2001)   |
| Mollusca             |                         |                        |      |          | 1      |       |    |                   |          |       |      |        |            |                            |          |    |             |                         |
| Crassostrea gigas    | field collected         |                        |      | TPT      |        |       |    |                   |          |       | 60 d | 0.4    | 1398       | whole animal<br>dry weight | Corg/Cw  | 3  | 1,10,11     | Meng et al. (2003)      |
| Haliotis gigantea    |                         |                        | F    | TPT      | 1      |       |    |                   |          |       | 63 d | 0.1    | 14060      | head                       | Corg/Cw  | 3  | 10,11       | Horiguchi et al. (2002) |
| Haliotis gigantea    |                         |                        | F    | TPT      |        |       |    |                   |          |       | 63 d | 0.1    | 1260       | muscle                     | Corg/Cw  | 3  | 10,11       | Horiguchi et al. (2002) |
| Mytilus edulis       | caught in field         |                        |      | TPT-CI   |        | nw    |    |                   |          |       | 68 d | 0.0008 | 36000      | whole animal               | kinetic  | 3  | 14          | Suzuki et al. (1998)    |
| Mytilus graynus      | caught in field         |                        |      | TPT-CI   |        | nw    |    |                   |          |       | 56 d |        | 43000      | whole animal               | kinetic  | 3  | 14          | Suzuki et al. (1998)    |
| Thais clavigera      | female, field collected |                        |      | TPT      |        |       |    |                   |          |       | 60 d | 0.4    | 5510       | whole animal<br>dry weight | Corg/Cw  | 3  | 1,10,11     | Meng et al. (2003)      |
| Echinodermata        |                         |                        |      |          |        |       |    |                   |          |       |      |        |            |                            |          |    |             |                         |
| Antedon mediterranea | adult                   | GC-MS/MS               | R    | TPT-CI   | >98    | am    |    | 37                |          | 16    | 14 d | 0.033  | 23300      | whole animal               | Corg/Cw  | 3  | 1,4,15      | Temolada et al. (2006)  |
| Antedon mediterranea | adult                   | GC-MS/MS               | R    | TPT-CI   | >98    | am    |    | 37                |          | 16    | 14 d | 0.014  | 36700      | whole animal               | Corg/Cw  | 3  | 1,4,15      | Temolada et al. (2006)  |
| Antedon mediterranea | adult                   | GC-MS/MS               | R    | TPT-CI   | >98    | am    |    | 37                |          | 16    | 28 d | 0.0055 | 27500      | whole animal               | Corg/Cw  | 2  | 4,12,15     | Temolada et al. (2006)  |
| Crustacea            |                         |                        |      |          |        |       |    |                   |          |       |      |        |            |                            |          |    |             |                         |
| Daphnia magna        | 21 d old                | GC                     | S    | TPT-CI   | >97    | am    | 8  |                   |          | 20    | 72 h | 8      | 198        | whole animal               | kinetics | 2  | 12,24,27,29 | Looser et al. (1998)    |
| Daphnia magna        | 21 d old                | GC                     | S    | TPT-CI   | >97    | am    | 8  |                   |          | 20    | 72 h | 8      | 190        | whole animal               | Corg/Cw  | 2  | 12,24,27,29 | Looser et al. (1998)    |
| Daphnia magna        | 21 d old                | GC                     | S    | TPT-CI   | >97    | am    | 8  |                   |          | 20    | 72 h | 8      | 150        | whole animal               | Corg/Cw  | 3  | 12,24,27,30 | Looser et al. (1998)    |
| Daphnia magna        | 21 d old                | GC                     | S    | TPT-CI   | >97    | am    | 8  |                   |          | 20    | 72 h | 8      | 100        | whole animal               | Corg/Cw  | 3  | 12,24,27,31 | Looser et al. (1998)    |

| Species                            | Species                                            | Analysis | Test | Test     | Purity | Test  | pН      | Hardness          | Salinity      | Temp.    | Exp.           | Exp.               | BCF     | BCF          | Method                | Ri     | Notes       | Ref                       |
|------------------------------------|----------------------------------------------------|----------|------|----------|--------|-------|---------|-------------------|---------------|----------|----------------|--------------------|---------|--------------|-----------------------|--------|-------------|---------------------------|
|                                    | properties                                         |          | type | compound | F0/61  | water |         | CaCO <sub>3</sub> | F0/m 1        | [PC]     | time           | conc.              | []/ka ] | type         |                       |        |             |                           |
| Danhnia magna                      | 21 d old                                           | GC       | S    | TPT-CI   | >97    | am    | 8       | [IIIg/L]          | [700]         | 20       | 72 h           | <u>[µy/L]</u><br>8 | 120     | whole animal | Cora/Cw               | 3      | 12 24 27 32 | Looser et al. (1998)      |
| Daphnia magna<br>Daphnia magna     | 21 d old                                           | GC       | S    | TPT-CI   | >97    | am    | 8       |                   |               | 20       | 72 h           | 8                  | 60      | whole animal | Corg/Cw               | 3      | 12,24,27,33 | Looser et al. (1998)      |
| Insecta                            |                                                    |          | -    |          |        |       | -       |                   |               |          |                | -                  |         |              |                       | -<br>- |             |                           |
| Chironomus riparius                | 2 w old larvae                                     | GC       | S    | TPT-CI   | >97    | am    | 8       |                   |               | 20       | 72 h           | 4.8                | 796     | whole animal | kinetics              | 2      | 1.25.28.29  | Looser et al. (1998)      |
| Chironomus riparius                | 2 w old larvae                                     | GC       | S    | TPT-CI   | >97    | am    | 8       |                   |               | 20       | 72 h           | 4.8                | 680     | whole animal | Cora/Cw               | 3      | 1.25.28.29  | Looser et al. (1998)      |
| Chironomus riparius                | 2 w old larvae                                     | GC       | S    | TPT-CI   | >97    | am    | 5       |                   |               | 20       | 72 h           | 4.3                | 510     | whole animal | Cora/Cw               | 3      | 1,25,28,29  | Looser et al. (1998)      |
| Pisces                             |                                                    |          |      | -        |        |       | -       |                   |               | -        |                | -                  |         |              | <u>J</u> , -          |        | 1 -1 -1 -   |                           |
| Carassius auratus                  | 2.8-3.5 cm, 0.9-1.7 g, lipid content 2.1-2.6%      | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 18±1     | 14 d           | 3.2±0.3            | 257     | whole fish   | Cf/Cw                 | 3      | 1           | Tsuda et al. (1988)       |
| Carassius auratus                  | 2.8-3.5 cm, 0.9-1.7 g, lipid content 2.1-2.6%      | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 18±1     | 14 d +<br>14 d | 3.2±0.3            | 1085    | whole fish   | simultaneous<br>model | 2      | 45          | Tsuda et al. (1988)       |
| Carassius auratus                  | 3.5-4.0 cm, 1.6-2.9 g                              | GC-FPD   | F    | TPT-CI   | 98     | dtw   | 7.1-7.2 | 39                |               | 23±1     | 28 d           | 0.14<br>±0.01      | 1384    | whole fish   | Cf/Cw                 | 3      | 1           | Tsuda et al. (1991)       |
| Carassius auratus                  | 3.5-4.0 cm, 1.6-2.9 g                              | GC-FPD   | F    | TPT-CI   | 98     | dtw   | 7.1-7.2 | 39                |               | 23±1     | 28 d           | 0.14<br>±0.01      | 1815    | whole fish   | kinetics              | 2      | 45          | Tsuda et al. (1991)       |
| Carassius carassius<br>grandoculis | 1-2 year, 43-70 g, 12-14<br>cm                     | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 22±1     | 7 d            | 7.5±0.5            | 50      | muscle       | Corg/Cw               | 3      | 1,58        | Tsuda (1986)              |
| Carassius carassius<br>grandoculis | 1-2 year, 43-70 g, 12-14<br>cm                     | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 22±1     | 7 d            | 7.5±0.5            | 50      | vertebra     | Corg/Cw               | 3      | 18          | Tsuda (1986)              |
| Carassius carassius<br>grandoculis | 1-2 year, 43-70 g, 12-14<br>cm                     | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 22±1     | 7 d            | 7.5±0.5            | 112     | liver        | Corg/Cw               | 3      | 18          | Tsuda (1986)              |
| Carassius carassius<br>grandoculis | 1-2 year, 43-70 g, 12-14<br>cm                     | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 22±1     | 7 d            | 7.5±0.5            | 31      | kidney       | Corg/Cw               | 3      | 18          | Tsuda (1986)              |
| Chasmichthys<br>dolichognathus     | 5.21 cm, 1.67 g                                    |          |      | TPT-CI   |        | nw    | 8.0-8.3 |                   | 33.3-<br>34.2 | 25.0±0.9 | 96 h           | 13.5±0.7           | 338     | whole fish   | Cf/Cw                 | 3      | 6,9         | Shimizu and Kimura (1991) |
| Chasmichthys<br>dolichognathus     | 5.30 cm, 1.86 g                                    |          |      | TPT-CI   |        | am    | 8.1-8.4 |                   | 33.3-<br>33.6 | 25.1±1.0 | 96 h           | 16.0±3.5           | 158     | whole fish   | Cf/Cw                 | 3      | 6,7,9       | Shimizu and Kimura (1991) |
| Chasmichthys<br>dolichognathus     | 5.02 cm, 1.52 g                                    |          |      | TPT-CI   |        | am    | 8.1-8.2 |                   | 33.0-<br>33.5 | 25.1±0.9 | 96 h           | 13.5±1.0           | 244     | whole fish   | Cf/Cw                 | 3      | 6,7,9       | Shimizu and Kimura (1991) |
| Chasmichthys<br>dolichognathus     | 5.41 cm, 1.78 g                                    |          |      | TPT-CI   |        | am    | 8.1-8.3 |                   | 33.1-<br>33.4 | 25.0±0.3 | 96 h           | 14.0±0.8           | 305     | whole fish   | Cf/Cw                 | 3      | 6,8,9       | Shimizu and Kimura (1991) |
| Cyprinus carpio                    |                                                    | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               |          | 10 d           | 6                  | 200     | muscle       | Corg/Cw               | 3      | 18,45       | Tsuda (1986)              |
| Cyprinus carpio                    | 10.0-11.0 cm, 22.9-30.4 g                          | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 22±1     | 7 d            | 2.1                | 132     | muscle       | Corg/Cw               | 3      | 18          | Tsuda et al. (1987b)      |
| Cyprinus carpio                    | 10.0-11.0 cm, 22.9-30.4 g                          | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 22±1     | 7 d            | 2.1                | 189     | liver        | Corg/Cw               | 3      | 18,45       | Tsuda et al. (1987b)      |
| Cyprinus carpio                    | 10.0-11.0 cm, 22.9-30.4 g                          | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 22±1     | 7 d            | 2.1                | 491     | gall bladder | Corg/Cw               | 3      | 18,45       | Tsuda et al. (1987b)      |
| Cyprinus carpio                    | 10.0-11.0 cm, 22.9-30.4 g                          | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 22±1     | 7 d            | 2.1                | 565     | kidney       | Corg/Cw               | 3      | 18,45       | Tsuda et al. (1987b)      |
| Cyprinus carpio                    | 10-12 cm, 25.6-36.1 g,<br>lipid content 0.75-0.80% | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 23±1     | 10 d           | 5.6±0.6            | 269     | muscle       | Corg/Cw               | 3      | 18          | Tsuda et al. (1987a)      |
| Cyprinus carpio                    | 10-12 cm, 25.6-36.1 g,<br>lipid content 0.75-0.80% | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 23±1     | 10 d           | 5.6±0.6            | 912     | liver        | Corg/Cw               | 3      | 18          | Tsuda et al. (1987a)      |
| Cyprinus carpio                    | 10-12 cm, 25.6-36.1 g,<br>lipid content 0.75-0.80% | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 23±1     | 10 d           | 5.6±0.6            | 257     | gall bladder | Corg/Cw               | 3      | 18          | Tsuda et al. (1987a)      |
| Cyprinus carpio                    | 10-12 cm, 25.6-36.1 g,<br>lipid content 0.75-0.80% | GC-ECD   | F    | TPT-CI   | rg     | dtw   |         |                   |               | 23±1     | 10 d           | 5.6±0.6            | 2089    | kidney       | Corg/Cw               | 3      | 18          | Tsuda et al. (1987a)      |

| Species                     | Species<br>properties          | Analysis | Test<br>type | Test<br>compound | Purity | Test<br>water | рH                | Hardness<br>CaCO <sub>3</sub><br>[mg/L] | Salinity | Temp. | Exp.<br>time   | Exp.<br>conc.<br>[ug/L]          | BCF   | BCF<br>type          | Method                | Ri | Notes      | Ref                       |
|-----------------------------|--------------------------------|----------|--------------|------------------|--------|---------------|-------------------|-----------------------------------------|----------|-------|----------------|----------------------------------|-------|----------------------|-----------------------|----|------------|---------------------------|
| Cyprinus carpio             | 8.5-9.5 cm, 16.5-22.1 g        | GC-ECD   | F            | TPT-CI           | 98     | dtw           | 6.0 (5.9-<br>6.1) | 35.4-39.0                               |          | 24±1  | 14 d           | $1.1\pm0.1$<br>(1.0-1.3)         | 391   | whole fish           | Cf/Cw                 | 3  | 12,55,56   | Tsuda et al. (1990b)      |
| Cyprinus carpio             | 8.5-9.5 cm, 16.5-22.1 g        | GC-ECD   | F            | TPT-CI           | 98     | dtw           | 6.8 (6.7-<br>6.8) | 35.4-39.0                               |          | 24±1  | 14 d           | 1.2±0.2<br>(1.0-1.5)             | 494   | whole fish           | Cf/Cw                 | 3  | 12,55,56   | Tsuda et al. (1990b)      |
| Cyprinus carpio             | 8.5-9.5 cm, 16.5-22.1 g        | GC-ECD   | F            | TPT-CI           | 98     | dtw           | 7.8 (7.7-<br>7.9) | 35.4-39.0                               |          | 24±1  | 14 d           | 1.2±0.1<br>(1.0-1.4)             | 605   | whole fish           | Cf/Cw                 | 3  | 12,55,56   | Tsuda et al. (1990b)      |
| Cyprinus carpio             | 8.5-9.5 cm, 16.5-22.1 g        | GC-ECD   | F            | TPT-CI           | 98     | dtw           | 6.0 (5.9-<br>6.1) | 35.4-39.0                               |          | 24±1  | 14 d           | 1.1±0.1<br>(1.0-1.3)             | 445.7 | whole fish           | kinetics              | 2  | 45         | Tsuda et al. (1990b)      |
| Cyprinus carpio             | 8.5-9.5 cm, 16.5-22.1 g        | GC-ECD   | F            | TPT-CI           | 98     | dtw           | 6.8 (6.7-<br>6.8) | 35.4-39.0                               |          | 24±1  | 14 d           | 1.2±0.2<br>(1.0-1.5)             | 566.8 | whole fish           | kinetics              | 2  | 45         | Tsuda et al. (1990b)      |
| Cyprinus carpio             | 8.5-9.5 cm, 16.5-22.1 g        | GC-ECD   | F            | TPT-CI           | 98     | dtw           | 7.8 (7.7-<br>7.9) | 35.4-39.0                               |          | 24±1  | 14 d           | 1.2±0.1<br>(1.0-1.4)             | 672.5 | whole fish           | kinetics              | 2  | 45         | Tsuda et al. (1990b)      |
| Cyprinus carpio             | 20.0 g; 9.2 cm; 4.8%<br>lipids | HPLC     | F            | TPT-OH           | 97.6   |               | 6.9-7.8           |                                         |          | 25±2  | 10 w           | 0.855<br>±0.005                  | 5565  | whole fish           | Cf/Cw                 | 3  | 22,23      | NITE (2011)               |
| Cyprinus carpio             | 20.0 g; 9.2 cm; 4.8%<br>lipids | HPLC     | F            | TPT-OH           | 97.6   |               | 6.9-7.8           |                                         |          | 25±2  | 10 w           | 0.0906<br>±0.0039                | 7055  | whole fish           | Cf/Cw                 | 3  | 22,23      | NITE (2011)               |
| Cyprinus carpio             | 20.0 g; 9.2 cm; 4.8%<br>lipids | HPLC     | F            | TPT-OH           | 97.6   |               | 6.9-7.8           |                                         |          | 25±2  | 10 w           | 0.855<br>±0.005                  | >5233 | whole fish           | kinetics              | 2  | 22,23      | NITE (2011)               |
| Cyprinus carpio             | 20.0 g; 9.2 cm; 4.8%<br>lipids | HPLC     | F            | TPT-OH           | 97.6   |               | 6.9-7.8           |                                         |          | 25±2  | 10 w           | 0.0906<br>±0.0039                | >6756 | whole fish           | kinetics              | 2  | 22,23      | NITE (2011)               |
| Cyprinus carpio             | 20.9 g; 9.1 cm; 4.0%<br>lipids | HPLC     | F            | TPT-F            | 98.5   |               | 6.9-7.8           |                                         |          | 25±2  | 8 w            | 0.939<br>±0.008                  | 3910  | whole fish           | Cf/Cw                 | 3  | 22,23      | NITE (2011)               |
| Cyprinus carpio             | 20.9 g; 9.1 cm; 4.0%<br>lipids | HPLC     | F            | TPT-F            | 98.5   |               | 6.9-7.8           |                                         |          | 25±2  | 8 w            | 0.0985<br>±0.0009                | 4495  | whole fish           | Cf/Cw                 | 3  | 22,23      | NITE (2011)               |
| Cyprinus carpio             | 20.9 g; 9.1 cm; 4.0%<br>lipids | HPLC     | F            | TPT-F            | 98.5   |               | 6.9-7.8           |                                         |          | 25±2  | 8 w            | 0.939<br>±0.008                  | 4571  | whole fish           | kinetics              | 2  | 22,23      | NITE (2011)               |
| Cyprinus carpio             | 20.9 g; 9.1 cm; 4.0%<br>lipids | HPLC     | F            | TPT-F            | 98.5   |               | 6.9-7.8           |                                         |          | 25±2  | 8 w            | 0.0985<br>±0.0009                | 7493  | whole fish           | kinetics              | 2  | 22,23      | NITE (2011)               |
| Dicentrachus labrax         | 9-16 cm, 10-25 g               | GC-MS/MS |              | TPT-?            | >99    | nw            | 7.2-8.0           |                                         |          | 23±2  | 4 w            | 2.5                              | 638   | muscle               | Corg/Cw               | 3  | 1,10,11    | El Hassani et al. (2005)  |
| Dicentrachus labrax         | 9-16 cm, 10-25 g               | GC-MS/MS |              | TPT-?            | >99    | nw            | 7.2-8.0           |                                         |          | 23±2  | 4 w            | 2.5                              | 656   | liver                | Corg/Cw               | 3  | 10,11      | El Hassani et al. (2005)  |
| Gnathopogon<br>caerulescens | 4.7-5.5 cm, 1.6-3.0 g          | GC-FPD   | F            | TPT-CI           | 98     | dtw           | 6.9-7.0           | 36 (up)<br>38 (de)                      |          | 25±1  | 35 d           | 0.10<br>±0.02<br>(0.07-<br>0.11) | 2300  | whole fish           | Cf/Cw                 | 3  | 18,55,57   | Tsuda et al. (1992)       |
| Gnathopogon<br>caerulescens | 4.7-5.5 cm, 1.6-3.0 g          | GC-FPD   | F            | TPT-CI           | 98     | dtw           | 6.9-7.0           | 36 (up)<br>38 (de)                      |          | 25±1  | 35 d +<br>21 d | 0.10<br>±0.02<br>(0.07-<br>0.11) | 2734  | simultanous<br>model | Cf/Cw                 | 2  |            | Tsuda et al. (1992)       |
| Lepomis macrochirus         |                                | LSC      | F            | TPT-OH           |        |               |                   |                                         |          |       |                | ,                                | 3300  | edible tissue        |                       | 4  | 1          | Visser and Linders (1992) |
| Lepomis macrochirus         |                                | LSC      | F            | TPT-OH           |        |               |                   |                                         |          |       |                |                                  | 8200  | non-edible<br>tissue |                       | 4  |            | Visser and Linders (1992) |
| Lepomis macrochirus         | 1.4 g                          | LSC      | F            | TPT-OH           | ≥97    |               |                   |                                         |          | 22±1  | 56 d           | 0.5                              | 4700  | whole fish           | Cf/Cw                 | 3  | 1,38,39,55 | EC (1996a, 1996b)         |
| Lepomis macrochirus         | 1.4 g                          | LSC      | F            | TPT-OH           | ≥97    |               |                   |                                         |          | 22±1  | 56 d +<br>56 d | 0.49<br>±0.02                    | 7809  | whole fish           | simultaneous<br>model | 2  | 38,39,55   | EC (1996a, 1996b)         |

| Species             | Species<br>properties | Analysis                 | Test<br>type | Test<br>compound | Purity<br>[%] | Test<br>water | рН      | Hardness<br>CaCO <sub>3</sub><br>[mg/L] | Salinity<br>[‰] | Temp.<br>[°C] | Exp.<br>time | Exp.<br>conc.<br>[µg/L] | BCF<br>[L/kg <sub>wwt</sub> ] | BCF<br>type | Method   | Ri | Notes       | Ref                     |
|---------------------|-----------------------|--------------------------|--------------|------------------|---------------|---------------|---------|-----------------------------------------|-----------------|---------------|--------------|-------------------------|-------------------------------|-------------|----------|----|-------------|-------------------------|
| Lepomis macrochirus | 1.74 g                | LSC                      | F            | TPT-OH           | >98           | nw            | 6.2-7.6 | 23-26                                   |                 | 17±1          | 170 d        | 0.51<br>±0.05           | 3500                          | whole fish  | Cf/Cw    | 4  | 12,38,39,55 | EC (1996a, 1996b)       |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 1                       | 2154                          | liver       | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 1                       | 1389                          | kidney      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 1                       | 676                           | spleen      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 1                       | 897                           | gills       | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 1                       | 191                           | muscle      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 2                       | 2412                          | liver       | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 2                       | 1728                          | kidney      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 2                       | 654                           | spleen      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 2                       | 1324                          | gills       | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 2                       | 147                           | muscle      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 4                       | 2735                          | liver       | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 4                       | 1338                          | kidney      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 4                       | 919                           | spleen      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 4                       | 566                           | gills       | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 28 d         | 4                       | 220                           | muscle      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 18 d         | 6                       | 2676                          | liver       | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 18 d         | 6                       | 1492                          | kidney      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 18 d         | 6                       | 1022                          | spleen      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 18 d         | 6                       | 559                           | gills       | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | 4-5 months            | GC-MS (w),<br>GC-FPD (f) | F            | TPT-Ac           | >98           | nw            | 7.7-7.8 | 380                                     |                 | 10±1          | 18 d         | 6                       | 250                           | muscle      | Corg/Cw  | 3  | 18, 44,45   | Schwaiger et al. (1996) |
| Oncorhynchus mykiss | newly hatched         | LSC                      | S            | 14C-TPT-OH       |               |               | 07-Aug  |                                         |                 | 10            | 4 d          | 3                       | 669                           | whole fish  | kinetics | 3  | 1,2,49,50   | Tas et al. (1989)       |
| Oncorhynchus mykiss | newly hatched         | LSC                      | S            | 14C-TPT-OH       |               |               | 07-Aug  |                                         |                 | 10            | 4 d          | 3                       | 82                            | whole fish  | Cf/Cw    | 3  | 1,49,50     | Tas et al. (1989)       |

| Grand Products mykes         inves, newly hatched, 72         LSC         5         4         TP-O         10.045.5         4         12         2.8.03         10.040.5         4         12         2.8.03         10.040.5         4         12         2.8.03         10.040.5         4         12         2.8.03         05         mole field         C/CW         3         1.6.3         Test et al. (1990)           Oricol Products mykes         sinvas, newly hatched, 72         LSC         5         4.07TP-OH         9         tw         07.403         1.1.12         2.5.1         5         0.0016         407E         mole field         C/CW         2         1.6.1         2.008         mole field         C/CW         2         1.6.1         2.0.008         3.1.1.12         2.5.1         5         0.008         3.1.2.1         0.008         3.1.2.1         2.0.00         mole field         C/CW         2         1.6.1         2.0.008         3.0.00         mole field         C/CW         2         1.6.1         2.0.008         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3.0.00         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Species             | Species<br>properties                        | Analysis | Test<br>type | Test<br>compound | Purity<br>[%] | Test<br>water | pН      | Hardness<br>CaCO <sub>3</sub><br>[mg/L] | Salinity<br>[‰] | Temp.<br>[°C] | Exp.<br>time  | Exp.<br>conc.<br>[µg/L] | BCF<br>[L/kg <sub>wwt</sub> ] | BCF<br>type | Method                | Ri | Notes     | Ref                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|----------|--------------|------------------|---------------|---------------|---------|-----------------------------------------|-----------------|---------------|---------------|-------------------------|-------------------------------|-------------|-----------------------|----|-----------|---------------------------------|
| Oncompute minks         Inseq. newly hatched, 72         ISC         S         16 - CPT-OP         P         W         Or-Au         M         Out-OS         4         Z-840.0         S         World Fin         C/C/C         S         1.63         Tase at l. (1990)           Oncombunctum miles         Left minutanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oncorhynchus mykiss | larvae, newly hatched, 72-<br>146 mg         | LSC      | S            | 14C-TPT-OH       | 99            | tw            | 07-Aug  |                                         |                 | 10.0±0.5      | 4 d + 12<br>d | 2.8±0.3                 | 710                           | whole fish  | kinetics              | 2  | 1,63      | Tas et al. (1990)               |
| Oncompositional system         Dirace, newly hatched off         Sec.         S         Ide representational system         Sec.         S         Ide representational system         Sec.         S         Ide representational system         Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oncorhynchus mykiss | larvae, newly hatched, 72-<br>146 mg         | LSC      | S            | 14C-TPT-OH       | 99            | tw            | 07-Aug  |                                         |                 | 10.0±0.5      | 4 d           | 2.8±0.3                 | 95                            | whole fish  | Cf/Cw                 | 3  | 1,63      | Tas et al. (1990)               |
| Oryclas labbes         andlets is months out; so | Oncorhynchus mykiss | larvae, newly hatched, 72-<br>146 mg         | LSC      | S            | 14C-TPT-OH       | 99            | tw            | 07-Aug  |                                         |                 | 10.0±0.5      | 4 d + 12<br>d | 2.8±0.3                 | 566                           | whole fish  | simultaneous<br>model | 2  | 1,63      | Tas et al. (1990)               |
| Oryclas lattices         mailtics 5: monthe old; 650         C-M         F         PT-Cl         N         P3-01         P1.14-2         P3-01         P3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; females | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 0.0016                  | 4075                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzas latters         Butts, 5 months 601, 650         GC-MS         F         TPT-Q         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P </td <td>Oryzias latipes</td> <td>adults; 5 months old; 650 mg; 32 mm; females</td> <td>GC-MS</td> <td>F</td> <td>TPT-CI</td> <td></td> <td></td> <td>7.9±0.1</td> <td>81.1±1.2</td> <td></td> <td>25±1</td> <td>5 w</td> <td>0.008</td> <td>3613</td> <td>whole fish</td> <td>Cf/Cw</td> <td>2</td> <td>17,61</td> <td>Zhang et al. (2008)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; females | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 0.008                   | 3613                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryclas lattiges         Onlysis s months olic 60         C-M         F         TP-CI         N         P         TP-CI         N         P         TP-CI         N         P         TP-CI         S         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; females | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 0.04                    | 3525                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzas latipes         angl: 32 mont; females         CPM-D         P         TPT-CI         P         TPT-CI         P         TPT-CI         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; females | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 0.2                     | 3600                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzas latipes         adults; 5 monthold; 50         Gr.MS         F         TPT-Cl         L         7,94.0         81.14.1.2         Z         St         0.0016         St         whole fish         C/Cw         2         1,7.61         Mange et. (2008)           Oryzas latipes         adults; 5 monthold; 500         Gr.MS         F         TPT-Cl         L         7,94.0.         81.14.1.2         Z         St         0.008         4575         whole fish         C/Cw         2         1,7.61         Mange et. (2008)           Oryzas latipes         adults; 5 monthold; 650         Gr.MS         F         TPT-Cl         L         7,94.0.         81.14.1.2         Z         St         0.008         4575         whole fish         C/Cw         2         1,7.61         Zhange et. (2008)           Oryzins latipes         adults; 5 months old; 650         Gr.MS         F         TPT-Cl         L         7,94.0.         81.14.1.2         Z         St         1         5         Whole fish         C/Cw         2         1,7.61         Zhange et. (2008)           Oryzins latipes         adults; 5 monthold; 650         Gr.MS         F         TPT-Cl         L         7,94.0.         81.14.1.2         Z         4         0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; females | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 1                       | 4920                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzas latipes         adults; 5 months old; 650         GC-MS         F         TPT-Cl         N         P. 9±0.1         81.1±1.2         St         St         0.08         4575         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzas latipes         adults; 5 months old; 650         GC-MS         F         TPT-Cl         N         7.9±0.1         81.1±1.2         St         5w         0.08         4575         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzas latipes         adults; 5 months old; 650         GC-MS         F         TPT-Cl         N         7.9±0.1         81.1±1.2         St         0.08         4755         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzas latipes         adults; 5 months old; 650         GC-MS         F         TPT-Cl         Z         7.9±0.1         81.1±1.2         Z5±1         4 w         0.006         638         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzas latipes         aggs, maternal transfer         GC-MS         F         TPT-Cl         Z         7.9±0.1         81.1±1.2         Z5±1         4 w         0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; males   | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 0.0016                  | 5244                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzias latipes         adults; 5 months old; 650         GC-MS         F         TPT-Cl         N         7,940.1         81.141.2         S W         0.04         5375         whole fish         C/Cw         2         17,61         Zhang et al. (2008)           Oryzias latipes         adults; 5 months ol; 650         GC-MS         F         TPT-Cl         N         7,940.1         81.141.2         S W         0.04         5375         whole fish         C/Cw         2         17,61         Zhang et al. (2008)           Oryzias latipes         adults; 5 months ol; 650         GC-MS         F         TPT-Cl         Z         7,940.1         81.141.2         Z541         4 W         0.016         638         whole fish         C/Cw         2         17,61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         Z         7,940.1         81.141.2         Z541         4 W         0.04         500         whole fish         C/Cw         2         17,61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         Z         7,940.1         81.141.2         Z541         4 W         0.04         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; males   | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 0.008                   | 4575                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| adults; 5 months old; 650<br>ng; 32 mm; males         GC-MS         F         TPT-Cl         N         N.940.1         81.1±1.2         S w         0.2         4745         whole fish<br>whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzias latipes         adults; 5 months old; 650<br>ng; 32 mm; males         GC-MS         F         TPT-Cl         Imp; 32 mm; males         Sw         1.0         5595         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         Imp; 32.0.0         7.9±0.1         81.1±1.2         25±1         4 w         0.0016         638         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         7.9±0.1         81.1±1.2         25±1         4 w         0.008         580         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         7.9±0.1         81.1±1.2         25±1         4 w         0.2         855         whole fish         Cf/Cw <td>Oryzias latipes</td> <td>adults; 5 months old; 650 mg; 32 mm; males</td> <td>GC-MS</td> <td>F</td> <td>TPT-CI</td> <td></td> <td></td> <td>7.9±0.1</td> <td>81.1±1.2</td> <td></td> <td>25±1</td> <td>5 w</td> <td>0.04</td> <td>5375</td> <td>whole fish</td> <td>Cf/Cw</td> <td>2</td> <td>17,61</td> <td>Zhang et al. (2008)</td>                                                                                                                                                                                                                                                                                                                                                                                                       | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; males   | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 0.04                    | 5375                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzias latipes         adults; 5 months old; 650         GC-MS         F         TPT-Cl         R         7,9±0.1         81.1±1.2         25±1         5 w         1         5595         whole fish         Cf/Cw         2         1,7.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         I         7,9±0.1         81.1±1.2         25±1         4 w         0.0016         638         whole fish         Cf/Cw         2         1,7.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         7.9±0.1         81.1±1.2         25±1         4 w         0.008         530         whole fish         Cf/Cw         2         1,7.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         7.9±0.1         81.1±1.2         25±1         4 w         0.04         530         whole fish         Cf/Cw         2         1,7.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         7.9±0.1         81.1±1.2         25±1         4 w         1.08         1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; males   | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 0.2                     | 4745                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-CI         7.9±0.1         81.1±1.2         25±1         4 w         0.0016         638         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-CI         7.9±0.1         81.1±1.2         25±1         4 w         0.008         580         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-CI         7.9±0.1         81.1±1.2         25±1         4 w         0.04         530         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-CI         P         7.9±0.1         81.1±1.2         25±1         4 w         1.866         whole fish         Cf/Cw         2         17.61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-CI         98         Nu         24.5±0.5         8 w         1.65         3100         whole fish         Cf/Cw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oryzias latipes     | adults; 5 months old; 650 mg; 32 mm; males   | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 5 w           | 1                       | 5595                          | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         7.9±0.1         81.1±1.2         25±1         4 w         0.008         580         whole fish         Cf/Cw         2         17,61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         7.9±0.1         81.1±1.2         25±1         4 w         0.008         580         whole fish         Cf/Cw         2         17,61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         7.9±0.1         81.1±1.2         25±1         4 w         0.02         585         whole fish         Cf/Cw         2         17,61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         7.9±0.1         81.1±1.2         25±1         4 w         1         876         whole fish         Cf/Cw         2         17,61         Zhang et al. (2008)           Pagrus major         juvenlie; 13.3±2.7 g, 10-<br>11% lipids         GC-PPD         F         TPT-Cl         98         nw         C         24.5±0.5         8 w         1.65         3300         whole fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oryzias latipes     | eggs, maternal transfer                      | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 4 w           | 0.0016                  | 638                           | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         N         P1-Cl         P1-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oryzias latipes     | eggs, maternal transfer                      | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 4 w           | 0.008                   | 580                           | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         M         7.9±0.1         81.1±1.2         25±1         4 w         0.2         585         whole fish         Cf/Cw         2         17,61         Zhang et al. (2008)           Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         M         7.9±0.1         81.1±1.2         25±1         4 w         1         876         whole fish         Cf/Cw         2         17,61         Zhang et al. (2008)           Pagrus major         juvenile; 24.3±3.4 g, 10-         GC-FPD         F         TPT-Cl         98         nw         C         24.5±0.5         8 w         1.65         300         whole fish         Cf/Cw         2         4.12         Yamada and Takayanagi<br>(1992)           Pagrus major         juvenile; 13.3±2.7 g, 10-         GC-FPD         F         TPT-Cl         98         nw         C         20         8 w         1.65         300         whole fish         Cf/Cw         2         4.12         Yamada and Takayanagi<br>(1992)           Pagrus major         juvenile; 13.3±2.7 g, 10-         GC-FPD         F         TPT-Cl         98         nw         C         20         8 w         1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oryzias latipes     | eggs, maternal transfer                      | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 4 w           | 0.04                    | 530                           | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Oryzias latipes         eggs, maternal transfer         GC-MS         F         TPT-Cl         M         7.9±0.1         81.1±1.2         25±1         4 w         1         876         whole fish         Cf/Cw         2         17,61         Zhang et al. (2008)           Pagrus major         juvenile; 24.3±3.4 g, 10-<br>11% lipids         GC-FPD         F         TPT-Cl         98         nw         C         24.5±0.5         8 w         0.0633         300         whole fish         Cf/Cw         3         1,4         Yamada and Takayanagi<br>(1992)           Pagrus major         juvenile; 13.3±2.7 g, 10-<br>11% lipids         GC-FPD         F         TPT-Cl         98         nw         C         C         S         S         Cf/Cw         2         4,12         Yamada and Takayanagi<br>(1992)           Pagrus major         juvenile; 13.3±2.7 g, 10-<br>11% lipids         GC-FPD         F         TPT-Cl         98         nw         C         24.5±0.5         8 w         1.65         3300         whole fish         Kinetics         2         4,12         Yamada and Takayanagi<br>(1992)           Pagrus major         8.0±1.4 g         GC-FPD         F         TPT-Cl         98         nw         C         20         8 w         0.0831         2141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oryzias latipes     | eggs, maternal transfer                      | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 4 w           | 0.2                     | 585                           | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Pagrus major       juvenile; 24.3±3.4 g, 10-<br>11% lipids       GC-FPD       F       TPT-Cl       98       nw       24.5±0.5       8 w       0.0633<br>±0.0093       3100       whole fish       Cf/Cw       3       1,4       Yamada and Takayanagi<br>(1992)         Pagrus major       juvenile; 13.3±2.7 g, 10-<br>11% lipids       GC-FPD       F       TPT-Cl       98       nw       24.5±0.5       8 w       1.65       3300       whole fish       Cf/Cw       2       4,12       Yamada and Takayanagi<br>(1992)         Pagrus major       juvenile; 13.3±2.7 g, 10-<br>11% lipids       GC-FPD       F       TPT-Cl       98       nw       24.5±0.5       8 w       1.65       3300       whole fish       kinetics       2       4,12       Yamada and Takayanagi<br>(1992)         Pagrus major       juvenile; 13.3±2.7 g, 10-<br>11% lipids       GC       F       TPT-Cl       98       nw       20       8 w       0.653       3678       whole fish       kinetics       2       4       Yamada and Takayanagi<br>(1992)         Pagrus major       8.0±1.4 g       GC       F       TPT-Cl       98       nw       20       8 w       0.0831       3141       whole fish       cf/Cw       3       1,4       Yamada at al. (1994)         Phoxinus phoxinus <td>Oryzias latipes</td> <td>eggs, maternal transfer</td> <td>GC-MS</td> <td>F</td> <td>TPT-CI</td> <td></td> <td></td> <td>7.9±0.1</td> <td>81.1±1.2</td> <td></td> <td>25±1</td> <td>4 w</td> <td>1</td> <td>876</td> <td>whole fish</td> <td>Cf/Cw</td> <td>2</td> <td>17,61</td> <td>Zhang et al. (2008)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oryzias latipes     | eggs, maternal transfer                      | GC-MS    | F            | TPT-CI           |               |               | 7.9±0.1 | 81.1±1.2                                |                 | 25±1          | 4 w           | 1                       | 876                           | whole fish  | Cf/Cw                 | 2  | 17,61     | Zhang et al. (2008)             |
| Pagrus majorjuvenile; $13.3\pm2.7$ g, $10-$<br>$11\%$ lipidsGC-FPDFTPT-Cl98nwM24.5\pm0.58 w $1.65$<br>$\pm 0.19$ $3300$ whole fishCf/Cw2 $4,12$ Yamada and Takayanagi<br>(1992)Pagrus majorjuvenile; $13.3\pm2.7$ g, $10-$<br>$11\%$ lipidsGC-FPDFTPT-Cl98nwM24.5\pm0.58 w $1.65$<br>$\pm 0.19$ $3678$ whole fishCf/Cw2 $4,12$ Yamada and Takayanagi<br>(1992)Pagrus major $8.0\pm1.4$ gGCFTPT-Cl98nw208 w $0.0831$ $3141$ whole fishCf/Cw2 $4,12$ Yamada et al. (1994)Pagrus major $8.0\pm1.4$ gGCFTPT-Cl98nw208 w $0.0831$ $3141$ whole fishCf/Cw2 $4,12$ Yamada et al. (1994)Phoxinus phoxinusfertilized eggsGC-FPDRTPT-Cl98nw208 w $0.0831$ $297$ whole fishCf/Cw3 $1,5,41,68$ Fent et al. (1994)Phoxinus phoxinusfertilized eggsGC-FPDRTPT-ClIIII68 d5.7530whole fishCf/Cw3 $1,5,64.68$ Fent et al. (1991)Phoxinus phoxinushatched larvaeGC-FPDRTPT-ClIIII68 d5.7704whole fishCf/Cw3 $1,5,42,68$ Fent et al. (1991)Phoxinus phoxinushatched larvaeGC-FPDRTPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pagrus major        | juvenile; 24.3±3.4 g, 10-<br>11% lipids      | GC-FPD   | F            | TPT-CI           | 98            | nw            |         |                                         |                 | 24.5±0.5      | 8 w           | 0.0633<br>±0.0096       | 3100                          | whole fish  | Cf/Cw                 | 3  | 1,4       | Yamada and Takayanagi<br>(1992) |
| Pagrus majorjuvenile; $13.3\pm2.7$ g, $10^{-}$<br>$11\%$ lipidsGC-FPDFTPT-Cl98nwRP $24.5\pm0.5$ 8 w $1.65$<br>$\pm0.19$ $3678$<br>$\pm0.19$ whole fishkinetics24Yamada and Takayanagi<br>(1992)Pagrus major $8.0\pm1.4$ gGCFTPT-Cl98nwC208 w $0.0831$ 3141whole fishCf/Cw2 $4,12$ Yamada et al. (1994)Pagrus major $8.0\pm1.4$ gGCFTPT-Cl98nwC208 w $0.0831$ 3141whole fishCf/Cw2 $4,12$ Yamada et al. (1994)Pagrus major $8.0\pm1.4$ gGCFTPT-Cl98nwC208 w + 4 $0.0831$ 2987whole fishCf/Cw3 $1,5,41,68$ Fent et al. (1994)Phoxinus phoxinusfertilized eggsGC-FPDRTPT-ClCC168 d5.7530whole fishCf/Cw3 $1,5,68$ Fent et al. (1991)Phoxinus phoxinushatched larvaeGC-FPDRTPT-ClCC1696 h3.2457whole fishCf/Cw3 $1,5,42,68$ Fent et al. (1991)Phoxinus phoxinusfertilized eggsGC-FPDRTPT-ClC1696 h3.2457whole fishCf/Cw3 $1,5,41,43$ Fent et al. (1991)Phoxinus phoxinusfertilized eggsGC-FPDRTPT-ClC166 d3.21986<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pagrus major        | juvenile; 13.3±2.7 g, 10-<br>11% lipids      | GC-FPD   | F            | TPT-CI           | 98            | nw            |         |                                         |                 | 24.5±0.5      | 8 w           | 1.65<br>±0.19           | 3300                          | whole fish  | Cf/Cw                 | 2  | 4,12      | Yamada and Takayanagi<br>(1992) |
| Pagrus major $8.0\pm1.4$ gGCFTPT-Cl98nw208 w $0.0831$ $3141$ whole fish $Cf/Cw$ 2 $4,12$ Yamada et al. (1994)Pagrus major $8.0\pm1.4$ gGCFTPT-Cl98nw208 w $0.0831$ $3141$ whole fish $Cf/Cw$ 2 $4,12$ Yamada et al. (1994)Phoxinus phoxinusfertilized eggsGC-FPDRTPT-Cl98nw168 d $5.7$ $530$ whole fish $Cf/Cw$ 3 $1,5,41,68$ Fent et al. (1994)Phoxinus phoxinushatched larvaeGC-FPDRTPT-Cl $<$ $<$ $16$ $6 d$ $3.2$ $930$ whole fish $Cf/Cw$ $3$ $1,5,42,68$ Fent et al. (1991)Phoxinus phoxinusfertilized eggsGC-FPDRTPT-Cl $<$ $<$ $16$ $6 d$ $3.2$ $457$ whole fish $Cf/Cw$ $3$ $1,5,42,68$ Fent et al. (1991)Phoxinus phoxinusfertilized eggsGC-FPDRTPT-Cl $<$ $<$ $16$ $6 d$ $3.2$ $457$ whole fish $Cf/Cw$ $3$ $1,5,42,68$ Fent et al. (1991)Phoxinus phoxinushatched larvaeGC-FPDRTPT-Cl $<$ $<$ $16$ $8 d$ $5.7$ $704$ whole fish $Cf/Cw$ $3$ $1,5,41,43$ Fent et al. (1991)Phoxinus phoxinushatched larvaeGC-FPDRTPT-Cl $<$ $<$ $6 d$ $3.2$ $1966$ whole fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pagrus major        | juvenile; 13.3±2.7 g, 10-<br>11% lipids      | GC-FPD   | F            | TPT-CI           | 98            | nw            |         |                                         |                 | 24.5±0.5      | 8 w           | 1.65<br>±0.19           | 3678                          | whole fish  | kinetics              | 2  | 4         | Yamada and Takayanagi<br>(1992) |
| Pagrus major $8.0\pm1.4$ gGCFTPT-Cl98nwnw20 $8 w + 4$ $0.0831$ $2987$ whole fishsimultaneous<br>model2 $4.12$ Yamada et al. (1994)Phoxinus phoxinusfertilized eggsGC-FPDRTPT-ClIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <td>Pagrus major</td> <td>8.0±1.4 g</td> <td>GC</td> <td>F</td> <td>TPT-CI</td> <td>98</td> <td>nw</td> <td></td> <td></td> <td></td> <td>20</td> <td>8 w</td> <td>0.0831</td> <td>3141</td> <td>whole fish</td> <td>Cf/Cw</td> <td>2</td> <td>4,12</td> <td>Yamada et al. (1994)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pagrus major        | 8.0±1.4 g                                    | GC       | F            | TPT-CI           | 98            | nw            |         |                                         |                 | 20            | 8 w           | 0.0831                  | 3141                          | whole fish  | Cf/Cw                 | 2  | 4,12      | Yamada et al. (1994)            |
| Phoxinus phoxinus         fertilized eggs         GC-FPD         R         TPT-CI         16         8 d         5.7         530         whole fish         Cf/Cw         3         1,5,41,68         Fent et al. (1991)           Phoxinus phoxinus         hatched larvae         GC-FPD         R         TPT-CI         16         6 d         3.2         930         whole fish         Cf/Cw         3         1,5,41,68         Fent et al. (1991)           Phoxinus phoxinus         yolk-sac fry         GC-FPD         R         TPT-CI         16         6 d         3.2         930         whole fish         Cf/Cw         3         1,5,42,68         Fent et al. (1991)           Phoxinus phoxinus         fertilized eggs         GC-FPD         R         TPT-CI         16         96 h         3.2         457         whole fish         Cf/Cw         3         1,5,42,68         Fent et al. (1991)           Phoxinus phoxinus         fertilized eggs         GC-FPD         R         TPT-CI         16         8 d         5.7         704         whole fish         Cf/Cw         3         1,5,41,43         Fent et al. (1991)           Phoxinus phoxinus         hatched larvae         GC-FPD         R         TPT-CI         16         6 d         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pagrus major        | 8.0±1.4 g                                    | GC       | F            | TPT-CI           | 98            | nw            |         |                                         |                 | 20            | 8 w + 4<br>w  | 0.0831                  | 2987                          | whole fish  | simultaneous<br>model | 2  | 4,12      | Yamada et al. (1994)            |
| Phoxinus phoxinus         hatched larvae         GC-FPD         R         TPT-Cl         16         6 d         3.2         930         whole fish         Cf/Cw         3         1,5,6%         Fent et al. (1991)           Phoxinus phoxinus         yolk-sac fry         GC-FPD         R         TPT-Cl         16         96 h         3.2         457         whole fish         Cf/Cw         3         1,5,4%         Fent et al. (1991)           Phoxinus phoxinus         fertilized eggs         GC-FPD         R         TPT-Cl         16         8 d         5.7         704         whole fish         Cf/Cw         3         1,5,4%         Fent et al. (1991)           Phoxinus phoxinus         hatched larvae         GC-FPD         R         TPT-Cl         16         8 d         5.7         704         whole fish         Cf/Cw         3         1,5,4%         Fent et al. (1991)           Phoxinus phoxinus         hatched larvae         GC-FPD         R         TPT-Cl         16         6 d         3.2         1986         whole fish         Cf/Cw         3         1,5,4%         Fent et al. (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phoxinus phoxinus   | fertilized eggs                              | GC-FPD   | R            | TPT-CI           |               |               |         | 1                                       |                 | 16            | 8 d           | 5.7                     | 530                           | whole fish  | Cf/Cw                 | 3  | 1,5,41,68 | Fent et al. (1991)              |
| Phoxinus phoxinus         yolk-sac fry         GC-FPD         R         TPT-Cl         16         96 h         3.2         457         whole fish         Cf/Cw         3         1,5,42,68         Fent et al. (1991)           Phoxinus phoxinus         fertilized eggs         GC-FPD         R         TPT-Cl         16         8 d         5.7         704         whole fish         Cf/Cw         3         1,5,42,68         Fent et al. (1991)           Phoxinus phoxinus         hatched larvae         GC-FPD         R         TPT-Cl         16         6 d         3.2         1986         whole fish         Cf/Cw         3         1,5,43.4         Fent et al. (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phoxinus phoxinus   | hatched larvae                               | GC-FPD   | R            | TPT-CI           |               | 1             |         |                                         |                 | 16            | 6 d           | 3.2                     | 930                           | whole fish  | Cf/Cw                 | 3  | 1,5,68    | Fent et al. (1991)              |
| Phoxinus phoxinus         GC-FPD         R         TPT-Cl         I6         8 d         5.7         704         whole fish         Cf/Cw         3         1,5,41,43         Fent et al. (1991)           Phoxinus phoxinus         hatched larvae         GC-FPD         R         TPT-Cl         16         6 d         3.2         1986         whole fish         Cf/Cw         3         1,5,41,43         Fent et al. (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phoxinus phoxinus   | volk-sac frv                                 | GC-FPD   | R            | TPT-CI           | 1             | 1             |         |                                         |                 | 16            | 96 h          | 3.2                     | 457                           | whole fish  | Cf/Cw                 | 3  | 1.5.42.68 | Fent et al. (1991)              |
| Phoxinus phoxinus hatched larvae GC-FPD R TPT-CI 16 6 d 3.2 1986 whole fish Cf/Cw 3 1,5,4.3 Fent et al. (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phoxinus phoxinus   | fertilized eggs                              | GC-FPD   | R            | TPT-CI           | 1             |               | 1       |                                         | 1               | 16            | 8 d           | 5.7                     | 704                           | whole fish  | Cf/Cw                 | 3  | 1.5.41.43 | Fent et al. (1991)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phoxinus phoxinus   | hatched larvae                               | GC-FPD   | R            | TPT-CI           | 1             |               |         |                                         |                 | 16            | 6 d           | 3.2                     | 1986                          | whole fish  | Cf/Cw                 | 3  | 1,5,43    | Fent et al. (1991)              |

| Species             | Species                   | Analysis | Test | Test     | Purity | Test  | pН            | Hardness                    | Salinity | Temp.         | Exp.    | Exp.   | BCF         | BCF        | Method | Ri | Notes     | Ref                |
|---------------------|---------------------------|----------|------|----------|--------|-------|---------------|-----------------------------|----------|---------------|---------|--------|-------------|------------|--------|----|-----------|--------------------|
|                     | properties                |          | type | compound | [%]    | water |               | CaCO <sub>3</sub><br>[ma/L] | [‰]      | [°C]          | ume     | fua/L1 | [L/kgwwt]   | type       |        |    |           |                    |
| Phoxinus phoxinus   | yolk-sac fry              | GC-FPD   | R    | TPT-CI   |        |       |               | L                           | []       | 16            | 96 h    | 3.2    | 703         | whole fish | Cf/Cw  | 3  | 1,5,42,43 | Fent et al. (1991) |
| Pimephales promelas | newly fertilized embryos  |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | <1 d    | 0.0654 | 1420-2160   |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | newly fertilized embryos  |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | <1 d    | 0.231  | 1510-2180   |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | 72-96 h old embryos       |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | 3-4 d   | 0.0654 | 2460-3170   |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | 72-96 h old embryos       |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | 3-4 d   | 0.231  | 2210        |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | 10-14 d post-hatch larvae |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | 10-14 d | 0.0654 | 6330-6560   |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | pre-spawn adults          |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | 84 d    | 0.0654 | 9190-12100  |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | pre-spawn adults          |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | 84 d    | 0.231  | 6930-8790   |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | post-spawn males          |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | 155 d   | 0.0654 | 16800-19700 |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | post-spawn males          |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | 155 d   | 0.231  | 14300-18500 |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | post-spawn females        |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | 155 d   | 0.0654 | 13400-13800 |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | post-spawn females        |          | F    | TPT-OH   |        | nw    | 7.74-<br>8.25 | 134-160                     |          | 24.2-<br>25.9 | 155 d   | 0.231  | 12200-14600 |            | Cf/Cw  | 2  | 39,40     | US EPA-OPTS (1988) |
| Pimephales promelas | newly fertilized embryos  |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 | <1 d    | 0.0654 | 1420-2160   |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | newly fertilized embryos  |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 | <1 d    | 0.231  | 1510-2180   |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | 72-96 h old embryos       |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 | 3-4 d   | 0.0654 | 2460-3170   |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | 72-96 h old embryos       |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 | 3-4 d   | 0.231  | 2210        |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | 10-14 d post-hatch larvae |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 | 10-14 d | 0.0654 | 6330-6560   |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | pre-spawn adults          |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 |         | 0.0654 | 9190-12100  |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | pre-spawn adults          |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 |         | 0.231  | 6930-8790   |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | post-spawn males          |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 |         | 0.0654 | 16800-19700 |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | post-spawn males          |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 |         | 0.231  | 14300-18500 |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | post-spawn females        |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 |         | 0.0654 | 13400-13800 |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
| Pimephales promelas | post-spawn females        |          | F    | TPT-OH   | 97-99  |       |               |                             |          | 14.4-<br>15.1 |         | 0.231  | 12200-14600 |            | Cf/Cw  | 4  | 39,40     | EC (1996a, 1996b)  |
|                     |                           |          |      |          |        |       |               |                             |          |               |         |        |             |            |        |    |           |                    |

| Species             | Species                                                                                                                                | Analysis | Test | Test       | Purity | Test  | pН                  | Hardness                    | Salinity  | Temp.    | Exp.            | Exp.            | BCF       | BCF          | Method                | Ri | Notes                | Ref                             |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------|------|------------|--------|-------|---------------------|-----------------------------|-----------|----------|-----------------|-----------------|-----------|--------------|-----------------------|----|----------------------|---------------------------------|
|                     | properties                                                                                                                             |          | туре | compound   | [%]    | water |                     | CaCO <sub>3</sub><br>[mg/L] | [‰]       | [°C]     | time            | conc.<br>[ua/L] | [L/kgwwt] | type         |                       |    |                      |                                 |
| Poecilia reticulata |                                                                                                                                        | LCS      | R    | 14C-TPT-OH | []     |       | 07-Aug              | L                           | []        | 20       | 8 d             | 6               | 2450      | whole fish   | kinetics              | 3  | 1,2,3,49,51          | Tas et al. (1989)               |
| Poecilia reticulata |                                                                                                                                        | LSC      | R    | 14C-TPT-OH |        |       | 07-Aug              |                             |           | 20       | 8 d             | 6               | 632       | whole fish   | Cf/Cw                 | 3  | 1,49                 | Tas et al. (1989)               |
| Poecilia reticulata | 56-138 mg                                                                                                                              | LSC      | R    | 14C-TPT-OH | 99     | tw    | 07-Aug              |                             |           | 2.0±0.5  | 8 d + 6 d       | 6.1±0.4         | 14000     | whole fish   | kinetics              | 3  | 1,2,52,64,65         | Tas et al. (1990)               |
| Poecilia reticulata | 56-138 mg                                                                                                                              | LSC      | R    | 14C-TPT-OH | 99     | tw    | 07-Aug              |                             |           | 2.0±0.5  | 8 d + 6 d       | 6.1±0.4         | 2100      | whole fish   | kinetics              | 3  | 1,2,3,64,65          | Tas et al. (1990)               |
| Poecilia reticulata | 56-138 mg                                                                                                                              | LSC      | R    | 14C-TPT-OH | 99     | tw    | 07-Aug              |                             |           | 2.0±0.5  | 8 d             | 6.1±0.4         | 610       | whole fish   | Cf/Cw                 | 3  | 1,64,65              | Tas et al. (1990)               |
| Poecilia reticulata | 78-232 mg                                                                                                                              | LSC      | R    | 14C-TPT-OH | 99     | tw    | 07-Aug              |                             |           | 2.0±0.5  | 30 d +<br>53 d  | 4.1±0.1         | 2900      | whole fish   | kinetics              | 3  | 1,2,53,66            | Tas et al. (1990)               |
| Poecilia reticulata | 78-232 mg                                                                                                                              | LSC      | R    | 14C-TPT-OH | 99     | tw    | 07-Aug              |                             |           | 2.0±0.5  | 30 d            | 4.1±0.1         | 1600      | whole fish   | Cf/Cw                 | 3  | 1,53,66              | Tas et al. (1990)               |
| Poecilia reticulata | 78-232 mg                                                                                                                              | LSC      | R    | 14C-TPT-OH | 99     | tw    | 07-Aug              |                             |           | 2.0±0.5  | 30 d +<br>53 d  | 3.6±0.6         | 4921      | whole fish   | simultaneous<br>model | 2  | 1,47,66              | Tas et al. (1990)               |
| Poecilia reticulata | 115-315 mg; 2.6% lipids                                                                                                                | GC-FPD   | F    | TPT-CI     |        |       |                     |                             |           |          | 42 h            | 80              | 313       | whole fish   | Cf/Cw                 | 3  | 9,16                 | Tas et al. (1991)               |
| Poecilia reticulata |                                                                                                                                        |          |      |            |        |       |                     |                             |           |          |                 |                 | 3571      | whole fish   | kinetics              | 3  | 2,54                 | Tas et al. (1991)               |
| Poecilia reticulata | 427±97 mg, 3.7±0.3 cm,<br>3.1±1.1% fat                                                                                                 | GC-FPD   | S    | TPT-CI     |        |       | 8.3±0.2             |                             |           | 19.5±1.3 | 11 d +<br>154 d | 1.9±0.1         | 10000     | whole fish   | kinetics              | 2  | 2,13,47              | Tas et al. (1996)               |
| Poecilia reticulata | 427±97 mg, 3.7±0.3 cm, 3.1±1.1% fat                                                                                                    | GC-FPD   | S    | TPT-CI     |        |       | 8.3±0.2             |                             |           | 19.5±1.3 | 11 d +<br>154 d | 1.9±0.1         | 7941      | whole fish   | simultaneous<br>model | 2  | 13,47                | Tas et al. (1996)               |
| Poecilia reticulata | 427±97 mg, 3.7±0.3 cm, 3.1±1.1% fat                                                                                                    | GC-FPD   | S    | TPT-CI     |        |       | 8.3±0.2             |                             |           | 19.5±1.3 | 11 d            | 1.9±0.1         | 4500      | whole fish   | Cf/Cw                 | 3  | 13,48                | Tas et al. (1996)               |
| Poecilia reticulata | female, 2.4-2.7 cm, 0.41-<br>0.55 g, 2.7% lipid content                                                                                | GC-FPD   | F    | TPT-CI     | 98     | dtw   | 7.1-7.3             | 37                          |           | 25±1     | 14 d            | 0.90<br>±0.07   | 1100      | whole fish   | Cf/Cw                 | 3  | 18                   | Tsuda et al. (1990a)            |
| Poecilia reticulata | female, 2.4-2.7 cm, 0.41-<br>0.55 g, 2.7% lipid content                                                                                | GC-FPD   | F    | TPT-CI     | 98     | am    | 8.0-8.2             |                             | 19 g/L Cl | 25±1     | 14 d            | 0.71<br>±0.07   | 530       | whole fish   | Cf/Cw                 | 3  | 4,12,60              | Tsuda et al. (1990a)            |
| Poecilia reticulata | female, 2.4-2.7 cm, 0.41-<br>0.55 g, 2.7% lipid content                                                                                | GC-FPD   | F    | TPT-CI     | 98     | dtw   | 7.1-7.3,<br>7.2-7.4 | 37                          |           | 25±1     | 14 d +<br>14 d  | 0.90<br>±0.07   | 1337      | whole fish   | simultaneous<br>model | 2  |                      | Tsuda et al. (1990a)            |
| Poecilia reticulata | female, 2.4-2.7 cm, 0.41-<br>0.55 g, 2.7% lipid content                                                                                | GC-FPD   | F    | TPT-CI     | 98     | am    | 8.0-8.2,<br>8.1-8.3 |                             | 19 g/L Cl | 25±1     | 14 d +<br>14 d  | 0.71<br>±0.07   | 493.7     | whole fish   | simultaneous<br>model | 3  | 4,60                 | Tsuda et al. (1990a)            |
| Rudarius ercodes    | juvenile; 1.1±0.2 g, 7%<br>lipids                                                                                                      | GC-FPD   | F    | TPT-CI     | 98     | nw    |                     |                             |           | 19.8±0.1 | 8 w             | 0.148<br>±0.017 | 4100      | whole fish   | Cf/Cw                 | 3  | 1,4                  | Yamada and Takayanagi<br>(1992) |
| Rudarius ercodes    | juvenile; 1.1±0.2 g, 7%<br>lipids                                                                                                      | GC-FPD   | F    | TPT-CI     | 98     | nw    |                     |                             |           | 19.8±0.1 | 8 w             | 0.148<br>±0.017 | 5198      | whole fish   | kinetics              | 2  | 4                    | Yamada and Takayanagi<br>(1992) |
| Thymallus thymallus | freshly hatched larvae<br>from fertilized eggs from<br>the river Rhine; $18.9\pm0.9$<br>mg, $21.2\pm0.4\%$ dw,<br>$3.1\pm0.5\%$ lipids | GC-FPD   | R    | TPT-CI     | >97    | nw    | 8.3±0.1             | 340                         |           | 15±1     | 168 h           | 3.2±0.4         | 7550      | whole animal | kinetics              | 3  | 1,26,28,29,6<br>9,67 | Looser et al. (1998)            |
| Thymallus thymallus | freshly hatched larvae<br>from fertilized eggs from<br>the river Rhine                                                                 | GC-FPD   | S    | TPT-CI     | >97    | nw    | 8.3±0.1             | 340                         |           | 15±1     | 48 h            | 3.2±0.4         | 2240      | whole animal | Cf/Cw                 | 3  | 1,26,28,29,<br>67    | Looser et al. (1998)            |
| Thymallus thymallus | freshly hatched larvae<br>from fertilized eggs from<br>the river Rhine                                                                 | GC-FPD   | S    | TPT-CI     | >97    | nw    | 8.3±0.1             | 340                         |           | 15±1     | 48 h            | 3.2±0.4         | 1900      | whole animal | Cf/Cw                 | 3  | 26,28,34             | Looser et al. (1998)            |
| Thymallus thymallus | freshly hatched larvae<br>from fertilized eggs from<br>the river Rhine                                                                 | GC-FPD   | S    | TPT-CI     | >97    | nw    | 8.3±0.1             | 340                         |           | 15±1     | 48 h            | 3.2±0.4         | 1550      | whole animal | Cf/Cw                 | 3  | 26,28,35             | Looser et al. (1998)            |

| Species             | Species<br>properties                                                  | Analysis | Test<br>type | Test<br>compound | Purity | Test<br>water | pН      | Hardness<br>CaCO <sub>3</sub> | Salinity | Temp. | Exp.<br>time | Exp.<br>conc.<br>[ug/L] | BCF  | BCF<br>type  | Method | Ri | Notes    | Ref                  |
|---------------------|------------------------------------------------------------------------|----------|--------------|------------------|--------|---------------|---------|-------------------------------|----------|-------|--------------|-------------------------|------|--------------|--------|----|----------|----------------------|
| Thymallus thymallus | freshly hatched larvae<br>from fertilized eggs from<br>the river Rhine | GC-FPD   | S            | TPT-CI           | >97    | nw            | 8.3±0.1 | 340                           | [,]      | 15±1  | 48 h         | 3.2±0.4                 | 1520 | whole animal | Cf/Cw  | 3  | 26,28,36 | Looser et al. (1998) |
| Thymallus thymallus | freshly hatched larvae<br>from fertilized eggs from<br>the river Rhine | GC-FPD   | S            | TPT-CI           | >97    | nw            | 8.3±0.1 | 340                           |          | 15±1  | 48 h         | 3.2±0.4                 | 2000 | whole animal | Cf/Cw  | 3  | 26,28,37 | Looser et al. (1998) |

#### Notes

- 1 Plateau not reached.
- 2 Recalculated from k1 and k2 given in paper.
- 3 High standard deviation of k2, estimated maximum value used.
- 4 Performed in seawater.
- 5 Value recalculated for mean measured concentration.
- 6 Data from abstracts and tables, paper in Japanese.
- 7 AM with  $Na_2SiO_3$ .
- 8 AM without  $Na_2SiO_3$ .
- 9 Exposure probably too short to reach equilibrium.
- 10 Water concentration not analysed, nominal concentration used.
- 11 Identity of the test compound unknown (-OH, -CL or -Ac).
- 12 Plateau reached.
- 13 Water solution prepared with generator column.
- 14 In-situ assays; BCF estimated from uptake by *Mytilus graynus* collected at clean site and exposed at contaminated site, and elimination by *Mytilus edulis* collected at contaminated field site and kept at clean site.
- 15 Recalculated from reported BCF on the basis of biota volume, estimated biota density is 1.2 g/mL.
- 16 Lethal body burdens used.
- 17 Concentrations in water were kept to the designed exposure doses but analysis not reported; flow-through with a 4-fold volume of water flowing through every 24 hours; concentrations are parent TPT (small amounts of metabolites are also measured).
- 18 Not clear if plateau is reached.
- 19 Measured concentrations after 8 days close to nominal concentrations.
- 20 No detail on TPT species.
- 21 No details on use of solvents.
- 22 Solvent = DMSO.

- 23 Equilibrium not reached after 8 or 10 weeks.
- 24 0.3% lipids (wet weight basis).
- 25 0.6% lipids (wet weight basis).
- 26 Larval density 1.3-2.1 g/L; 3.1% lipids (wet weight basis).
- 27 Close to steady state.
- 28 No steady state.
- 29 No humic acid.
- 30 1.1 mg C/L humic acid.
- 31 4.4 mg C/L humic acid.
- 32 8.0 mg C/L humic acid.
- 33 14.2 mg C/L humic acid.
- 34 1. mg C/L humic acid.
- 35 1.7 mg C/L humic acid.
- 36 4.3 mg C/L humic acid.
- 37 8.8 mg C/L humic acid.
- 38 Radiolabelled compound used.
- 39 Solvent = acetone.
- 40 Performed as a full lifecycle test in line with FIFRA 72-5 guideline; reported tissue concentrations are most likely whole body, at least for the small life-stages.
- 41 Started with embryos, continued to larval stage.
- 42 No elimination in clean water.
- 43 Exposure concentration recalculated as geometric mean of measured concentrations at t=0 and 24 h.
- 44 Measured concentrations within 20% of nominal.
- 45 BCFs read from graph.
- 46 Estimated from sum of reported organ BCFs.

- 47 Decline of measured concentrations in water with time was accounted for in calculation of k1 and k2 (according to Gobas and Zhang (1992)).
- 48 Based on concentrations in fish and water after 11 d read from graph.
- 49 Based on total radioactive residue in fish and water.
- 50 Expected BCF given as appr. 800 L/kg.
- 51 Expected BCF given as at least approx. 3000 L/kg.
- 52 Estimate of k2 not considered reliable in view of high standard deviation.
- 53 Based on average measured initial concentration in fresh solutions, renewal at days 1, 3, 6, 9, 13, 16, 20, 23, and 27.
- 54 k1 of 50 mL/g.d is mentioned in paper, but this value not reported in cited reference (Tas et al., (1990) reports 70, 22 and 41 L/kg/d).
- 55 Measured aqueous concentrations constant over test period.
- 56 BCF read from graph, 14 d values used.
- 57 BCF is average of time points 28 and 35 d.
- 58 Author presumes that equilibrium is reached, based on similar experiment with carp which was extended to 10 days. Relatively low BCF suggests otherwise. A closer look at the experiment with carp shows that equilibrium is likely not to be reached as well.
- 59 Based on concentration in supernatant.

- 60 *P. reticulata* is capable of adapting to saltwater; it is not known, however, whether or not this has influenced metabolism and thereby bioconcentration.
- 61 Used water was activated carbon treated.
- 62 Tested together with TBT. Concentrations in water were very close to lethal. Two highest (5, 15 ug/L) concentrations showed severe mortality.
- 63 Medium mortality for larvae (about 25% over 16 days).
- 64 Renewal daily for the first three days, every other day thereafter.
- 65 High mortality (about 50% over 14 days).
- 66 Mortality in depuration phase (about 13% over 83 days).
- 67 BCF does not match with concentrations in fish and water, probably the used water concentration is erroneous (used 3.741 instead of 3.174, which is the geomean of 4.2 and 2.4) which would imply an even higher BCF.
- 68 Based on average initial concentrations after renewal.
- 69 High uncertainty in fitted data.

# Appendix 2. Detailed ecotoxicity data

| Legend to data tables | Species                                                                                                                                                                                                |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | properties                                                                                                                                                                                             |
| A                     | Test water analysed Yes/No                                                                                                                                                                             |
| Test type             | S = static; R = renewal; F = flow-through                                                                                                                                                              |
| Test water            | am = artificial medium; dtw = dechlorinated tap water; dw = de-ionised/dechlorinated/distilled water; nw = natural water; rw = reconstituted (sea)water; rtw = reconstituted tap water; tw = tap water |
| Ri                    | Reliability index, see section 2.2                                                                                                                                                                     |

#### Table A2.1: Acute toxicity for freshwater organisms.

| Species                         | Species    | А | Test | Test     | Purity | Test  | pН  | Т    | Hardness | Exp.  | Crit. | Endpoint         | Value  | Value  | Value  | Ri | Notes   | Ref                       |
|---------------------------------|------------|---|------|----------|--------|-------|-----|------|----------|-------|-------|------------------|--------|--------|--------|----|---------|---------------------------|
|                                 | properties |   | type | compound | [%]    | water |     | [°C] | [mg/L]   | ume   |       |                  | [µg/L] | [µg/L] | [µg/L] |    |         |                           |
| Bacteria                        |            |   |      |          |        |       |     |      |          |       |       |                  |        |        |        |    |         |                           |
| Activated sludge                |            | Ν | S    | TPT-CI   | 96     | am    | 7.2 | 18   |          | 20    | IC50  | respiration      | 43300  |        |        | 3  | 80      | Stasinakis et al. (2001)  |
| Activated sludge                |            | Ν | S    | TPT-CI   | 96     | am    | 7.2 | 18   |          | 10    | IC50  | respiration      | 3600   |        |        | 3  | 80      | Stasinakis et al. (2001)  |
|                                 |            |   |      |          |        |       |     |      |          |       |       |                  |        |        |        |    |         |                           |
| Cyanobacteria                   |            |   |      |          |        |       |     |      |          |       |       |                  |        |        |        |    |         |                           |
| Anabaena cylindrica             |            | Ν |      | TPT-CI   |        | am    |     | 25   |          | 5 m   | EC50  | photosynthesis   |        | 2004   |        | 3  | 24,77   | Avery et al. (1991)       |
| Anabaena cylindrica             |            | Ν |      | TPT-CI   |        | am    |     | 25   |          | 3 h   | EC50  | nitrogenase      |        | 1146   |        | 3  | 24,77   | Avery et al. (1991)       |
| Anabaena flos-aquae             |            | Ν | S    | TPT-Ac   | 95     | am    |     | 24   |          | 96 h  | EC50  | biomass          | 16.4   |        |        | 3  | 2,5,13  | Ma et al. (2004)          |
| Anabaena flos-aquae             | log-phase  | Ν |      | TPT-CI   |        | am    | 8   | 20   |          | 24 h  | EC50  | primary prod.    |        |        | 20     | 3  | 2,14    | Wong et al. (1982)        |
| Microcystis aeruginosa          |            | Ν | S    | TPT-Ac   | 95     | am    |     | 24   |          | 96 h  | EC50  | biomass          | 24     |        |        | 3  | 2,5,13  | Ma et al. (2004)          |
| Microcystis flos-aquae          |            | Ν | S    | TPT-Ac   | 95     | am    |     | 24   |          | 96 h  | EC50  | biomass          | 8      |        |        | 3  | 2,5,13  | Ma et al. (2004)          |
| Plectonema boryanum             |            | Ν |      | TPT-CI   |        | am    |     | 25   |          | 5 m   | EC50  | photosynthesis   |        | 4325   |        | 3  | 24,77   | Avery et al. (1991)       |
|                                 |            |   | _    | -        |        |       |     |      |          |       |       |                  |        |        |        |    |         |                           |
| Algae                           |            |   |      |          |        |       | ~   |      |          | 2.4.1 |       |                  |        |        |        | -  |         |                           |
| Ankistrodesmus falcatus         | log-phase  | N | _    | IPI-CI   |        | am    | 8   | 20   |          | 24 h  | EC50  | primary prod.    |        |        | 20     | 3  | 2,14,24 | Wong et al. (1982)        |
| Ankistrodesmus falcatus         | log-phase  | N |      | IPI-CI   |        | am    | 8   | 20   |          | 8 d   | EC50  | growth           | _      |        | 2      | 3  | 2,24    | Wong et al. (1982)        |
| Ankistrodesmus falcatus         |            |   | _    | TPT-CI   |        |       |     |      |          | 8 d   | IC50  |                  | 2      |        |        | 4  |         | Visser and Linders (1992) |
| Chlorella pyrenoidosa           |            | Ν | S    | TPT-Ac   | 95     | am    |     | 24   |          | 96 h  | EC50  | biomass          | 36     |        |        | 3  | 2,5,13  | Ma et al. (2004)          |
| Desmodesmus subspicatus         |            | Ν | S    | TPT-Ac   | ag     | am    |     | 20±1 |          | 48 h  | EC50  | photosynth. act. | 101.9  |        |        | 3  | 5,11    | Roessink et al. (2006a)   |
| Desmodesmus subspicatus         |            | N | S    | TPT-Ac   | ag     | am    |     | 20±1 |          | 72 h  | EC50  | photosynth. act. | 8.8    |        |        | 3  | 5,11    | Roessink et al. (2006a)   |
| Desmodesmus subspicatus         |            | Ν | S    | TPT-Ac   | ag     | am    |     | 20±1 |          | 96 h  | EC50  | photosynth. act. | 5.6    |        |        | 3  | 5,11    | Roessink et al. (2006a)   |
| Monoraphidium minutum           |            | Ν | S    | TPT-Ac   | ag     | am    |     | 20±1 |          | 48 h  | EC50  | photosynth. act. | 187.7  |        |        | 3  | 5,11    | Roessink et al. (2006a)   |
| Monoraphidium minutum           |            | Ν | S    | TPT-Ac   | ag     | am    |     | 20±1 |          | 72 h  | EC50  | photosynth. act. | 51.5   |        |        | 3  | 5,11    | Roessink et al. (2006a)   |
| Monoraphidium minutum           |            | Ν | S    | TPT-Ac   | ag     | am    |     | 20±1 |          | 96 h  | EC50  | photosynth. act. | 15.8   |        |        | 3  | 5,11    | Roessink et al. (2006a)   |
| Pseudokirchneriella subcapitata |            | N | S    | TPT-Ac   | ag     | am    |     | 20±1 |          | 48 h  | EC50  | photosynth. act. | 58     |        | 1      | 3  | 5,11    | Roessink et al. (2006a)   |
| Species                         | Species<br>properties | A | Test<br>type | Test<br>compound | Purity | Test<br>water | pН  | T        | Hardness<br>CaCO <sub>3</sub> | Exp.<br>time | Crit. | Endpoint            | Value | Value<br>TPT-ion | Value<br>Sn | Ri | Notes      | Ref                           |
|---------------------------------|-----------------------|---|--------------|------------------|--------|---------------|-----|----------|-------------------------------|--------------|-------|---------------------|-------|------------------|-------------|----|------------|-------------------------------|
| Pseudokirchneriella subcanitata |                       | N | S            | TPT-Ac           | ad     | am            | 1   | $20\pm1$ | [mg/c]                        | 72 h         | EC50  | photosynth, act.    | 8.8   | [[[]]]           | [49/ -]     | 3  | 5.11       | Roessink et al. (2006a)       |
| Pseudokirchneriella subcapitata |                       | N | S            | TPT-Ac           | ad     | am            |     | 20±1     |                               | 96 h         | EC50  | photosynth, act.    | 5.6   |                  |             | 3  | 5.11       | Roessink et al. (2006a)       |
| Scenedesmus obliguus            | log-phase             | Y | S            | TPT-CI           | - 5    | am            |     | 25       |                               | 96 h         | EC50  | arowth              | 5.6   |                  |             | 3  | 5,11,70    | Huang et al. (1993)           |
| Scenedesmus obliguus            | log-phase             | Y | S            | TPT-CI           |        | am            |     | 25       | 50                            | 48 h         | EC50  | growth rate         | 30    | 27               |             | 2  | 5,11,66,75 | Huang et al. (1993)           |
| Scenedesmus obliguus            | log-phase             | Y | S            | TPT-CI           |        | am            |     | 25       | 50                            | 72 h         | EC50  | growth rate         | 24    |                  |             | 3  | 5,11,66,75 | Huang et al. (1993)           |
| Scenedesmus obliguus            | log-phase             | Y | S            | TPT-CI           | 1      | am            |     | 25       | 50                            | 96 h         | EC50  | growth rate         | 21    |                  |             | 3  | 5,11,66,75 | Huang et al. (1993)           |
| Scenedesmus obliguus            | log-phase             | Ν | S            | TPT-CI           | >99    | am            | 7.6 | 25       |                               | 96 h         | EC50  | growth              |       |                  | 2.62        | 3  | 5,11,69    | Huang et al. (1993)           |
| Scenedesmus obliguus            | log-phase             | Ν | S            | TPT-OH           | >99    | am            | 7.6 | 25       |                               | 96 h         | EC50  | growth              |       |                  | 2.44        | 3  | 5,11,69    | Huang et al. (1993)           |
| Scenedesmus obliquus            | log-phase             | Ν | S            | TPT-Ac           | >99    | am            | 7.6 | 25       |                               | 96 h         | EC50  | growth              |       |                  | 2.71        | 3  | 5,11,69    | Huang et al. (1993)           |
| Scenedesmus quadricauda         |                       | Ν | S            | TPT-Ac           | ag     | am            |     | 20±1     |                               | 48 h         | EC50  | photosynth. act.    | 352.9 |                  |             | 3  | 5,11       | Roessink et al. (2006a)       |
| Scenedesmus quadricauda         |                       | Ν | S            | TPT-Ac           | ag     | am            |     | 20±1     |                               | 72 h         | EC50  | photosynth. act.    | 29.1  |                  |             | 3  | 5,11       | Roessink et al. (2006a)       |
| Scenedesmus quadricauda         |                       | Ν | S            | TPT-Ac           | ag     | am            |     | 20±1     |                               | 96 h         | EC50  | photosynth. act.    | 36    |                  |             | 3  | 5,11       | Roessink et al. (2006a)       |
| Scenedesmus quadricauda         | 7-d old culture       | Ν | S            | TPT-CI           |        | am            | 7.2 | 25       |                               | 48 h         | EC50  | tot. chlorophyll    | 3.8   |                  |             | 3  | 15,36      | Fargašová (1996)              |
| Scenedesmus quadricauda         | 7-d old culture       | Ν | S            | TPT-Ac           |        | am            | 7.2 | 25       |                               | 48 h         | EC50  | tot. chlorophyll    | 0.36  |                  |             | 3  | 15,36,37   | Fargašová (1996)              |
| Scenedesmus quadricauda         | 7-d old culture       | Ν | S            | TPT-CI           |        | am            | 7.2 | 25       |                               | 48 h         | EC50  | chlorophyll-a cont. | 3.8   |                  |             | 3  | 15,36      | Fargašová (1996)              |
| Scenedesmus quadricauda         | 7-d old culture       | Ν | S            | TPT-Ac           |        | am            | 7.2 | 25       |                               | 48 h         | EC50  | chlorophyll-a cont. | 0.29  |                  |             | 3  | 15,36,37   | Fargašová (1996)              |
| Scenedesmus quadricauda         | 7-d old culture       | Ν | S            | TPT-CI           |        | am            | 7.2 | 25       |                               | 48 h         | EC50  | chlorophyll-b cont. | 3.6   |                  |             | 3  | 15,36      | Fargašová (1996)              |
| Scenedesmus quadricauda         | 7-d old culture       | Ν | S            | TPT-Ac           |        | am            | 7.2 | 25       |                               | 48 h         | EC50  | chlorophyll-b cont. | 0.49  |                  |             | 3  | 15,36,37   | Fargašová (1996)              |
| Scenedesmus quadricauda         | 7-d old culture       | Ν | S            | TPT-CI           |        | am            | 7.2 | 25       |                               | 48 h         | EC50  | respiration         | 3.2   |                  |             | 3  | 15,36      | Fargašová and Drtil (1996)    |
| Scenedesmus quadricauda         | 7-d old culture       | Ν | S            | TPT-Ac           |        | am            | 7.2 | 25       |                               | 48 h         | EC50  | respiration         | 9.9   |                  |             | 3  | 15,36      | Fargašová and Drtil (1996)    |
| Scenedesmus quadricauda         |                       | Ν | S            | TPT-CI           | 97     | am            | 7.2 | 25       |                               | 12 d         | EC50  | growth rate         | 351   |                  |             | 3  | 5,11       | Fargašová (2002)              |
| Scenedesmus quadricauda         |                       | Ν | S            | TPT-CI           | 97     | am            | 7.2 | 25       |                               | 12 d         | EC50  | chlorophyll-a cont. | 1149  |                  |             | 3  | 5,11       | Fargašová (2002)              |
| Scenedesmus quadricauda         |                       | Ν | S            | TPT-CI           | 97     | am            | 7.2 | 25       |                               | 12 d         | EC50  | oxygen evolution    | 1322  |                  |             | 3  | 5,11       | Fargašová (2002)              |
| Scenedesmus quadricauda         |                       | Ν | S            | TPT-Ac           | 97     | am            | 7.2 | 25       |                               | 12 d         | EC50  | growth rate         | 585   |                  |             | 3  | 5,11       | Fargašová (2002)              |
| Scenedesmus quadricauda         |                       | Ν | S            | TPT-Ac           | 97     | am            | 7.2 | 25       |                               | 12 d         | EC50  | chlorophyll-a cont. | 409   |                  |             | 3  | 5,11       | Fargašová (2002)              |
| Scenedesmus quadricauda         |                       | Ν | S            | TPT-Ac           | 97     | am            | 7.2 | 25       |                               | 12 d         | EC50  | oxygen evolution    | 1845  |                  |             | 3  | 5,11       | Fargašová (2002)              |
| Scenedesmus quadricauda         | exponential growth    | Ν | S            | TPT-CI           |        | am            | 7.2 | 25       |                               | 12 d         | EC50  | growth rate         | 1.3   |                  |             | 3  | 15,36      | Fargašová (1997b)             |
| Scenedesmus quadricauda         | exponential growth    | Ν | S            | TPT-Ac           |        | am            | 7.2 | 25       |                               | 12 d         | EC50  | growth rate         | 1.4   |                  |             | 3  | 15,36      | Fargašová (1997b)             |
| Scenedesmus quadricauda         | exponential growth    | Ν | S            | TPT-CI           |        | am            | 7.2 | 25       |                               | 12 d         | EC50  | growth              | 1     |                  |             | 3  | 15,36      | Fargašová and Kizlink (1996b) |
| Scenedesmus quadricauda         | exponential growth    | Ν | S            | TPT-Ac           |        | am            | 7.2 | 25       |                               | 12 d         | EC50  | growth              | 1.4   |                  |             | 3  | 15,36      | Fargašová and Kizlink (1996b) |
| Scenedesmus quadricauda         | log-phase             | Ν |              | TPT-CI           |        | am            | 8   | 20       |                               | 24 h         | EC50  | primary prod.       |       |                  | 40          | 3  | 2,14       | Wong et al. (1982)            |
| Scenedesmus quadricauda         | exponential growth    | Ν | S            | TPT-CI           |        | am            |     | 22       |                               | 8 d          | EC50  | growth rate         | 23.7  |                  |             | 3  | 4,78       | Xu et al. (2011)              |
| Scenedesmus quadricauda         | exponential growth    | Ν | S            | TPT-CI           |        | am            |     | 22       |                               | 12 d         | EC50  | growth rate         | 20.5  |                  |             | 3  | 4,78,79    | Xu et al. (2011)              |
| Scenedesmus subspicatus         |                       | Ν | S            | TPT-Ac           |        |               |     |          |                               | 72 h         | EC50  | biomass             | 32    |                  |             | 3  | 15,18      | EC (1996a, 1996b)             |
| Scenedesmus subspicatus         |                       | Ν | S            | TPT-Ac           | 50     |               |     |          |                               | 72 h         | EC50  | biomass             | 69    |                  |             | 3  | 18         | EC (1996a, 1996b)             |
| Scenedesmus subspicatus         |                       | Ν | S            | TPT-Ac           | 50     |               |     |          |                               | 72 h         | EC50  | growth rate         | 190   |                  |             | 3  | 18         | EC (1996a, 1996b)             |
| Scenedesmus vacuolatus          | at onset of log phase | Y | S            | TPT-CI           | 98     | am            | 6.9 | 28       |                               | 24 h         | EC50  | cell number         | 112   | 102              |             | 2  | 7,17       | Walter et al. (2002)          |
|                                 |                       |   |              |                  |        |               |     |          |                               |              |       |                     |       |                  |             |    |            |                               |
| Protozoa                        |                       |   |              |                  |        |               |     |          |                               |              |       |                     |       |                  |             |    |            |                               |
| Paramecium caudatum             | SJ-4 strain           | Ν | S            | TPT-CI           | _      | am            | ļ   | 23       |                               | 48 h         | IC50  | growth              | 11.6  |                  |             | 3  | 3,7,28     | Miyoshi et al. (2003)         |
| Paramecium caudatum             | SJ-4 strain           | Ν | S            | TPT-CI           |        | am            |     | 23       |                               | 120 h        | IC50  | growth              | 30.8  |                  | <u> </u>    | 3  | 3,7,28     | Miyoshi et al. (2003)         |
| Paramecium trichium             | OH-24b strain         | Ν | S            | TPT-CI           |        | am            |     | 23       |                               | 48 h         | IC50  | growth              | 2.6   |                  |             | 3  | 3,7,28     | Miyoshi et al. (2003)         |
| Paramecium trichium             | OH-24b strain         | Ν | S            | TPT-CI           |        | am            |     | 23       |                               | 120 h        | IC50  | growth              | 5     |                  |             | 3  | 3,7,28     | Miyoshi et al. (2003)         |
| 1                               |                       | 1 |              | 1                |        | 1             | 1   | 1        | 1                             |              |       |                     |       | 1                | 1           | 1  |            |                               |

| properties         Vote         Conc.         Conc.         Conc.         Conc.         Dirac         Just J         Dirac         Sec.         Procential Sec.           Accorphilan         appr. 2 g vm         Y         S         TPT-Ac         Ag         vm         7.10         26/42         Z         ESO         Photosynth.act.         26/4.         S         5.11,29,40,55,46         Deseinet et al. (2056a)           Caretaphylan         Agenessan         agpr. 2 g vm         Y         S         TPT-Ac         Ag         vm         7.10         26/42         Z         1         CSO         S         3.5.11,29,40,55         Deseinet et al. (2056a)           Caretaphylan         Agenessan         agpr. 2         S         TPT-Ac         Ag         vm         7.10         26/42         Z         4         ESO         Agenessan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Species                | Species        | A  | Test | Test     | Purity | Test  | pН   | Т    | Hardness          | Exp. | Crit. | Endpoint          | Value  | Value   | Value  | Ri | Notes               | Ref                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|----|------|----------|--------|-------|------|------|-------------------|------|-------|-------------------|--------|---------|--------|----|---------------------|-------------------------|
| Naccophila         PC         PMI         PC         PMI         PC         PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | properties     |    | type | compound |        | water |      |      | CaCO <sub>3</sub> | time |       |                   |        | TPT-ion | Sn     |    |                     |                         |
| Hearophyla         more 2 g vm         Y         S         TPT-4c         pp         Prof. 2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                |    |      |          | [%]    |       |      | [°C] | [mg/L]            |      |       |                   | [µg/L] | [µg/L]  | [µg/L] |    |                     |                         |
| Careatophilan denersum<br>app. 2 a wa<br>V S 177.4c 9g mv 74 S 177.4c 9g mv 74 S 177.4c 9g mv 74.0 2012 71 10 100 photosynth. at. 240.0 3 511.39.40,54.4c Rosesshiet et al. (2006)<br>Careatophilan denersum 900 2 a wa V V S 177.4c 9g mv 74.0 2012 71 0 10 100 photosynth. at. 240.0 177.0 11.39.40,54.4c Rosesshiet et al. (2006)<br>Careatophilan denersum<br>900 2 a wa V V S 177.4c 9g mv 77 1 S 177.4c 9g mv 74.0 2012 71 4 10 100 photosynth. at. 197.5 4 5.11.39.40,54.4c Rosesshiet et al. (2006)<br>Elodes canademis 9p 2 a wa V V S 177.4c 9g mv 74 0 2012 72 4 2 4 10 10 photosynth. at. 197.5 4 4 5.11.39.40,54.4c Rosesshiet et al. (2006)<br>Elodes canademis 9p 2 a wa V V S 177.4c 9g mv 74 0 2012 72 4 10 10 photosynth. at. 197.5 4 4 5.11.39.40,45 Rosesshiet et al. (2006)<br>Elodes canademis 9p 2 a wa V V S 177.4c 9g mv 74 0 2012 72 4 10 10 photosynth. at. 197.5 4 4 5.11.39.40,45 Rosesshiet et al. (2006)<br>Elodes canademis 9p 2 a wa V V S 177.4c 9g mv 74 0 2012 72 4 12 53 photosynth. at. 197.5 4 4 5.11.39.40,45 Rosesshiet et al. (2006)<br>Elodes canademis 9p 2 a wa V V S 177.4c 9g mv 74 0 2012 72 4 12 53 photosynth. at. 197.4 4 5 3 11.39.40,45 Rosesshiet et al. (2006)<br>Elodes antellin<br>9p 2 a wa V V S 177.4c 9g mv 74 10 2012 74 16 10 photosynth. at. 91.4 4 5 3.11.39.40,45 Rosesshiet et al. (2006)<br>Elodes antellin<br>9p 2 a wa V V S 177.4c 9g mv 74 10 2012 74 16 10 photosynth. at. 91.4 4 5 3.11.39.40,45 Rosesshiet et al. (2006)<br>Elodes antellin<br>9p 2 a wa V V S 177.4c 9g mv 74 10 2012 74 16 10 photosynth. at. 91.4 4 5 3.11.39.40,45 Rosesshiet et al. (2006)<br>Elodes antellin<br>9p 2 a wa V V S 177.4c 9g mv 74 10 2012 74 16 10 10 photosynth. at. 91.4 11 38 10 13 13 40.45 for Rosesshiet et al. (2006)<br>Elodes antellin<br>9p 2 a wa V V S 177.4c 9g mv 74 10 2012 74 16 10 10 10 10 11 11 88 1 13.24 10 10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10                                    | Macrophyta             |                |    |      |          |        |       |      |      |                   |      |       |                   |        |         |        |    |                     |                         |
| Careatophylin demorsum app. 2 ovv y y s Tri-Ac a g m y r 1 a g m y y s Tri-Ac a g m y r 1 a g m y z y s Tri-Ac a g m y r 1 a g m y z y s Tri-Ac a g m y r 1 a g z z y s Tri-Ac a g m y z y s Tri-Ac a g m y z y z z z z z z z z z z z z z z z z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ceratophyllum demersum | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 2 d  | EC50  | photosynth. act.  | 240.6  |         |        | 3  | 5,11,39,40,45,46    | Roessink et al. (2006a) |
| Carabaphulu demosyum         appr. 2 a vw         Y         S         TPT-Ac         ap         mv         7-10         20.24         2.1         def (5.0)         percent (5.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ceratophyllum demersum | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 7 d  | EC50  | photosynth. act.  | 92.5   |         |        | 3  | 5,11,39,40,45,46    | Roessink et al. (2006a) |
| Cardbolylum demersym         appr. 2 a vw         Y         S         IPT-Ac         ap         rw         7.10         21.4         ECS0         relative arouth         12.9         J         3         5.11,39.40,45,4         Response dt al. (2006a)           Elidee canadémis         appr. 2 g vw         Y         S         IPT-Ac         ap         rw         7.9         21.2         21.0         ECS0         photosymb. act.         12.8         4         5.11,39.40,45         Response dt al. (2006a)           Elidee anadémis         appr. 2 g vw         Y         S         IPT-Ac         ap         rw         7.9         21.2         21.4         ECS0         photosymb. act.         12.8         4         5.11,39.40,45,46         Resense dt al. (2006a)           Elidea antallin         appr. 2 g vw         Y         S         IPT-Ac         ap         rw         7.10         20.22         7.10         20.22         7.11         ECS0         photosymb. act.         10.19         5.11,39.40,45,46         Resense dt al. (2006a)           Elidea natallin         appr. 2 g vw         Y         S         IPT-Ac         ap         7.10         20.22         12.1         21.1         23.40,45,46         Resense dt al. (2006a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ceratophyllum demersum | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 21 d | EC50  | photosynth. act.  | 1357.3 |         |        | 3  | 5,11,39,40,45,46    | Roessink et al. (2006a) |
| Elobe analytics         appr. 2 g vw         Y         S         IPT-Ac         ap         Nw         7.9         0.42         2.4         ECS0         photogymb, act.         197.6         4         5.11.39.40.45         Research et al. (2006a)           Eloba conductors         Appr. 2 g vw         Y         S         TPT-Ac         Ap         Nv         7.9         2.1         ECS0         photogymb, act.         197.6         4         5.11.39.40.45         Research et al. (2006a)           Eloba conductors         Appr. 2 g vw         Y         S         TPT-Ac         Ap         VP<2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ceratophyllum demersum | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 21 d | EC50  | relative growth   | 12.9   |         |        | 3  | 5,11,39,40,45,46    | Roessink et al. (2006a) |
| Elobe academisis         app: 2 a ww         YP         5         TPT-Ac.         ap         rw         7.9         2042         7.4         ECS0         probugenth, act.         47.6         4         5,11,29,40,45         Ressink et al. (2006a)           Elobe academiss         app: 2 g ww         YP         5         TPT-Ac.         ap         Nw         7.9         20.22         1.0         ECS0         probugenth, act.         44.5         4         5,11,29,40,45         Rossink et al. (2006a)           Elobe academis         app: 2 g ww         Y         5         TPT-Ac.         ap         Nw         7.10         0.42         Z.10         ECS0         probugenth, act.         10.1         .         3         5,11,39,40,45,46         Rossink et al. (2006a)           Elobe antabili         app: 2 g ww         Y         5         TPT-Ac.         ap<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elodea canadensis      | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 7-9  | 20±2 |                   | 2 d  | EC50  | photosynth. act.  | 197.8  |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Elded candelmiss         appr. 2 a ww         Yr         S         TPT-Ac         ap         rw         7-9         20+2         21.6         ECSO         photopynth, act.         44.5         4         5,11,39,40,45         Rossink et al. (2006a)           Eldoda candemis         appr. 2 a ww         Y         S         TPT-Ac         ap         ww         7.0         24.2         2.4         ECSO         February anvertage         4         5,11,39,40,45         Rossink et al. (2006a)           Eldoda candemis         appr. 2 a ww         Y         S         TPT-Ac         ap         W         2.0         CSO         February anvertage         A         5,11,39,40,45         Rossink et al. (2006a)           Eldoda candemiss         appr. 2 a ww         Y         S         TPT-Ac         ap         W         2.0         CSO         Polytopynth, act.         37.7         S         3.5,11,39,40,45         Rossink et al. (2006a)           Eldoda candemis         appr. 2 a ww         Y         S         TPT-Ac         ap         Y         10.42         Z         Z         S         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elodea canadensis      | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 7-9  | 20±2 |                   | 7 d  | EC50  | photosynth. act.  | 176.6  |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Elded candelmis         appr. 2 a vw         Y         S         TPT-Ac.         appr. 3         V2         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102         2 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elodea canadensis      | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 7-9  | 20±2 |                   | 21 d | EC50  | photosynth. act.  | 44.5   |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Elode nutabili         appr. 2 g vw.         Y         S         TPT-Ac.         ag         nw         7-10         2042         2 d         ECS0         photosynthact.         59.4         3         51.13.94.04,54.66         Resentik et al. (2006a)           Elode nutabili         appr. 2 g vw.         Y         S         TPT-Ac.         ag         nw         7-10         2042         2.1 d         ECS0         photosynthact.         97.7         Image: S1.13.94.04,54.66         Resentik et al. (2006a)           Edman minor         from the field         N         R         TPT-AC         ag         nw         7.10         2042         2.1 d         ECS0         photosynthact.         97.7         Image: S1.13.94.04,54.66         Resentik et al. (2006a)           Lemma minor         from the field         N         R         TPT-7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Elodea canadensis      | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 7-9  | 20±2 |                   | 21 d | EC50  | relative growth   | 23.4   |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Einder nutztili         appr. 2 g vw.         Y         S         TPT-Ac.         ag         nw.         7.10         2042         7.4         ECS0         photosynthact.         10.19.         -3         5.11.39.40,45,46         Resentik et al. (2006a)           Elode nutztili         appr. 2 g vw.         Y         S         TPT-Ac.         ag         nw         7.10         2042         21.0         ECS0         relative growth         11.8         4         15.11.39.40,45,46         Resentik et al. (2006a)           Lenna minor         from the field         N         R         TPT-7         am         25         300         8.4         ECS0         prowth rate         11.29         4         15.21.65, 24.61,64         Song and Huang (2001)           Lenna minor         from the field         N         R         TPT-7         am         25         300         8.4         ECS0         prowth rate         11.2         4.2         13.21.65,46,16.4         Song and Huang (2001)           Lenna minor         from the field         N         R         TPT-Ac         ag         nw         7.10         2042         2         ECS0         photosynthact.         138.9         5.11.39.40,45,46         Song and Huang (2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elodea nuttallii       | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 2 d  | EC50  | photosynth. act.  | 59.4   |         |        | 3  | 5,11,39,40,45,46    | Roessink et al. (2006a) |
| Elode antitalli         appr. 2 a ww         Y         S         TPT-Ac         ag         nw         7.10         20.42         2.1.4         ECS0         photosynth. act.         9.7.7         J         3         5,11,39,40,55,46         Roessink et al. (2006a)           Lemma minor         from the field         N         R         TPT-Ac         an         2.5         300         8.d         ICS0         growth         1.5.8         4         15,24,56.2         Song and Huang (2001)           Lemma minor         from the field         N         R         TPT-7         am         2.5         300         8.d         ICS0         growth rate         11         3.6         1.5,24,5,24,5,12         Song and Huang (2001)           Lemma minor         from the field         N         R         TPT-7         am         2.5         300         8.d         ICS0         growth rate         11         3.6         1.5,12,52,45,12,52         Song and Huang (2001)           Lemma minor         from the field         N         R         TPT-4c         ag         nw         7.10         20.42         2.6         ICS0         photosynth.act.         12.4         2.5         31,31,39,40,54,54         Song and Huang (2001) <td< td=""><td>Elodea nuttallii</td><td>appr. 2 g ww</td><td>Y</td><td>S</td><td>TPT-Ac</td><td>ag</td><td>nw</td><td>7-10</td><td>20±2</td><td></td><td>7 d</td><td>EC50</td><td>photosynth. act.</td><td>101.9</td><td></td><td></td><td>3</td><td>5,11,39,40,45,46</td><td>Roessink et al. (2006a)</td></td<>                                                                                                                                                                                                                                                                                                                                                                                        | Elodea nuttallii       | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 7 d  | EC50  | photosynth. act.  | 101.9  |         |        | 3  | 5,11,39,40,45,46    | Roessink et al. (2006a) |
| Eliode nutraliii         appr. 2 g vw         Y         S         TPT-Ac         ag         7.10         20.2         21.4         CCS0         relative growth         11.87         M         S         5,11,39,40,45,46         Resonance (account)           Lemma minor         from the field         N         R         TPT-7         am         25         300         8.4         CCS0         growth rate         11         3.8         4         15,11,39,40,45,46         Song and Huang (2001)           Lemma minor         from the field         N         R         TPT-7         am         25         300         8.4         ECS0         growth rate         11         3.8         2         15,21,65,24,61,64         Song and Huang (2001)           Lemma minor         from the field         N         R         TPT-7         am         25         300         8.4         ECS0         prowth rate         12         4.2         2         1,51,25,46,46,46         Song and Huang (2001)           Lemma minor         appr. 2 g vw         Y         S         TPT-Ac         Ag         N         N         10.80         3         5,11,39,46,45,46         Song and Huang (2001)           Lemma minor         appr. 2 g vw         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Elodea nuttallii       | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 21 d | EC50  | photosynth. act.  | 97.7   |         |        | 3  | 5,11,39,40,45,46    | Roessink et al. (2006a) |
| Lenna minor         Irom the field         N         R         TPT-7         am         Z         300         8 d         ICS0         arowth         I         IS.8         4         IS.21,65         Song and Huang (2001)           Lenna minor         from the field         N         R         TPT-7         am         Z         300         8 d         ECS0         growth rate         11         3.8         2         15,21,65,24,61,63         Song and Huang (2001)           Lenna minor         from the field         N         R         TPT-7         am         2         300         8 d         ECS0         growth rate         12         4.2         2         5,21,65,24,61,62,76         Song and Huang (2001)           Lenna minor         appr. 2 g vw         Y         S         TPT-Ac         ag         nv         7.10         202         2 d         2 d         2 d         2 d         3 5,11,39,40,45,46         Song and Huang (2001)           Lenna minor         appr. 2 g vw         Y         S         TPT-Ac         ag         nv         7.10         20         2 d         2 d         2 d         2 d         2 d         3 d         3 d,11,39,40,45,46         Song and Huang (2001)           Lenna min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elodea nuttallii       | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 21 d | EC50  | relative growth   | 11.87  |         |        | 3  | 5,11,39,40,45,46    | Roessink et al. (2006a) |
| Lemma minor         from the field         N         R         TPT-2         am         Z 53         300         8 d         EC50         growth rate         I         3.8         2         55,21,65,24,61,63         Song and Huang (2001)           Lemma minor         from the field         N         R         TPT-7         am         25         300         8 d         EC50         growth rate         12         4.2         2         15,21,65,24,61,63         Song and Huang (2001)           Lemma minor         appr. 2 g vm         Y         S         TPT-A         ag         N         7.10         28.2         3         5,11,39,40,45,46,163         Song and Huang (2001)           Lemma minor         appr. 2 g vm         Y         S         TPT-Ac         ag         N         7.10         28.2         7.2         EC50         photosynth.act         138.9         1         3         5,11,39,40,45,46         Song and Huang (2001)           Lemma minor         appr. 2 g vm         Y         S         TPT-Ac         ag         N         7.10         20         21         EC50         photosynth.act         130.4         4         5,11,39,40,45,46         Song and Huang (2001)           Lemma minor         appr.2 g vm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lemna minor            | from the field | Ν  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | IC50  | growth            |        |         | 15.8   | 4  | 15,21,65            | Song and Huang (2001)   |
| Lemma minor         from the field         N         R         PTP-7         am         25         300         8 d         ECS0         growth rate         17         5.9         2         15,21,55,24,61,63         Song and Huanq (2001)           Lemma minor         from the field         N         R         PTP-7         am         25         300         8 d         ECS0         growth rate         12         4.2         4.2         15,21,55,24,61,63         Song and Huanq (2001)           Lemma minor         appr. 2 ww         Y         S         PTP-Ac         ag         NV         7.0         2042         2         2 d         ECS0         photosynth. act.         138.9         N         3         5,11,39,40,45,46         Song and Huanq (2001)           Lemma minor         appr. 2 ww         Y         S         TPT-Ac         ag         NV         7.0         204         2 d         ECS0         photosynth. act.         138.9         N         3         5,11,39,40,45,46         Song and Huanq (2001)           Lemma minor         appr. 2 ww         Y         S         TPT-Ac         ag         NV         7.0         204         ECS1         growth         182.4         13,24,04,54.6         Song and Huanq (2001)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lemna minor            | from the field | Ν  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | EC50  | growth rate       |        | 11      | 3.8    | 2  | 15,21,65,24,61,62   | Song and Huang (2001)   |
| Lemma minor         From the field         N         R         TPT-?         Image         Part Part Part Part Part Part Part Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lemna minor            | from the field | Ν  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | EC50  | growth rate       |        | 17      | 5.9    | 2  | 15,21,65,24,61,63   | Song and Huang (2001)   |
| Lemma minor         from the field         N         R         TPT-2         am         25         300         8 d         ECS         choopshylicont.         S2         31         15,21,65,9,61,62,76         Song and Huang (2001)           Lemna minor         appr. 2 g ww         Y         S         TPT-Ac         ag         nw         7.10         2042         7 d         ECS         photosynth. Act.         138.9         S         5,11,39,40,45,46         Song and Huang (2001)           Lemna minor         appr. 2 g ww         Y         S         TPT-Ac         ag         nw         7.10         204         ECS         photosynth. Act.         130.4         I         S         5,11,39,40,45,46         Song and Huang (2001)           Lemna polyribia         from the field         Y         R         TPT-2         am         25         300         8 d         ICS         opp.4         5,76         4         15,21,32,20.60         Song and Huang (2005)           Lemna polyribia         from the field         Y         R         TPT-7         am         25         300         8 d         ECS0         growth rate         9.6         3.2         15,21,32,24,61,63         Song and Huang (2005)         Lemna polyribia         from the fie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lemna minor            | from the field | Ν  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | EC50  | growth rate       |        | 12      | 4.2    | 2  | 15,21,65,24,61,64   | Song and Huang (2001)   |
| Lemma minor         appr. 2 g ww         Y         S         TPT-Ac         ag         nw         7.10         20±2         2 d         ECS0         photosynth. act.         18.9         I         3         5,11,39,40,45,46         Song and Huang (2001)           Lemna minor         appr. 2 g ww         Y         S         TPT-Ac         ag         nw         7.10         20±2         7.14         ECS0         photosynth. act.         13.9         I         3         5,11,39,40,45,46         Song and Huang (2001)           Lemna minor         appr. 2 g ww         Y         S         TPT-Ac         ag         nw         7.10         20         2.1 d         ECS0         relative north.         13.0         I         15.21,32         Song and Huang (2001)           Lemna polyrhiza         from the field         Y         R         TPT-2         am         2.5         300         8 d         ECS0         growth rate         9.6         3.3         15,21,22,24,61,63         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-2         am         2.5         300         8 d         ECS0         growth rate         9.6         15,21,32,24,61,64         Song and Huang (2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lemna minor            | from the field | Ν  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | EC50  | chlorophyll cont. |        |         | 3.2    | 3  | 15,21,65,9,61,62,76 | Song and Huang (2001)   |
| Lemna minor         appr. 2 g ww         Y         S         TPT-Ac         ag         nv         7-10         2012         7-10         2052         7-10         2052         7-10         2012         7-10         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012         2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lemna minor            | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 2 d  | EC50  | photosynth. act.  | 64000  |         |        | 3  | 5,11,39,40,45,46,71 | Song and Huang (2001)   |
| Lemna minor       appr. 2 g ww       Y       S       TPT-Ac       ag       nw       7-10       20       21 d       ECS0       photosynth.act.       13.0.4       3       5,11,39,40,45,46       Song and Huang (2001)         Lemna polyrhiza       from the field       Y       S       TPT-Ac       ag       nv       7.10       20       21 d       ECS0       relative growth       198.9       3       5,11,39,40,45,46       Song and Huang (2001)         Lemna polyrhiza       from the field       Y       R       TPT-2       am       25       300       8 d       ICS0       drowth rate       9.6       3.3       21       25,132,26.0       Song and Huang (2005)         Lemna polyrhiza       from the field       Y       R       TPT-7       am       25       300       8 d       ECS0       growth rate       36       3.5       2.1       32,24,61,63       Song and Huang (2005)         Lemna polyrhiza       from the field       Y       R       TPT-7       am       2.5       300       8 d       ECS0       growth rate       36       3.5       2.1       32,46,164       Song and Huang (2005)         Lemna risulca       appr. 2 g ww       Y       S       TPT-Ac       ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lemna minor            | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20±2 |                   | 7 d  | EC50  | photosynth. act.  | 138.9  |         |        | 3  | 5,11,39,40,45,46    | Song and Huang (2001)   |
| Lemna polyr.hiza         Find         Y         R         TPT-Ac         ag         nw         7-10         20         21.d         ECS0         relative growth         198.9         Image of the second of the se | Lemna minor            | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20   |                   | 21 d | EC50  | photosynth. act.  | 130.4  |         |        | 3  | 5,11,39,40,45,46    | Song and Huang (2001)   |
| Lemna polyrhiza         from the field         Y         R         TPT-2         am         Z 5         300         8 d         1CS0         growth         Image (2005)         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-2         am         Z 5         300         8 d         ICS0         Ghowth rate         P         6.6         3.3         2         15,21,32,0         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-2         am         Z 5         300         8 d         ECS0         growth rate         P         6.6         3.3         2         15,21,32,04,61,62         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-7         am         Z 5         300         8 d         ECS0         growth rate         C         24         8,2         2         15,21,32,40,61,63         Song and Huang (2005)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         7-9         20         Z 4         ECS0         photosynth. act.         122.5         4         5,11,39,40,45         Roessink et al. (2006a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lemna minor            | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20   |                   | 21 d | EC50  | relative growth   | 198.9  |         |        | 3  | 5,11,39,40,45,46    | Song and Huang (2001)   |
| Lemna polyrhiza         from the field         Y         R         TPT-2         am         25         300         8 d         ICS0         chlorophyll cont.         S.76         4         15,21,32,00         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-2         am         25         300         8 d         EC50         growth rate         9.6         3.3         21         15,21,32,24,61,62         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-7         am         25         300         8 d         EC50         growth rate         24         8.2         2         15,21,32,24,61,64         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-7         am         25         300         8 d         EC50         growth rate         24         8.2         2         15,21,32,40,61,63         Song and Huang (2005)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-Ac         ag         NV         7.9         20         Z d         EC50         photosynth.act         12,51         24         5,51,13,94,04,55         Roessink et al. (2006a)     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lemna polyrhiza        | from the field | Y  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | IC50  | growth            |        |         | 19.2   | 4  | 15,21,32            | Song and Huang (2005)   |
| Lemna polyrhiza         from the field         Y         R         TPT-7         am         25         300         8 d         ECS0         growth rate         9.6         3.3         2         15,21,32,24,61,62         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-7         am         25         300         8 d         ECS0         growth rate         24         8.2         2         15,21,32,24,61,64         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-7         am         25         300         8 d         ECS0         chorophyll cont.         64         21,9         2         15,21,32,461,64         Song and Huang (2005)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-A         am         25         300         8 d         ECS0         photosynth.act.         64.5         21,9         2         15,21,32,461,64         Song and Huang (2005)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-A         ag         nw         7-9         20         2 d         ECS0         photosynth.act.         64.5         1         4         5,11,39,40,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lemna polyrhiza        | from the field | Y  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | IC50  | chlorophyll cont. |        |         | 5.76   | 4  | 15,21,32,60         | Song and Huang (2005)   |
| Lemna polyrhiza         from the field         Y         R         TPT-?         am         Z5         300         8 d         EC50         growth rate         30         10.6         2         15,21,32,24,61,63         Song and Huang (2005)           Lemna polyrhiza         from the field         Y         R         TPT-?         am         25         300         8 d         EC50         growth rate         24         8.2         2         15,21,32,24,61,63         Song and Huang (2005)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         7-9         20         2 d         EC50         chorosphil (nont.         64         21.9         21.5,21,32,40,45.4         Song and Huang (2005)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         7-9         20         21.d         EC50         photosynth. act.         36.1         M         4         5,11,39,40,45         Roessink et al. (2006a)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         7-9         20         21.d         EC50         photosynth. act.         36.1         M         5,11,39,40,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lemna polyrhiza        | from the field | Y  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | EC50  | growth rate       |        | 9.6     | 3.3    | 2  | 15,21,32,24,61,62   | Song and Huang (2005)   |
| Lemna polyrhiza         from the field         Y         R         TPT-2         am         25         300         8 d         EC50         growth rate         Park         8.2         2         15,21,32,24,61,64         Song and Huang (2005)           Lemna polyrhiza         appr. 2 g ww         Y         R         TPT-Ac         ag         mv         7-9         20         2 d         EC50         photosynth. act.         122.5         4         5,21,32,24,61,64         Song and Huang (2005)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-Ac         ag         mv         7-9         20         7 d         EC50         photosynth. act.         64.5         12.5         4         5,11,39,40,45         Roessink et al. (2006a)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-Ac         ag         mv         7-9         20         21 d         EC50         photosynth. act.         64.5         4         5,11,39,40,45         Roessink et al. (2006a)           Lemna trisulca         appr. 2 g ww         Y?         S         TPT-Ac         ag         mv         7-0         20         21 d         EC50         photosynth. act.         127.9         4         5,11,39,40,45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lemna polyrhiza        | from the field | Y  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | EC50  | growth rate       |        | 30      | 10.6   | 2  | 15,21,32,24,61,63   | Song and Huang (2005)   |
| Lemna polychiza         from the field         Y         R         TPT-7.         am         25         300         8 d         EC50         chlorophyll cont.         64         21.9         2         15,21,32,9,61,63         Song and Huang (2005)           Lemna trisulca         appr. 2 g ww         Y7         S         TPT-Ac         ag         nw         7-9         20         7 d         EC50         photosynth. act.         122.5         4         5,11,39,40,45         Reessink et al. (2006a)           Lemna trisulca         appr. 2 g ww         Y7         S         TPT-Ac         ag         nw         7-9         20         7 d         EC50         photosynth. act.         65.5         4         5,11,39,40,45         Reessink et al. (2006a)           Lemna trisulca         appr. 2 g ww         Y7         S         TPT-Ac         ag         nw         7-9         20         21 d         EC50         photosynth. act.         36.1         4         5,11,39,40,45         Reessink et al. (2006a)           Lemna trisulca         appr. 2 g ww         Y7         S         TPT-Ac         ag         nw         7-10         20         21 d         EC50         photosynth. act.         127.9         4         5,11,39,40,45 <th< td=""><td>Lemna polyrhiza</td><td>from the field</td><td>Y</td><td>R</td><td>TPT-?</td><td></td><td>am</td><td></td><td>25</td><td>300</td><td>8 d</td><td>EC50</td><td>growth rate</td><td></td><td>24</td><td>8.2</td><td>2</td><td>15,21,32,24,61,64</td><td>Song and Huang (2005)</td></th<>                                                                                                                                                                                                                                                                                                                                                                                         | Lemna polyrhiza        | from the field | Y  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | EC50  | growth rate       |        | 24      | 8.2    | 2  | 15,21,32,24,61,64   | Song and Huang (2005)   |
| Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       2 d       ECS0       photosynth. act.       122.5       4       5,11,39,40,45       Roessink et al. (2006a)         Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       7 d       ECS0       photosynth. act.       69.5       4       5,11,39,40,45       Roessink et al. (2006a)         Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       21 d       ECS0       photosynth. act.       36.1       4       5,11,39,40,45       Roessink et al. (2006a)         Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       21 d       ECS0       relative growth       64.5       4       5,11,39,40,45       Roessink et al. (2006a)         Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       21 d       ECS0       relative growth       73.4       3       5,11,39,40,45       Roessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S <td< td=""><td>Lemna polyrhiza</td><td>from the field</td><td>Y</td><td>R</td><td>TPT-?</td><td></td><td>am</td><td></td><td>25</td><td>300</td><td>8 d</td><td>EC50</td><td>chlorophyll cont.</td><td></td><td>64</td><td>21.9</td><td>2</td><td>15,21,32,9,61,63</td><td>Song and Huang (2005)</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lemna polyrhiza        | from the field | Y  | R    | TPT-?    |        | am    |      | 25   | 300               | 8 d  | EC50  | chlorophyll cont. |        | 64      | 21.9   | 2  | 15,21,32,9,61,63    | Song and Huang (2005)   |
| Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       7 d       EC50       photosynth. act.       69.5       4       5,11,39,40,45       Reessink et al. (2006a)         Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       21 d       EC50       photosynth. act.       36.1       4       5,11,39,40,45       Roessink et al. (2006a)         Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       21 d       EC50       relative growth       64.5       4       5,11,39,40,45       Roessink et al. (2006a)         Myriophyllum spicatum       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       2 d       EC50       photosynth. act.       127.9       4       5,11,39,40,45       Roessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       21 d       EC50       photosynth. act.       127.9       4       5,11,39,40,45       Roessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lemna trisulca         | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 7-9  | 20   |                   | 2 d  | EC50  | photosynth. act.  | 122.5  |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       21 d       EC50       photosynth. act.       36.1       4       5,11,39,40,45       Roessink et al. (2006a)         Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       21 d       EC50       relative growth       64.5.       4       5,11,39,40,45.       Roessink et al. (2006a)         Myriophyllum spicatum       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       21 d       EC50       relative growth       7.3.4       4       5,11,39,40,45.4       Roessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       2 d       EC50       photosynth. act.       127.9       4       5,11,39,40,45       Roessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       Z d       EC50       photosynth. act.       29       4       5,11,39,40,45       Roessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lemna trisulca         | appr. 2 g ww   | Υ? | S    | TPT-Ac   | ag     | nw    | 7-9  | 20   |                   | 7 d  | EC50  | photosynth. act.  | 69.5   |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Lemna trisulca       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-9       20       21 d       EC50       relative growth       64.5       4       5,11,39,40,45       Roessink et al. (2006a)         Myriophyllum spicatum       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       21 d       EC50       relative growth       7.4.       3       5,11,39,40,45.6       Roessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       2 d       EC50       photosynth.act.       127.9       4       5,11,39,40,45.6       Roessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       2 d       EC50       photosynth.act.       29       4       5,11,39,40,45       Roessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       21 d       EC50       photosynth.act.       29       4       5,11,39,40,45       Roessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lemna trisulca         | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 7-9  | 20   |                   | 21 d | EC50  | photosynth. act.  | 36.1   |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Myriophyllum spicatum       appr. 2 g ww       Y       S       TPT-Ac       ag       nw       7-10       20       21 d       EC50       relative growth       73.4       M       3       5,11,39,40,45,46       Reessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       2 d       EC50       photosynth. act.       127.9       4       5,11,39,40,45.46       Reessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       7 d       EC50       photosynth. act.       127.9       4       5,11,39,40,45.46       Reessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       21 d       EC50       photosynth. act.       29       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       photosynth. act.       29       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lemna trisulca         | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 7-9  | 20   |                   | 21 d | EC50  | relative growth   | 64.5   |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       2 d       EC50       photosynth. act.       127.9       4       5,11,39,40,45       Reessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       7 d       EC50       photosynth. act.       29       4       5,11,39,40,45       Reessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       2 d       EC50       photosynth. act.       29       4       5,11,39,40,45       Reessink et al. (2006a)         Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       2 d       EC50       photosynth. act.       29       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       7 d       EC50       photosynth. act.       29       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Myriophyllum spicatum  | appr. 2 g ww   | Y  | S    | TPT-Ac   | ag     | nw    | 7-10 | 20   |                   | 21 d | EC50  | relative growth   | 73.4   |         |        | 3  | 5,11,39,40,45,46    | Roessink et al. (2006a) |
| Potamogeton crispus         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         7-10         20         7 d         EC50         photosynth. act.         29         4         5,11,39,40,45         Reessink et al. (2006a)           Potamogeton crispus         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         7-10         20         21 d         EC50         relative growth         38.8         4         5,11,39,40,45         Reessink et al. (2006a)           Spirodela polyrhiza         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         6-9         20         2 d         EC50         photosynth. act.         5600         4         5,11,39,40,45         Reessink et al. (2006a)           Spirodela polyrhiza         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         6-9         20         21 d         EC50         photosynth. act.         33.1         4         5,11,39,40,45         Reessink et al. (2006a)           Spirodela polyrhiza         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         6-9         20         21 d         EC50         photosynth. act.         33.1         4         5,11,39,40,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Potamogeton crispus    | appr. 2 g ww   | Υ? | S    | TPT-Ac   | ag     | nw    | 7-10 | 20   |                   | 2 d  | EC50  | photosynth. act.  | 127.9  |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Potamogeton crispus       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       7-10       20       21 d       EC50       relative growth       38.8       4       5,11,39,40,45       Roessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       2 d       EC50       photosynth. act.       5600       4       5,11,39,40,45       Roessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       7 d       EC50       photosynth. act.       5600       4       5,11,39,40,45       Roessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       photosynth. act.       33.1       4       5,11,39,40,45       Roessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       photosynth. act.       33.1       4       5,11,39,40,45       Roessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Potamogeton crispus    | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 7-10 | 20   |                   | 7 d  | EC50  | photosynth. act.  | 29     |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       2 d       EC50       photosynth. act.       5600       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       7 d       EC50       photosynth. act.       29       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       photosynth. act.       29       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       photosynth. act.       33.1       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       photosynth. act.       33.1       4       5,11,39,40,45       Reessink et al. (2006a)         Play       M       C       M       C <td>Potamogeton crispus</td> <td>appr. 2 g ww</td> <td>Y?</td> <td>S</td> <td>TPT-Ac</td> <td>ag</td> <td>nw</td> <td>7-10</td> <td>20</td> <td></td> <td>21 d</td> <td>EC50</td> <td>relative growth</td> <td>38.8</td> <td></td> <td></td> <td>4</td> <td>5,11,39,40,45</td> <td>Roessink et al. (2006a)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Potamogeton crispus    | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 7-10 | 20   |                   | 21 d | EC50  | relative growth   | 38.8   |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       7 d       EC50       photosynth. act.       29       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       photosynth. act.       33.1       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       photosynth. act.       33.1       4       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       relative growth       4.6       4       5,11,39,40,45       Reessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       relative growth       4.6       4       5,11,39,40,45       Reessink et al. (2006a)         Platyenin       Base Sp.       Platyenin </td <td>Spirodela polyrhiza</td> <td>appr. 2 g ww</td> <td>Y?</td> <td>S</td> <td>TPT-Ac</td> <td>ag</td> <td>nw</td> <td>6-9</td> <td>20</td> <td></td> <td>2 d</td> <td>EC50</td> <td>photosynth. act.</td> <td>5600</td> <td></td> <td></td> <td>4</td> <td>5,11,39,40,45</td> <td>Roessink et al. (2006a)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spirodela polyrhiza    | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 6-9  | 20   |                   | 2 d  | EC50  | photosynth. act.  | 5600   |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       photosynth. act.       33.1       4       5,11,39,40,45       Roessink et al. (2006a)         Spirodela polyrhiza       appr. 2 g ww       Y?       S       TPT-Ac       ag       nw       6-9       20       21 d       EC50       relative growth       4.6       4       5,11,39,40,45       Roessink et al. (2006a)         Platylelinintes       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spirodela polyrhiza    | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 6-9  | 20   |                   | 7 d  | EC50  | photosynth. act.  | 29     |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Spirodela polyrhiza         appr. 2 g ww         Y?         S         TPT-Ac         ag         nw         6-9         20         21 d         EC50         relative growth         4.6         4         5,11,39,40,45         Reessink et al. (2006a)           Platylelminthes         Image: Spinodel a polymer a pol                                                      | Spirodela polyrhiza    | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 6-9  | 20   |                   | 21 d | EC50  | photosynth. act.  | 33.1   |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Platyhelminthes         Y         S         TPT-Ac         ag         nw         8         20         48 h         EC10         behaviour         2.7         4         5,11,39,40         Roessink et al. (2006a)           Dugesia sp.         Y         S         TPT-Ac         ag         nw         8         20         96 h         EC10         behaviour         2.9         4         5,11,39,40         Roessink et al. (2006a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spirodela polyrhiza    | appr. 2 g ww   | Y? | S    | TPT-Ac   | ag     | nw    | 6-9  | 20   |                   | 21 d | EC50  | relative growth   | 4.6    |         |        | 4  | 5,11,39,40,45       | Roessink et al. (2006a) |
| Platyhelminthes         Image: Constraint of the system         Image: Constrated         Image: Constraint of the system                                                                                                                                                                                                                                                                          |                        | _              |    |      |          |        |       |      |      |                   |      |       |                   |        |         |        |    |                     |                         |
| Dugesia sp.         Y         S         TPT-Ac         ag         nw         8         20         48 h         EC10         behaviour         2.7         4         5,11,39,40         Reessink et al. (2006a)           Dugesia sp.         Y         S         TPT-Ac         ag         nw         8         20         96 h         EC10         behaviour         2.9         4         5,11,39,40         Reessink et al. (2006a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Platyhelminthes        |                |    |      |          |        |       |      |      |                   |      |       |                   |        |         |        |    |                     |                         |
| Dugesia sp.         Y         S         TPT-Ac         ag         nw         8         20         96 h         EC10         behaviour         2.9         4         5,11,39,40         Roessink et al. (2006a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dugesia sp.            |                | Y  | S    | TPT-Ac   | ag     | nw    | 8    | 20   |                   | 48 h | EC10  | behaviour         | 2.7    |         |        | 4  | 5,11,39,40          | Roessink et al. (2006a) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dugesia sp.            |                | Y  | S    | TPT-Ac   | ag     | nw    | 8    | 20   |                   | 96 h | EC10  | behaviour         | 2.9    |         |        | 4  | 5,11,39,40          | Roessink et al. (2006a) |

| Species                  | Species<br>properties    | A | Test<br>type | Test<br>compound | Purity | Test<br>water | pН       | т         | Hardness<br>CaCO <sub>3</sub> | Exp.<br>time | Crit. | Endpoint         | Value  | Value<br>TPT-ion        | Value<br>Sn | Ri | Notes         | Ref                        |
|--------------------------|--------------------------|---|--------------|------------------|--------|---------------|----------|-----------|-------------------------------|--------------|-------|------------------|--------|-------------------------|-------------|----|---------------|----------------------------|
|                          | P . P                    |   | -71          |                  | [%]    |               |          | [°C]      | [mg/L]                        |              |       |                  | [µg/L] | [µg/L]                  | [µg/L]      |    |               |                            |
| Dugesia sp.              |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 48 h         | EC50  | behaviour        | 9.8    |                         |             | 4  | 5,11,39,40    | Roessink et al. (2006a)    |
| Dugesia sp.              |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 96 h         | EC50  | behaviour        | 6.1    |                         |             | 4  | 5,11,39,40    | Roessink et al. (2006a)    |
| Dugesia sp.              |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 48 h         | LC10  | mortal./immobil. | 24.9   | 21.3                    |             | 2  | 5,11,39,40    | Roessink et al. (2006a)    |
| Dugesia sp.              |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 96 h         | LC10  | mortal./immobil. | 19     | 16.3                    |             | 2  | 5,11,39,40    | Roessink et al. (2006a)    |
| Dugesia sp.              |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 48 h         | LC50  | mortal./immobil. | 35.3   | 30.2                    |             | 2  | 5,11,39,40    | Roessink et al. (2006a)    |
| Dugesia sp.              |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 96 h         | LC50  | mortal./immobil. | 20.9   | 17.9                    |             | 2  | 5,11,39,40    | Roessink et al. (2006a)    |
| Polycelis niger/tenuis   |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 48 h         | EC10  | behaviour        | 3.1    |                         |             | 4  | 5,11,39,40    | Roessink et al. (2006a)    |
| Polycelis niger/tenuis   |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 96 h         | EC10  | behaviour        | 3.4    |                         |             | 4  | 5,11,39,40    | Roessink et al. (2006a)    |
| Polycelis niger/tenuis   |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 48 h         | EC50  | behaviour        | 10.6   |                         |             | 4  | 5,11,39,40    | Roessink et al. (2006a)    |
| Polycelis niger/tenuis   |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 96 h         | EC50  | behaviour        | 6.6    |                         |             | 4  | 5,11,39,40    | Roessink et al. (2006a)    |
| Polycelis niger/tenuis   |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 48 h         | LC10  | mortal./immobil. | 42.4   | 36.3                    |             | 2  | 5,11,39,40    | Roessink et al. (2006a)    |
| Polycelis niger/tenuis   |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 96 h         | LC10  | mortal./immobil. | 20.8   | 17.8                    |             | 2  | 5,11,39,40    | Roessink et al. (2006a)    |
| Polycelis niger/tenuis   |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 48 h         | LC50  | mortal./immobil. | 46.9   | 40.1                    |             | 2  | 5,11,39,40    | Roessink et al. (2006a)    |
| Polycelis niger/tenuis   |                          | Y | S            | TPT-Ac           | ag     | nw            | 8        | 20        |                               | 96 h         | LC50  | mortal./immobil. | 23.2   | 19.9                    |             | 2  | 5,11,39,40    | Roessink et al. (2006a)    |
|                          |                          |   |              |                  |        |               |          |           |                               |              |       |                  |        |                         |             |    |               |                            |
| Mollusca                 |                          |   | _            |                  |        |               |          |           |                               |              |       |                  |        |                         |             |    |               |                            |
| Biomphalaria glabrata    |                          | N | S            | TPT-FI           |        |               | 5.5      |           |                               | 24 h         | LC50  | mortality        | 10-550 |                         |             | 3  |               | Crommentuijn et al. (1997) |
| Bithynia tentaculata     |                          | Y | S            | TPT-Ac           | ag     | nw            | 7-8      | 20±2      |                               | 96 h         | NOEC  | mortal./immobil. | ≥1000  | ≥858                    |             | 2  | 5,11,39,40,41 | Roessink et al. (2006a)    |
| Bithynia tentaculata     |                          | N | S            | TPT-Ac           |        |               |          | 19±1      |                               | 48 h         | LC50  | mortality        | 500    |                         |             | 3  | 11,54         | EC (1996a, 1996b)          |
| Cipangopaludina malleata |                          |   |              | TPT-OH           |        |               |          |           |                               | 48 h         | EC50  |                  | 720    |                         |             | 4  | 27            | Roessink et al. (2006a)    |
| Indoplanorbis exustus    | adult                    |   |              | TPT-CI           |        |               |          |           |                               |              | LC50  | mortality        | 350    |                         |             | 4  |               | Goel and Prasad (1978)     |
| Indoplanorbis exustus    |                          |   | -            | TPT-OH           |        |               |          |           |                               | 48 h         | EC50  |                  | 840    |                         |             | 4  | 27            | Roessink et al. (2006a)    |
| Lymnaea stagnalis        | 26.5 ± 6.4 mm            | Y | S            | TPT-AC           | ag     | nw            | 7-8      | 20±2      |                               | 48 h         | EC10  | behaviour        | 10     | -                       |             | 3  | 5,11,39,40,44 | Roessink et al. (2006a)    |
| Lymnaea stagnalis        | $26.5 \pm 6.4$ mm        | Y | S            | TPT-AC           | ag     | nw            | 7-8      | 20±2      |                               | 96 h         | EC10  | behaviour        | 10     | -                       |             | 3  | 5,11,39,40,44 | Roessink et al. (2006a)    |
| Lymnaea stagnalis        | 26.5 ± 6.4 mm            | Y | S            | TPT-AC           | ag     | nw            | 7-8      | 20±2      |                               | 48 h         | EC50  | behaviour        | 25     | -                       |             | 3  | 5,11,39,40,44 | Roessink et al. (2006a)    |
| Lymnaea stagnalis        | 26.5 ± 6.4 mm            | Y | S            | TPT-AC           | ag     | nw            | 7-8      | 20±2      |                               | 96 h         | EC50  | behaviour        | 12     | -                       |             | 3  | 5,11,39,40,44 | Roessink et al. (2006a)    |
| Lymnaea stagnalis        | 26.5 ± 6.4 mm            | Y | S            | TPT-AC           | ag     | nw            | 7-8      | 20±2      |                               | 48 h         | LC10  | mortal./immobil. | 264    | -                       |             | 3  | 5,11,39,40,44 | Roessink et al. (2006a)    |
| Lymnaea stagnalis        | 26.5 ± 6.4 mm            | Y | S            | TPT-AC           | ag     | nw            | 7-8      | 20±2      |                               | 96 h         | LC10  | mortal./immobil. | 86     | -                       |             | 3  | 5,11,39,40,44 | Roessink et al. (2006a)    |
| Lymnaea stagnalis        | $26.5 \pm 6.4$ mm        | Y | 5            | TPT-AC           | ag     | nw            | 7-8      | 20±2      |                               | 48 h         | LC50  | mortal./immobil. | 907    |                         |             | 3  | 5,11,39,40,44 | Roessink et al. (2006a)    |
|                          | 26.5 ± 6.4 mm            | ř | 5            | TPT-AC           | ag     | nw            | 7-8      | 20±2      |                               | 96 N         | LC50  | mortal./Immobil. | 92     |                         |             | 3  | 5,11,39,40,44 | Roessink et al. (2006a)    |
| Lymnea stagnalis         |                          |   |              | TPT-OH           |        |               |          | 22        |                               | 2 0          | LC100 |                  | 50     |                         |             | 4  |               | Visser and Linders (1992)  |
| Lymnea stagnalis         |                          |   | 6            | TPT-OH           |        |               | 7.0      | 22        |                               | 9 d          | LCIUU |                  | 10     |                         |             | 4  | 5 44 20 40 42 | Visser and Linders (1992)  |
| Physa fontinalis         | $6.5 \pm 1.0 \text{ mm}$ | ř | 5            | TPT-AC           | ag     | nw            | 7-8      | $20\pm 2$ |                               | 48 h         | EC10  | behaviour        | 6      |                         |             | 4  | 5,11,39,40,42 | Roessink et al. (2006a)    |
| Physa Tontinalis         | $6.5 \pm 1.0$ mm         | V | 5            | TPT-AC           | ay     | 11W           | 7-0      | 2012      |                               | 90 H         | ECEO  | behaviour        | 4      |                         |             | 4  | 5,11,39,40,42 | Roessink et al. (2006a)    |
| Physa Tontinalis         | $6.5 \pm 1.0$ mm         | V | 5            | TPT-AC           | ay     | 11W           | 7-0      | 2012      |                               | 40 II        | ECE0  | behaviour        | 3      |                         |             | 4  | 5,11,39,40,42 | Roessink et al. (2006a)    |
| Physa fontinalis         | $6.5 \pm 1.0$ mm         | v | S            | TPT-AC           | ag     | 1100          | 7-0      | 20+2      |                               | 48 h         | 1010  | mortal /immobil  | 17     | 14.5                    |             | 2  | 5 11 30 40 42 | Roessink et al. (2006a)    |
| Physa Tontinalis         | $6.5 \pm 1.0$ mm         | V | 5            | TPT-AC           | ay     | 11W           | 7-0      | 2012      |                               | 40 II        |       | mortal /immobil  | 11     | 14.5                    |             | 2  | 5,11,39,40,42 | Roessink et al. (2006a)    |
| Physa fontinalis         | 6.5 ± 1.0 mm             | V | 5            | TPT-AC           | ay     | 1100          | 7-0      | 2012      |                               | 40 h         |       | mortal /immobil  | 06     | 9. <del>4</del><br>97.1 |             | 2  | 5,11,35,40,42 | Roessink et al. (2006a)    |
| Physa fontinalis         | $65 \pm 1.0$ mm          | V | S            | TPT-AC           | ag     | nw            | 7-8      | 20+2      |                               | 96 h         | 1050  | mortal /immobil  | 12     | 10.2                    |             | 2  | 5 11 39 40 42 | Roessink et al. (2000a)    |
| Physella acuta           | 0.0 = 1.0 mm             | + | 5            | TPT-OH           | ay     | nw            | , ,      | 20-2      |                               | 48 h         | EC50  |                  | 300    | 10.2                    |             | 4  | 27            | Roessink et al. (2006a)    |
| Planorhis contortis      | 4 3 ± 0 7 mm             | v | S            | TPT-Ac           | an     | nw            | 8        | 20+2      |                               | 48 h         | 1010  | mortal /immohil  | 6      | 5 1                     |             | 2  | 5 11 39 40 42 | Roessink et al. (2006a)    |
| Planorhis contortis      | $43 \pm 0.7 \text{ mm}$  | V | S            | TPT-Ac           | ag     | nw            | 8        | 20+2      |                               | 96 h         | 1010  | mortal /immobil  | 4      | 3.4                     |             | 2  | 5 11 39 40 42 | Roessink et al. (2006a)    |
| Planorhis contortis      | $43 \pm 0.7 \text{ mm}$  | V | S            | TPT-Ac           | ag     | nw            | 8        | 20+2      | 1                             | 48 h         | 1050  | mortal /immobil  | 15     | 12.9                    |             | 2  | 5 11 39 40 42 | Roessink et al. (2006a)    |
|                          | 4.5 ± 0.7 mm             |   | 5            | 11 1-AC          | ay     | 1100          | <u> </u> | 20-2      | 1                             | 1011         | LC30  |                  | 1-2    | 12.0                    | 1           | 14 | 5,11,35,40,42 | 10003311K CL al. (2000a)   |

| Species                  | Species                     | А    | Test   | Test     | Purity | Test  | pН  | т            | Hardness          | Exp.          | Crit. | Endpoint              | Value        | Value   | Value  | Ri | Notes         | Ref                           |
|--------------------------|-----------------------------|------|--------|----------|--------|-------|-----|--------------|-------------------|---------------|-------|-----------------------|--------------|---------|--------|----|---------------|-------------------------------|
|                          | properties                  |      | type   | compound | 50/ 3  | water |     | [00]         | CaCO <sub>3</sub> | time          |       |                       | r (1.3       | TPT-ion | Sn (1) |    |               |                               |
| Discoutis as atomtis     | 4.2.4.0.7                   |      | C      | TDT A-   | [%]    |       | 0   |              | [mg/L]            | 06 5          |       | un autal (insus a bil | [µg/L]       | [µg/L]  | [µg/L] | 2  | F 11 20 40 42 | Deservation at al. (2000a)    |
| Planorbis contortis      | 4.3 ± 0.7 mm                | Y    | S      | TPT-AC   | ag     | nw    | 8   | 20±2         |                   | 96 N          | LC50  | mortal./immobil.      | /            | 6       |        | 2  | 5,11,39,40,42 | Roessink et al. (2006a)       |
| Planordis contortis      |                             | IN N | 5      | TPT-AC   | 07     |       | 7 5 | 19±1         |                   | 48 n          | LC50  | mortality             | 1000         |         |        | 3  | 11,54         | EC (1996a, 1996b)             |
|                          | 35-40 days old              | IN   | 5      | TPT-AC   | 97     | nw    | 7.5 | 26           |                   | 72 h          | LC50  | mortality             | 4800         |         | -      | 3  | 15            |                               |
| Semisuicospira libertina |                             |      | -      | TPT-OH   |        |       |     |              |                   | 48 h          | EC50  |                       | 550          |         |        | 4  | 2/            | Roessink et al. (2006a)       |
| Sphaerium sp.            | 8.6 ± 1.4 mm                | Y    | S      | IPI-Ac   | ag     | nw    | 8   | 20±2         |                   | 96 h          | NOEC  | mortal./immobil.      | ≥1000        | -       |        | 4  | 5,11,39,40,41 | Roessink et al. (2006a)       |
| Annolida                 |                             |      | _      |          |        |       |     |              |                   |               |       |                       |              |         |        |    |               |                               |
| Erpobdella               | $i_{100}$ : 11 5 + 1 7 mm   | V2   | c      | TPT-Ac   | 20     | DW/   | 7-8 | 20+2         |                   | 18 h          | EC10  | bebaviour             | 15.3         |         | -      | 1  | 5 11 30 /0    | Poessink et al. (2006a)       |
| Erpobdella               | $juv: 11.5 \pm 1.7$ mm      | V2   | S      | TPT-AC   | ay     | 1100  | 7-0 | 20+2         |                   | 96 h          | EC10  | behaviour             | 9.6          |         |        | 4  | 5 11 30 40    | Roessink et al. (2006a)       |
| Erpobdella               | $juv_{11} = 1.7 \text{ mm}$ | V2   | S<br>C | TPT-AC   | ay     | 1100  | 7-0 | 20-22        |                   | 30 H          | ECEO  | behaviour             | 25.0         | 1       |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Erpobdella               | $juv., 11.5 \pm 1.7$ mm     | V2   | 5      | TPT-AC   | ay     | nw.   | 7-8 | $20\pm 2$    |                   | 40 II<br>96 h | EC50  | behaviour             | 17 1         |         |        | 4  | 5 11 30 40    | Roessink et al. (2006a)       |
| Erpobdella               | $juv_{11} = 1.7 \text{ mm}$ | V2   | S<br>C | TPT-AC   | ay     | 1100  | 7-0 | 20-22        |                   | 30 H          |       | mortal /immobil       | 17.1<br>E0 E | 1       |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Erpobdella               | $juv_{11} = 1.7 \text{ mm}$ | V2   | S<br>C | TPT-AC   | ay     | 1100  | 7-0 | 20-22        |                   | 40 H          |       | mortal /immobil       | 22.0         | 1       |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Erpobdella               | $juv., 11.5 \pm 1.7$ mm     | V2   | 5      | TPT-AC   | ay     | 11VV  | 7-0 | 20±2         |                   | 90 II<br>49 h |       | mortal /immobil       | 23.0         |         |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Erpobdella               | $juv., 11.5 \pm 1.7$ mm     | V2   | 5      | TPT-AC   | ay     | 11VV  | 7-0 | 20±2         |                   | 40 II         | LCEO  | mortal /immobil       | 27.1         |         |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Lumbriculus variegatus   | $31.4 \pm 5.9$ mm           | V    | 5      | TPT-AC   | ay     | nw.   | 7-0 | $20\pm 2$    |                   | 90 II<br>48 h | EC10  | hebaviour             | 27.I<br>4 1  |         |        | 4  | 5 11 30 40 43 | Roessink et al. (2006a)       |
|                          | $31.4 \pm 5.9$ mm           | v    | S      | TPT-Ac   | ag     | nw    |     | 20+2         |                   | 96 h          | EC10  | behaviour             | 3.5          |         |        | 3  | 5,11,35,40,43 | Roessink et al. (2006a)       |
|                          | $31.4 \pm 5.9$ mm           | v    | S      | TPT-Ac   | ag     | nw    |     | 20+2         |                   | 48 h          | EC50  | behaviour             | 8.8          |         |        | 3  | 5 11 39 40 43 | Roessink et al. (2006a)       |
| Lumbriculus variegatus   | $31.4 \pm 5.9$ mm           | Y    | S      | TPT-Ac   | ag     | nw    |     | 20+2         |                   | 96 h          | EC50  | behaviour             | 6.3          | 1       |        | 3  | 5 11 39 40 43 | Roessink et al. (2006a)       |
| Lumbriculus variegatus   | $31.4 \pm 5.9 \text{ mm}$   | Ŷ    | S      | TPT-Ac   | ag     | nw    |     | 20=2<br>20±2 |                   | 48 h          | LC10  | mortal./immobil.      | 21.4         | 1       |        | 3  | 5,11,39,40,43 | Roessink et al. (2006a)       |
| Lumbriculus variegatus   | $31.4 \pm 5.9 \text{ mm}$   | Y    | S      | TPT-Ac   | ad     | nw    |     | 20±2         |                   | 96 h          | LC10  | mortal./immobil.      | 13.3         |         |        | 3  | 5.11.39.40.43 | Roessink et al. (2006a)       |
| Lumbriculus variegatus   | $31.4 \pm 5.9 \text{ mm}$   | Y    | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 48 h          | LC50  | mortal./immobil.      | 22.6         |         |        | 3  | 5.11.39.40.43 | Roessink et al. (2006a)       |
| Lumbriculus variegatus   | $31.4 \pm 5.9 \text{ mm}$   | Y    | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 96 h          | LC50  | mortal./immobil.      | 14.8         |         |        | 3  | 5.11.39.40.43 | Roessink et al. (2006a)       |
| Tubifex tubifex          | worms 20 mm                 | N    | S      | TPT-CI   | - 9    | tw    |     | 20           |                   | 96 h          | LC50  | mortality             | 2.4          |         |        | 4* | 11            | Fargašová and Kizlink (1996a) |
| Tubifex tubifex          | worms 20 mm                 | N    | S      | TPT-Ac   |        | tw    |     | 20           |                   | 96 h          | LC50  | mortality             | 1.9          |         |        | 4* | 11            | Fargašová and Kizlink (1996a) |
| Tubifex tubifex          | worms 20 mm                 | N    | S      | TPT-CI   |        | tw    |     | 20           |                   | 96 h          | LC50  | mortality             | 2.4          |         |        | 3  | 5.11          | Fargašová (1997a)             |
| Tubifex tubifex          | worms 20 mm                 | N    | S      | TPT-Ac   |        | tw    |     | 20           |                   | 96 h          | LC50  | mortality             | 1.9          |         |        | 3  | 5.11          | Fargašová (1997a)             |
| Tubifex tubifex          |                             | N    | S      | TPT-Ac   |        |       |     | 19±1         |                   | 48 h          | LC50  | mortality             | 70           |         |        | 3  | 11.54         | EC (1996a, 1996b)             |
| Tubifex                  | 7.3 ± 2.4 mm                | Y    | S      | TPT-Ac   | aq     | nw    |     | 20±2         |                   | 48 h          | EC10  | behaviour             | 2.4          |         |        | 4  | 5.11.39.40.42 | Roessink et al. (2006a)       |
| Tubifex                  | 7.3 ± 2.4 mm                | Y    | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 96 h          | EC10  | behaviour             | 2.3          |         |        | 4  | 5,11,39,40,42 | Roessink et al. (2006a)       |
| Tubifex                  | 7.3 ± 2.4 mm                | Y    | S      | TPT-Ac   | aq     | nw    |     | 20±2         |                   | 48 h          | EC50  | behaviour             | 14.2         |         |        | 4  | 5,11,39,40,42 | Roessink et al. (2006a)       |
| Tubifex                  | 7.3 ± 2.4 mm                | Y    | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 96 h          | EC50  | behaviour             | 10.7         |         |        | 4  | 5,11,39,40,42 | Roessink et al. (2006a)       |
| Tubifex                  | 7.3 ± 2.4 mm                | Y    | S      | TPT-Ac   | aq     | nw    |     | 20±2         |                   | 48 h          | LC10  | mortal./immobil.      | 13.1         | 11.2    |        | 2  | 5,11,39,40,42 | Roessink et al. (2006a)       |
| Tubifex                  | 7.3 ± 2.4 mm                | Y    | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 96 h          | LC10  | mortal./immobil.      | 9.2          | 7.9     |        | 2  | 5,11,39,40,42 | Roessink et al. (2006a)       |
| Tubifex                  | 7.3 ± 2.4 mm                | Y    | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 48 h          | LC50  | mortal./immobil.      | 27           | 23.1    |        | 2  | 5,11,39,40,42 | Roessink et al. (2006a)       |
| Tubifex                  | 7.3 ± 2.4 mm                | Y    | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 96 h          | LC50  | mortal./immobil.      | 12.9         | 11      |        | 2  | 5,11,39,40,42 | Roessink et al. (2006a)       |
|                          |                             |      |        |          |        |       |     |              |                   |               |       |                       |              |         |        |    |               |                               |
| Crustacea                |                             |      |        |          |        |       |     |              |                   |               |       |                       |              |         |        |    |               |                               |
| Acanthocyclops venustus  | 2.2 ± 0.4 mm                | Υ?   | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 48 h          | EC10  | behaviour             | 2.7          |         |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Acanthocyclops venustus  | 2.2 ± 0.4 mm                | Υ?   | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 96 h          | EC10  | behaviour             | 0.1          |         |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Acanthocyclops venustus  | 2.2 ± 0.4 mm                | Υ?   | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 48 h          | EC50  | behaviour             | 5.8          |         |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Acanthocyclops venustus  | 2.2 ± 0.4 mm                | Υ?   | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 96 h          | EC50  | behaviour             | 0.5          |         |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Acanthocyclops venustus  | 2.2 ± 0.4 mm                | Υ?   | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 48 h          | LC10  | mortal./immobil.      | 2.9          |         |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |
| Acanthocyclops venustus  | 2.2 ± 0.4 mm                | Υ?   | S      | TPT-Ac   | ag     | nw    |     | 20±2         |                   | 96 h          | LC10  | mortal./immobil.      | 0.1          |         |        | 4  | 5,11,39,40    | Roessink et al. (2006a)       |

| Species                 | Species      | A  | Test | Test     | Purity | Test  | рН  | т    | Hardness | Exp. | Crit. | Endpoint         | Value     | Value  | Value        | Ri | Notes         | Ref                            |
|-------------------------|--------------|----|------|----------|--------|-------|-----|------|----------|------|-------|------------------|-----------|--------|--------------|----|---------------|--------------------------------|
|                         | properties   |    | type | compound | [%]    | water |     | [°C] | [ma/l]   | ume  |       |                  | [ua/L]    | [ua/[] | 50<br>[ua/L] |    |               |                                |
| Acanthocyclops venustus | 2.2 ± 0.4 mm | Y? | S    | TPT-Ac   | ad     | nw    |     | 20±2 | [9/ =]   | 48 h | LC50  | mortal./immobil. | 6.9       | [[[]]] | LP 9/ -1     | 4  | 5.11.39.40    | Roessink et al. (2006a)        |
| Acanthocyclops venustus | 2.2 ± 0.4 mm | Y? | S    | TPT-Ac   | ag     | nw    |     | 20±2 |          | 96 h | LC50  | mortal./immobil. | 0.8       |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Asellus aquaticus       | 5.1 ± 1.4 mm | Y? | S    | TPT-Ac   | aq     | nw    | 8   | 20±2 |          | 48 h | EC10  | behaviour        | 78.3      |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Asellus aquaticus       | 5.1 ± 1.4 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 96 h | EC10  | behaviour        | 26.0      |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Asellus aquaticus       | 5.1 ± 1.4 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 48 h | EC50  | behaviour        | 212.8     |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Asellus aquaticus       | 5.1 ± 1.4 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 96 h | EC50  | behaviour        | 95.6      |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Asellus aquaticus       | 5.1 ± 1.4 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 48 h | LC10  | mortal./immobil. | 72.8      |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Asellus aquaticus       | 5.1 ± 1.4 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 96 h | LC10  | mortal./immobil. | 72.8      |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Asellus aquaticus       | 5.1 ± 1.4 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 48 h | LC50  | mortal./immobil. | 271.3     |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Asellus aquaticus       | 5.1 ± 1.4 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 96 h | LC50  | mortal./immobil. | 271.3     |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Asellus aquaticus       |              | Ν  | S    | TPT-Ac   | pure   | tw    | 7.4 | 20   | 307      | 48 h | LC50  | mortality        | 2670      |        |              | 3  | 8,9,25        | Cotta-Ramusino and Doci (1987) |
| Asellus aquaticus       |              | Ν  | S    | TPT-Ac   | pure   | tw    | 7.4 | 20   | 307      | 72 h | LC50  | mortality        | 1870      |        |              | 3  | 8,9,25        | Cotta-Ramusino and Doci (1987) |
| Asellus aquaticus       |              | Ν  | S    | TPT-Ac   | pure   | tw    | 7.4 | 20   | 307      | 96 h | LC50  | mortality        | 1420      |        |              | 3  | 8,9,25        | Cotta-Ramusino and Doci (1987) |
| Asellus aquaticus       |              | Ν  | S    | TPT-Ac   | form.  | tw    | 7.4 | 20   | 307      | 24 h | LC50  | mortality        | 3000-5000 |        |              | 3  | 8,25          | Cotta-Ramusino and Doci (1987) |
| Asellus aquaticus       |              | Ν  | S    | TPT-Ac   | form.  | tw    | 7.4 | 20   | 307      | 48 h | LC50  | mortality        | 1100      |        |              | 3  | 8,25          | Cotta-Ramusino and Doci (1987) |
| Asellus aquaticus       |              | Ν  | S    | TPT-Ac   |        |       |     |      |          | 48 h | LC50  | mortality        | 1100      |        |              | 4  | 8             | EC (1996a, 1996b)              |
| Asellus aquaticus       |              |    |      | TPT-CI   |        | am    |     | 24   |          | 96 h | LC50  | mortality        | 50        |        |              | 4  |               | Visser and Linders (1992)      |
| Ceriodaphnia dubia      | <24 h        | Y  | S    | TPT-OH   | 99.75  | nw    | 7-8 | 23.2 | 46.5     | 48 h | NOEC  | immobility       | 2.7       | 2.6    |              | 1  | 16,17         | Kline et al. (1989)            |
| Ceriodaphnia dubia      | <24 h        | Y  | S    | TPT-OH   | 99.75  | nw    | 7-8 | 23.2 | 46.5     | 48 h | EC50  | immobility       | 11.3      | 10.8   |              | 1  | 16,17         | Kline et al. (1989)            |
| Daphnia galeata         | 1.8 ± 0.3 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 48 h | EC10  | behaviour        | 7.3       |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Daphnia galeata         | 1.8 ± 0.3 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 96 h | EC10  | behaviour        | 5.4       |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Daphnia galeata         | 1.8 ± 0.3 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 48 h | EC50  | behaviour        | 16.1      |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Daphnia galeata         | 1.8 ± 0.3 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 96 h | EC50  | behaviour        | 8.4       |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Daphnia galeata         | 1.8 ± 0.3 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 48 h | LC10  | mortal./immobil. | 28.2      |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Daphnia galeata         | 1.8 ± 0.3 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 96 h | LC10  | mortal./immobil. | 13.1      |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Daphnia galeata         | 1.8 ± 0.3 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 48 h | LC50  | mortal./immobil. | 41.9      |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Daphnia galeata         | 1.8 ± 0.3 mm | Y? | S    | TPT-Ac   | ag     | nw    | 8   | 20±2 |          | 96 h | LC50  | mortal./immobil. | 16        |        |              | 4  | 5,11,39,40    | Roessink et al. (2006a)        |
| Daphnia magna           | 24 h         | Ν  | S    | TPT-CI   | >98    | am    | 7.6 | 20   |          | 48 h | EC50  | immobility       | 10.2      |        |              | 3  | 2             | Bao et al. (1997)              |
| Daphnia magna           | <24 h        | Y  | S    | TPT-OH   | 99.75  | nw    | 7-8 | 23.2 | 46.5     | 48 h | NOEC  | immobility       | 3.1       | 3      |              | 1  | 16,17         | Kline et al. (1989)            |
| Daphnia magna           | <24 h        | Y  | S    | TPT-OH   | 99.75  | nw    | 7-8 | 23.2 | 46.5     | 48 h | EC50  | immobility       | 16.5      | 15.8   |              | 1  | 16,17         | Kline et al. (1989)            |
| Daphnia magna           | 24 h         | N  | S    | TPT-CI   | ag     | am    | 7.5 |      | 200      | 24 h | EC50  | mortal./immobil. | 19        |        |              | 3  | 2,18          | Vighi and Calimari (1985)      |
| Daphnia magna           | <24 h        | Y  | S    | TPT-CI   |        | am    |     | 20±2 | 250      | 24 h | EC50  | immobility       | 35        | 32     |              | 2  | 23            | Steinhäuser et al. (1985)      |
| Daphnia magna           | <24 h        | N  | S    | TPT-OH   |        |       | 8-9 | 21±1 |          | 24 h | LC50  | mortality        | 20        |        |              | 3  | 5,52,56       | EC (1996a, 1996b)              |
| Daphnia magna           | <24 h        | Ν  | S    | TPT-OH   |        |       | 8-9 | 21±1 |          | 48 h | LC50  | mortality        | 10        |        |              | 3  | 5,52,56       | EC (1996a, 1996b)              |
| Daphnia magna           | <24 h        | Y  | S    | TPT-Ac   |        |       | 8-9 | 22   | 11.46    | 24 h | LC50  | mortality        | 560       |        |              | 4  | 5,39,48,50,68 | EC (1996a, 1996b)              |
| Daphnia magna           | <24 h        | Y  | S    | TPT-Ac   |        |       | 8-9 | 22   | 11.46    | 48 h | LC50  | mortality        | 200       |        |              | 4  | 5,39,48,50,68 | EC (1996a, 1996b)              |
| Daphnia magna           |              |    | S    | TPT-CI   |        | am    |     | 24   |          | 48 h | LC50  | mortality        | 80        |        |              | 4  |               | Visser and Linders (1992)      |
| Daphnia magna           |              |    |      | TPT-CI   |        |       |     |      |          | 48 h | LC50  | mortality        | 11        |        |              | 4  |               | Visser and Linders (1992)      |
| Daphnia magna           |              | Ν  | S    | TPT-Ac   |        |       |     | 19±1 |          | 48 h | LC50  | mortality        | 75        |        |              | 3  | 11,54         | EC (1996a, 1996b)              |
| Daphnia magna           | <24 h        |    | S    | TPT-OH   | 50     |       |     |      |          | 48 h | NOEC  | mortality        | 32        |        |              | 4  | 18            | EC (1996a, 1996b)              |
| Daphnia magna           | <24 h        |    | S    | TPT-OH   | 50     |       |     |      |          | 48 h | LC50  | mortality        | 62        |        |              | 4  | 18            | EC (1996a, 1996b)              |
| Daphnia magna           |              |    |      | TPT-OH   |        |       |     |      |          | 48 h | EC50  |                  | 16.7      |        |              | 4  | 47            | Roessink et al. (2006a)        |
| Daphnia pulex           | <24 h        | Y  | S    | TPT-OH   |        | nw    | 7-8 | 23.2 | 46.5     | 48 h | NOEC  | immobility       | 2.5       | 2.4    |              | 2  | 16,17         | Kline et al. (1989)            |
| Daphnia pulex           | <24 h        | Y  | S    | TPT-OH   |        | nw    | 7-  | 23.2 | 46.5     | 48 h | EC50  | immobility       | 14.5      | 13.8   |              | 2  | 16,17         | Kline et al. (1989)            |
|                         |              |    |      |          |        |       |     |      |          |      |       |                  |           |        |              |    |               |                                |

| Species                       | Species                  | A  | Test | Test      | Purity | Test  | pН  | Т     | Hardness          | Exp. | Crit. | Endpoint         | Value  | Value   | Value  | Ri | Notes          | Ref                         |
|-------------------------------|--------------------------|----|------|-----------|--------|-------|-----|-------|-------------------|------|-------|------------------|--------|---------|--------|----|----------------|-----------------------------|
|                               | properties               |    | type | compound  |        | water |     |       | CaCO <sub>3</sub> | time |       |                  |        | TPT-ion | Sn     |    |                |                             |
|                               |                          |    |      |           | [%]    |       |     | [°C]  | [mg/L]            |      |       |                  | [µg/L] | [µg/L]  | [µg/L] |    |                |                             |
| Gammarus fasciatus            | mature                   | Ν  | S    | TPT-OH    | tg     |       | 7.1 | 12    | 44                | 96 h | LC50  | mortality        | 66     |         |        | 4* |                | Mayer and Ellersieck (1986) |
| Gammarus fasciatus            | mature                   | Ν  | S    | TPT-OH    | tg     |       | 7-8 | 15    | 40-50             | 96 h | LC50  | mortality        | 66     |         |        | 3  |                | Johnson and Finley (1980)   |
| Gammarus pulex                | 13.0 ± 4.0 mm            | Y  | S    | TPT-Ac    | ag     | nw    | 6-8 | 20±2  |                   | 48 h | EC10  | behaviour        | 5.6    |         |        | 4  | 5,11,39,40, 42 | Roessink et al. (2006a)     |
| Gammarus pulex                | 13.0 ± 4.0 mm            | Y  | S    | TPT-Ac    | ag     | nw    | 6-8 | 20±2  |                   | 96 h | EC10  | behaviour        | 4.5    |         |        | 4  | 5,11,39,40, 42 | Roessink et al. (2006a)     |
| Gammarus pulex                | 13.0 ± 4.0 mm            | Y  | S    | TPT-Ac    | ag     | nw    | 6-8 | 20±2  |                   | 48 h | EC50  | behaviour        | 18.5   |         |        | 4  | 5,11,39,40, 42 | Roessink et al. (2006a)     |
| Gammarus pulex                | 13.0 ± 4.0 mm            | Y  | S    | TPT-Ac    | ag     | nw    | 6-8 | 20±2  |                   | 96 h | EC50  | behaviour        | 8.9    |         |        | 4  | 5,11,39,40, 42 | Roessink et al. (2006a)     |
| Gammarus pulex                | 13.0 ± 4.0 mm            | Y  | S    | TPT-Ac    | ag     | nw    | 6-8 | 20±2  |                   | 48 h | LC10  | mortal./immobil. | 18.5   | 15.8    |        | 2  | 5,11,39,40, 42 | Roessink et al. (2006a)     |
| Gammarus pulex                | 13.0 ± 4.0 mm            | Y  | S    | TPT-Ac    | ag     | nw    | 6-8 | 20±2  |                   | 96 h | LC10  | mortal./immobil. | 11.6   | 9.9     |        | 2  | 5,11,39,40, 42 | Roessink et al. (2006a)     |
| Gammarus pulex                | 13.0 ± 4.0 mm            | Y  | S    | TPT-Ac    | ag     | nw    | 6-8 | 20±2  |                   | 48 h | LC50  | mortal./immobil. | 104.4  | 89.3    |        | 2  | 5,11,39,40, 42 | Roessink et al. (2006a)     |
| Gammarus pulex                | 13.0 ± 4.0 mm            | Y  | S    | TPT-Ac    | ag     | nw    | 6-8 | 20±2  |                   | 96 h | LC50  | mortal./immobil. | 12.6   | 10.8    |        | 2  | 5,11,39,40, 42 | Roessink et al. (2006a)     |
| Orconectes sp.                | 2.5 g; 18 mm             | Ν  | S    | TPT-OH    | 97     |       | 7.4 | 20-21 | 40                | 96h  | LC50  | mortality        | >104   |         |        | 3  | 5,52,55        | EC (1996a, 1996b)           |
| Proasellus meridianus/coxalis | 5.6 ± 1.7 mm             | Y  | S    | TPT-Ac    | ag     | nw    | 8   | 20±2  |                   | 48 h | EC10  | behaviour        | 37     |         |        | 4  | 5,11,39,40     | Roessink et al. (2006a)     |
| Proasellus meridianus/coxalis | 5.6 ± 1.7 mm             | Y  | S    | TPT-Ac    | ag     | nw    | 8   | 20±2  |                   | 96 h | EC10  | behaviour        | 32.4   |         |        | 4  | 5,11,39,40     | Roessink et al. (2006a)     |
| Proasellus meridianus/coxalis | 5.6 ± 1.7 mm             | Y  | S    | TPT-Ac    | ag     | nw    | 8   | 20±2  |                   | 48 h | EC50  | behaviour        | 139    |         |        | 4  | 5,11,39,40     | Roessink et al. (2006a)     |
| Proasellus meridianus/coxalis | 5.6 ± 1.7 mm             | Y  | S    | TPT-Ac    | ag     | nw    | 8   | 20±2  |                   | 96 h | EC50  | behaviour        | 90.9   |         |        | 4  | 5,11,39,40     | Roessink et al. (2006a)     |
| Proasellus meridianus/coxalis | 5.6 ± 1.7 mm             | Y  | S    | TPT-Ac    | ag     | nw    | 8   | 20±2  |                   | 48 h | LC10  | mortal./immobil. | 137.4  |         |        | 4  | 5,11,39,40     | Roessink et al. (2006a)     |
| Proasellus meridianus/coxalis | 5.6 ± 1.7 mm             | Y  | S    | TPT-Ac    | ag     | nw    | 8   | 20±2  |                   | 96 h | LC10  | mortal./immobil. | 39.1   |         |        | 4  | 5,11,39,40     | Roessink et al. (2006a)     |
| Proasellus meridianus/coxalis | 5.6 ± 1.7 mm             | Y  | S    | TPT-Ac    | ag     | nw    | 8   | 20±2  |                   | 48 h | LC50  | mortal./immobil. | 558.5  |         |        | 4  | 5,11,39,40     | Roessink et al. (2006a)     |
| Proasellus meridianus/coxalis | 5.6 ± 1.7 mm             | Y  | S    | TPT-Ac    | ag     | nw    | 8   | 20±2  |                   | 96 h | LC50  | mortal./immobil. | 138.5  |         |        | 4  | 5,11,39,40     | Roessink et al. (2006a)     |
| · · · · · ·                   |                          |    |      |           |        |       |     |       |                   |      |       |                  |        |         |        |    |                |                             |
| Insecta                       |                          |    |      |           |        |       |     |       |                   |      |       |                  |        |         |        |    |                |                             |
| Aedes aegypti                 | 2nd inst., suscept.str.  | Ν  | S    | TPT-CI    |        | dw    |     | 26    |                   | 24 h | LC50  | mortality        | 17     |         |        | 3  | 1,2,4          | Kumar Das et al. (1984)     |
| Aedes aegypti                 | 4th inst., suscept.str.  | Ν  | S    | TPT-CI    |        | dw    |     | 26    |                   | 24 h | LC50  | mortality        | 420    |         |        | 3  | 1,2,4          | Kumar Das et al. (1984)     |
| Aedes aegypti                 | 4th inst., suscept.str.  | Ν  | S    | TPT-CI    |        | dw    |     | 26    |                   | 24 h | LC50  | mortality        | 410    |         |        | 3  | 1,3,4          | Kumar Das et al. (1984)     |
| Aedes aegypti                 | 4th inst., DDT tol. str. | Ν  | S    | TPT-CI    |        | dw    |     | 26    |                   | 24 h | LC50  | mortality        | 460    |         |        | 3  | 1,2,4          | Kumar Das et al. (1984)     |
| Aedes aegypti                 | 4th inst., orlando str.  | Υ? | S    | TPT-OH    |        | dw    |     | 25-29 |                   | 24 h | LC50  | mortality        | 1490   |         |        | 3  | 3,5,29         | Nguyen et al. (2000b)       |
| Aedes aegypti                 | 4th inst., orlando str.  | Y? | S    | TPT-CI    |        | dw    |     | 25-29 |                   | 24 h | LC50  | mortality        | 2530   |         |        | 3  | 3,5,29         | Nguyen et al. (2000b)       |
| Aedes aegypti                 | 4th inst., orlando str.  | Y? | S    | TPT-Ac    |        | dw    |     | 25-29 |                   | 24 h | LC50  | mortality        | 2300   |         |        | 3  | 5,11,29        | Nguyen et al. (2000b)       |
| Aedes aegypti                 | 4th inst., orlando str.  | Y? | S    | TPT-F     |        | dw    |     | 25-29 |                   | 24 h | LC50  | mortality        | 1500   |         |        | 3  | 3,5,29         | Nguyen et al. (2000b)       |
| Aedes aegypti                 | 4th inst., orlando str.  | Y? | S    | bis-TPT-O |        | dw    |     | 25-29 |                   | 24 h | LC50  | mortality        | 840    |         |        | 3  | 3,5,29         | Nguyen et al. (2000b)       |
| Anopheles stephensi           | larvae                   | Ν  | S    | TPT-OH    |        | dw    |     | 27-28 |                   | 24 h | LC50  | mortality        | 21400  |         |        | 3  | 5,20,31,71     | Ogwuru et al. (2001)        |
| Anopheles stephensi           | larvae                   | Ν  | S    | TPT-F     |        | dw    |     | 27-28 |                   | 24 h | LC50  | mortality        | 1860   |         |        | 3  | 5,20,31        | Ogwuru et al. (2001)        |
| Anopheles stephensi           | larvae                   | N  | S    | TPT-CI    |        | dw    |     | 27-28 |                   | 24 h | LC50  | mortality        | 20100  |         |        | 3  | 5,20,31,71     | Ogwuru et al. (2001)        |
| Anopheles stephensi           | larvae                   | Ν  | S    | TPT-Br    |        | dw    |     | 27-28 |                   | 24 h | LC50  | mortality        | 9410   |         |        | 3  | 5,20,31,71     | Ogwuru et al. (2001)        |
| Anopheles stephensi           | larvae                   | Ν  | S    | TPT-Ac    |        | dw    |     | 27-28 |                   | 24 h | LC50  | mortality        | 17400  |         |        | 3  | 5,20,31,71     | Ogwuru et al. (2001)        |
| Anopheles stephensi           | 2nd instar               | Y  | S    | TPT-Ac    |        | dw    |     | 27-30 |                   | 24 h | LC50  | mortality        | 49     | 42      |        | 2  | 5,11,33        | Eng et al. (1999)           |
| Anopheles stephensi           | 2nd instar               | Y  | S    | TPT-CI    |        | dw    |     | 27-30 |                   | 24 h | LC50  | mortality        | 181    | 164     |        | 2  | 3.5.33         | Eng et al. (1999)           |
| Anopheles stephensi           | 2nd instar               | Y  | S    | TPT-OH    |        | dw    |     | 27-30 |                   | 24 h | LC50  | mortality        | 562    | 536     |        | 2  | 3,5,33         | Eng et al. (1999)           |
| Anopheles stephensi           | 2nd instar               | Y  | S    | TPT-F     |        | dw    |     | 27-30 |                   | 24 h | LC50  | mortality        | 672    | 637     |        | 2  | 3.5.33         | Eng et al. (1999)           |
| Anopheles stephensi           | 2nd instar               | Y  | S    | bis-TPT-O | 1      | dw    | 1   | 27-30 |                   | 24 h | LC50  | mortality        | 179    | 175     | 1      | 2  | 3,5,33         | Eng et al. (1999)           |
| Anopheles stephensi           | 3rd instar               | Y  | S    | TPT-Ac    |        | dw    |     | 27-30 | 1                 | 24 h | LC50  | mortality        | 119    | 102     |        | 2  | 5,11,33        | Eng et al. (1999)           |
| Anopheles stephensi           | 3rd instar               | Y  | S    | TPT-CI    | 1      | dw    | T   | 27-30 |                   | 24 h | LC50  | mortality        | 420    | 381     | 1      | 2  | 3,5,33         | Eng et al. (1999)           |
| Anopheles stephensi           | 3rd instar               | Y  | S    | TPT-OH    | 1      | dw    | T   | 27-30 |                   | 24 h | LC50  | mortality        | 1310   | 1250    | 1      | 2  | 3,5,33         | Eng et al. (1999)           |
| Anopheles stephensi           | 3rd instar               | Y  | S    | TPT-F     |        | dw    | 1   | 27-30 | 1                 | 24 h | LC50  | mortality        | 1790   | 1698    |        | 2  | 3,5,33         | Eng et al. (1999)           |

| Species                   | Species<br>properties | A  | Test<br>type | Test<br>compound | Purity | Test<br>water | pН  | T<br>[°C] | Hardness<br>CaCO <sub>3</sub><br>[mg/L] | Exp.<br>time | Crit. | Endpoint         | Value<br>[ug/L] | Value<br>TPT-ion<br>[ug/L] | Value<br>Sn<br>[ug/L] | Ri | Notes            | Ref                            |
|---------------------------|-----------------------|----|--------------|------------------|--------|---------------|-----|-----------|-----------------------------------------|--------------|-------|------------------|-----------------|----------------------------|-----------------------|----|------------------|--------------------------------|
| Anopheles stephensi       | 3rd instar            | Y  | S            | bis-TPT-O        |        | dw            | 1   | 27-30     | L 2/ 1                                  | 24 h         | LC50  | mortality        | 1250            | 1222                       |                       | 2  | 3,5,33           | Eng et al. (1999)              |
| Anopheles stephensi       | 4th instar            | Y  | S            | TPT-Ac           | 1      | dw            |     | 27-30     |                                         | 24 h         | LC50  | mortality        | 2540            | 2173                       |                       | 2  | 5,11,33          | Eng et al. (1999)              |
| Anopheles stephensi       | 4th instar            | Y  | S            | TPT-CI           |        | dw            |     | 27-30     |                                         | 24 h         | LC50  | mortality        | 120             | 109                        |                       | 2  | 3,5,33           | Eng et al. (1999)              |
| Anopheles stephensi       | 4th instar            | Y  | S            | TPT-OH           | 1      | dw            |     | 27-30     |                                         | 24 h         | LC50  | mortality        | 5980            | 5703                       |                       | 2  | 3,5,33           | Eng et al. (1999)              |
| Anopheles stephensi       | 4th instar            | Y  | S            | TPT-F            | 1      | dw            |     | 27-30     |                                         | 24 h         | LC50  | mortality        | 6010            | 5700                       |                       | 2  | 3,5,33           | Eng et al. (1999)              |
| Anopheles stephensi       | 4th instar            | Y  | S            | bis-TPT-O        | 1      | dw            |     | 27-30     |                                         | 24 h         | LC50  | mortality        | 3420            | 3343                       |                       | 2  | 3,5,33           | Eng et al. (1999)              |
| Chaoborus obscuripes      |                       | Y  | S            | TPT-Ac           | ag     | nw            | 7-8 | 20±2      |                                         | 96 h         | NOEC  | mortal./immobil. | ≥1000           |                            |                       | 4  | 5,11,39,40,41    | Roessink et al. (2006a)        |
| Chironomus plumosus       | larvae 20 mm          | N  | S            | TPT-CI           |        | dtw           |     | 25        |                                         | 96 h         | LC50  | mortality        | 0.087           |                            |                       | 3  | 15               | Fargašová and Kizlink (1996a)  |
| Chironomus plumosus       | larvae 20 mm          | N  | S            | TPT-Ac           |        | dtw           |     | 25        |                                         | 96 h         | LC50  | mortality        | 0.33            |                            |                       | 3  | 15               | Fargašová and Kizlink (1996a)  |
| Chironomus plumosus       | larvae 20 mm          | N  | S            | TPT-CI           |        | dtw           |     | 25        |                                         | 96 h         | LC50  | mortality        | 0.087           |                            |                       | 4* | 5,11             | Fargašová (1997a)              |
| Chironomus plumosus       | larvae 20 mm          | N  | S            | TPT-Ac           |        | dtw           |     | 25        |                                         | 96 h         | LC50  | mortality        | 0.33            |                            |                       | 4* | 5,11             | Fargašová (1997a)              |
| Chironomus riparius       |                       | Ν  | S            | TPT-Ac           | pure   | tw            | 7.4 | 20        | 307                                     | 48 h         | LC50  | mortality        | <30             |                            |                       | 3  | 8,25             | Cotta-Ramusino and Doci (1987) |
| Chironomus riparius       |                       | Ν  | S            | TPT-Ac           | from.  | tw            | 7.4 | 20        | 307                                     | 24 h         | LC50  | mortality        | 70              |                            |                       | 3  | 8,25             | Cotta-Ramusino and Doci (1987) |
| Chironomus riparius       |                       | Ν  | S            | TPT-Ac           | form.  | tw            | 7.4 | 20        | 307                                     | 48 h         | LC50  | mortality        | 50              |                            |                       | 3  | 8,25             | Cotta-Ramusino and Doci (1987) |
| Chironomus riparius       |                       |    |              | TPT-OH           |        |               |     |           |                                         | 48 h         | EC50  |                  | 50              |                            |                       | 4  | 47               | Roessink et al. (2006a)        |
| Cloeon dipterum           | 5.5 ± 0.7 mm          | Y  | S            | TPT-Ac           | ag     | nw            | 8   | 20±2      |                                         | 48 h         | EC10  | behaviour        | 34.7            |                            |                       | 4  | 5,11,39,40,42    | Roessink et al. (2006a)        |
| Cloeon dipterum           | 5.5 ± 0.7 mm          | Y  | S            | TPT-Ac           | ag     | nw            | 8   | 20±2      |                                         | 96 h         | EC10  | behaviour        | 12.3            |                            |                       | 4  | 5,11,39,40,42    | Roessink et al. (2006a)        |
| Cloeon dipterum           | 5.5 ± 0.7 mm          | Y  | S            | TPT-Ac           | ag     | nw            | 8   | 20±2      |                                         | 48 h         | EC50  | behaviour        | 120.9           |                            |                       | 4  | 5,11,39,40,42    | Roessink et al. (2006a)        |
| Cloeon dipterum           | 5.5 ± 0.7 mm          | Y  | S            | TPT-Ac           | ag     | nw            | 8   | 20±2      |                                         | 96 h         | EC50  | behaviour        | 63              |                            |                       | 4  | 5,11,39,40,42    | Roessink et al. (2006a)        |
| Cloeon dipterum           | 5.5 ± 0.7 mm          | Y  | S            | TPT-Ac           | ag     | nw            | 8   | 20±2      |                                         | 48 h         | LC10  | mortal./immobil. | 251.8           | 215.5                      |                       | 2  | 5,11,39,40,42    | Roessink et al. (2006a)        |
| Cloeon dipterum           | 5.5 ± 0.7 mm          | Y  | S            | TPT-Ac           | ag     | nw            | 8   | 20±2      |                                         | 96 h         | LC10  | mortal./immobil. | 39.8            | 34.1                       |                       | 2  | 5,11,39,40,42    | Roessink et al. (2006a)        |
| Cloeon dipterum           | 5.5 ± 0.7 mm          | Y  | S            | TPT-Ac           | ag     | nw            | 8   | 20±2      |                                         | 48 h         | LC50  | mortal./immobil. | 442.5           | 378.6                      |                       | 2  | 5,11,39,40,42    | Roessink et al. (2006a)        |
| Cloeon dipterum           | 5.5 ± 0.7 mm          | Y  | S            | TPT-Ac           | ag     | nw            | 8   | 20±2      |                                         | 96 h         | LC50  | mortal./immobil. | 168.9           | 144.5                      |                       | 2  | 5,11,39,40, 42   | Roessink et al. (2006a)        |
| Endochironomus albipennis | 9.2 ± 1.2 mm          | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 48 h         | EC10  | behaviour        | 343             |                            |                       | 4  | 5,11,39,40       | Roessink et al. (2006a)        |
| Endochironomus albipennis | 9.2 ± 1.2 mm          | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 96 h         | EC10  | behaviour        | 181.9           |                            |                       | 4  | 5,11,39,40       | Roessink et al. (2006a)        |
| Endochironomus albipennis | 9.2 ± 1.2 mm          | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 48 h         | EC50  | behaviour        | 399.2           |                            |                       | 4  | 5,11,39,40       | Roessink (2008)                |
| Endochironomus albipennis | 9.2 ± 1.2 mm          | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 96 h         | EC50  | behaviour        | 203.8           |                            |                       | 4  | 5,11,39,40       | Roessink (2008)                |
| Endochironomus albipennis | 9.2 ± 1.2 mm          | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 48 h         | LC10  | mortal./immobil. | 306.8           | 262.5                      |                       | 2  | 5,11,39,40       | Roessink et al. (2006a)        |
| Endochironomus albipennis | 9.2 ± 1.2 mm          | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 96 h         | LC10  | mortal./immobil. | 179.2           | 153.3                      |                       | 2  | 5,11,39,40       | Roessink et al. (2006a)        |
| Endochironomus albipennis | 9.2 ± 1.2 mm          | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 48 h         | LC50  | mortal./immobil. | 691.6           | 591.8                      |                       | 2  | 5,11,39,40       | Roessink (2008)                |
| Endochironomus albipennis | 9.2 ± 1.2 mm          | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 96 h         | LC50  | mortal./immobil. | 302.9           | 259.2                      |                       | 2  | 5,11,39,40       | Roessink (2008)                |
| Glyptotendipes sp.        | 11.7 ± 1.9 mm         | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 48 h         | EC10  | behaviour        | 382.6           |                            |                       | 4  | 5,11,39,40,72    | Roessink (2008)                |
| Glyptotendipes sp.        | 11.7 ± 1.9 mm         | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 96 h         | EC10  | behaviour        | 103.6           |                            |                       | 4  | 5,11,39,40,72    | Roessink (2008)                |
| Glyptotendipes sp.        | 11.7 ± 1.9 mm         | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 48 h         | EC50  | behaviour        | 420.8           |                            |                       | 4  | 5,11,39,40,72    | Roessink (2008)                |
| Glyptotendipes sp.        | 11.7 ± 1.9 mm         | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 96 h         | EC50  | behaviour        | 204.7           |                            |                       | 4  | 5,11,39,40,72    | Roessink (2008)                |
| Glyptotendipes sp.        | 11.7 ± 1.9 mm         | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 96 h         | LC10  | mortal./immobil. | 287.7           |                            |                       | 4  | 5,11,39,40,72    | Roessink (2008)                |
| Glyptotendipes sp.        | 11.7 ± 1.9 mm         | Y  | S            | TPT-Ac           | ag     | nw            |     | 20±2      |                                         | 96 h         | LC50  | mortal./immobil. | 488.6           |                            |                       | 4  | 5,11,39,40,72    | Roessink (2008)                |
| Sigara sp.                |                       | Y  | S            | TPT-Ac           | ag     | nw            | 8   | 20±2      |                                         | 96 h         | NOEC  | mortal./immobil. | ≥1000           |                            |                       | 4  | 5,11,39,40,41,72 | Roessink et al. (2006a)        |
| Pisces                    |                       |    | -            |                  |        |               |     |           |                                         |              |       | 1                |                 |                            |                       | +  |                  |                                |
| Anguilla anguilla         |                       |    | 1            | TPT-Ac           | +      | ł             | 1   | 1         |                                         | 24 h         | 10100 | mortality        | 400             |                            | 1                     | 4  |                  | LINEP (1989)                   |
| Caracsius auratus         |                       | N  | S            | TPT-AC           | nure   | tw            | 74  | 20        | 307                                     | 96 h         | 1.050 | mortality        | 280             |                            |                       | 7  | 8925             | Cotta-Ramusino and Doci (1987) |
| Caracsius auratus         |                       | N  | S            | TPT-AC           | nure   | tw            | 7.4 | 20        | 307                                     | 96 h         | 1.050 | mortality        | 676             |                            |                       | 3  | 8 25             | Cotta-Ramusino and Doci (1987) |
| Caraccius auratus         |                       | N  | 5            | TPT-Ac           | nure   | tw            | 7.4 | 20        | 307                                     | 96 h         | 1.050 | mortality        | 620             | +                          | +                     | 3  | 8 25             | Cotta-Ramusino and Doci (1987) |
| carassius auratus         |                       | IN | 5            | IT ITAL          | Pure   |               | 7.4 | 20        | 507                                     | 1011         | LCJU  | mortality        | 020             |                            |                       | 5  | 0,20             |                                |

| Species             | Species             | А | Test | Test     | Purity | Test  | рН   | Т     | Hardness          | Exp. | Crit. | Endpoint         | Value  | Value   | Value R      | i I | Notes       | Ref                         |
|---------------------|---------------------|---|------|----------|--------|-------|------|-------|-------------------|------|-------|------------------|--------|---------|--------------|-----|-------------|-----------------------------|
|                     | properties          |   | type | compound | [%]    | water |      | [PC]  | CaCO <sub>3</sub> | time |       |                  | [ug/L] | IPI-ion | Sn<br>[ug/L] |     |             |                             |
| Carassius auratus   | 1.0 g               | N | s    | TPT-OH   | ta     |       | 7.1  | 18    | 44                | 96 h | LC50  | mortality        | 62     | [µ9/∟]  | [P9/L]       | *   |             | Maver and Ellersieck (1986) |
| Carassius auratus   | 1.0 g               | N | S    | TPT-OH   | ta     |       | 7    | 18    | 40-50             | 96 h | LC50  | mortality        | 62     |         | 3            |     |             | Johnson and Finley (1980)   |
| Carassius auratus   |                     |   | -    | TPT-Ac   | -5     |       | -    |       |                   | 24 h | LC100 | mortality        | 75     |         | 4            |     |             | UNEP (1989)                 |
| Carassius auratus   |                     |   |      | TPT-CI   |        |       |      |       |                   | 24 h | LC100 | mortality        | 250    |         | 4            |     |             | UNEP (1989)                 |
| Carassius auratus   |                     |   |      | TPT-OH   |        |       |      |       |                   | 96 h | FC50  |                  | 62     |         | 4            |     | 47          | Roessink et al. (2006a)     |
| Carassius auratus   |                     |   |      | TPT-CI   |        | am    |      | 24    |                   | 96 h | LC50  | mortality        | 40     |         | 4            |     |             | Visser and Linders (1992)   |
| Carassius auratus   |                     |   | R    | TPT-CI   |        | am    |      | 24    |                   | 28 d | LC50  | mortality        | 6      |         | 4            |     |             | Visser and Linders (1992)   |
| Cyprinus carpio     |                     |   |      | TPT-Ac   |        |       |      |       | 1                 | 48 h | LC50  | mortality        | 320    |         | 4            |     |             | UNEP (1989)                 |
| Cyprinus carpio     | 9 months; 2 g       | N | S    | TPT-Ac   |        | tw    | 8-9  | 21-22 | 11-12             | 96 h | LC50  | mortality        | 19     |         | 3            |     | 5,48,50     | EC (1996a, 1996b)           |
| Cyprinus carpio     | 7 mo; 2.1 q; 3.8 cm | Y | S    | TPT-OH   | 50     |       |      |       |                   | 96 h | LC50  | mortality        | 38     | 36.2    | 2            |     | 18,39,58,59 | EC (1996a, 1996b)           |
| Gambusia affinis    |                     |   |      | TPT-Ac   |        |       |      |       |                   | 24 h | LC100 | mortality        | 400    |         | 4            |     |             | UNEP (1989)                 |
| Ictalurus punctatus | 2.6 g               | Ν | S    | TPT-OH   | 97     | rw    | 7.4  | 20-21 | 40                | 96 h | LC50  | mortality        | 24     |         | 3            | -   | 5,49,52     | EC (1996a, 1996b)           |
| Lepomis macrochirus | 0.5 g               | Ν | S    | TPT-OH   | tg     |       | 7.1  | 24    | 44                | 96 h | LC50  | mortality        | 23     |         | 4            | *   |             | Mayer and Ellersieck (1986) |
| Lepomis macrochirus | 0.5 g               | Ν | S    | TPT-OH   | tg     |       | 7-8  | 13    | 40-50             | 96 h | LC50  | mortality        | 23     |         | 3            |     |             | Johnson and Finley (1980)   |
| Oncorhynchus mykiss | 0.8 g               | Ν | S    | TPT-OH   | tg     |       | 7.1  | 13    | 44                | 96 h | LC50  | mortality        | <28    |         | 4            | *   |             | Mayer and Ellersieck (1986) |
| Oncorhynchus mykiss | 0.8 g               | Ν | S    | TPT-OH   | tg     |       | 7-8  | 13    | 40-50             | 96 h | LC50  | mortality        | <28    |         | 3            |     |             | Johnson and Finley (1980)   |
| Oncorhynchus mykiss |                     |   |      | TPT-OH   |        |       |      |       |                   | 24 h | LC50  | mortality        | 78     |         | 4            |     |             | UNEP (1989)                 |
| Oncorhynchus mykiss | fry; 3 cm           | Ν | F    | TPT-OH   | 100    |       | 8.3  | 15    | 270               | 24 h | LC10  | mortality        | 55     | 52      | 2            |     | 2,4         | Tooby et al. (1975)         |
| Oncorhynchus mykiss | fry; 3 cm           | Ν | F    | TPT-OH   | 100    |       | 8.3  | 15    | 270               | 24 h | LC50  | mortality        | 78     | 74      | 2            |     | 2,4         | Tooby et al. (1975)         |
| Oncorhynchus mykiss | fry; 3 cm           | Ν | F    | TPT-OH   | 100    |       | 8.3  | 15    | 270               | 48 h | LC10  | mortality        | 19     | 18      | 2            |     | 2,4         | Tooby et al. (1975)         |
| Oncorhynchus mykiss | fry; 3 cm           | Ν | F    | TPT-OH   | 100    |       | 8.3  | 15    | 270               | 48 h | LC50  | mortality        | 30     | 29      | 2            |     | 2,4         | Tooby et al. (1975)         |
| Oncorhynchus mykiss | fry; 3 cm           | Ν | F    | TPT-OH   | 100    |       | 8.3  | 15    | 270               | 96 h | LC10  | mortality        | 10     | 9.5     | 2            |     | 2,4         | Tooby et al. (1975)         |
| Oncorhynchus mykiss | fry; 3 cm           | Ν | F    | TPT-OH   | 100    |       | 8.3  | 15    | 270               | 96 h | LC50  | mortality        | 15     | 14      | 2            |     | 2,4         | Tooby et al. (1975)         |
| Oncorhynchus mykiss |                     |   |      | TPT-OH   |        |       |      |       |                   | 48 h | EC50  |                  | 32.6   |         | 4            |     | 47          | Roessink et al. (2006a)     |
| Oncorhynchus mykiss | fry; 3 cm           |   | F    | TPT-OH   |        |       | 8.3  | 20    | 270               | 24 h | LC50  | mortality        | 78     |         | 4            |     |             | Visser and Linders (1992)   |
| Oncorhynchus mykiss | fry; 3 cm           |   | F    | TPT-OH   |        |       | 8.3  | 20    | 270               | 48 h | LC50  | mortality        | 30     |         | 4            |     |             | Visser and Linders (1992)   |
| Oncorhynchus mykiss | fry; 3 cm           |   | F    | TPT-OH   |        |       | 8.3  | 20    | 270               | 96 h | LC50  | mortality        | 15     |         | 4            | *   |             | Visser and Linders (1992)   |
| Oncorhynchus mykiss | 3 months; 4.27 g    | Ν | S    | TPT-Ac   | 96     | rw    | 8.31 | 11-12 | 47.3              | 96 h | LC50  | mortality        | 37     |         | 3            |     | 5,48,49     | EC (1996a, 1996b)           |
| Oncorhynchus mykiss | 5 monts; 1.48 g     | Ν | S    | TPT-OH   |        | rw    | 8    | 11-13 | 47.86             | 96 h | LC50  | mortality        | 22     |         | 3            |     | 5,48,51     | EC (1996a, 1996b)           |
| Oncorhynchus mykiss | 4 mo, 1.5 g; 4.6 cm | Y | S    | TPT-OH   | 50     |       |      |       |                   | 96 h | LC50  | mortality        | 42     | 40.1    | 2            |     | 18,39,57,58 | EC (1996a, 1996b)           |
| Oncorhynchus mykiss | 4 months; 1.8 g     | Y |      | TPT-Ac   | 95.3   |       | 7.8  | 14.6  | 358               | 21 d | NOEC  |                  | 0.66   | 0.56    | 4            |     | 2,5,18,73   | EC (1996a, 1996b)           |
| Oncorhynchus mykiss | 4 months; 1.8 g     | Y |      | TPT-Ac   | 95.3   |       | 7.8  | 14.6  | 358               | 21 d | NOEC  | length, weight   | >3.3   | >2.8    | 2            |     | 2,5,18,73   | EC (1996a, 1996b)           |
| Oncorhynchus mykiss | 4 months; 1.8 g     | Y |      | TPT-Ac   | 95.3   |       | 7.8  | 14.6  | 358               | 21 d | LC50  | mortality        | >3.3   | >2.8    | 2            |     | 2,5,18,73   | EC (1996a, 1996b)           |
| Oncorhynchus mykiss | 4 mo; 2.5 g; 5.4 cm | Y | F    | TPT-OH   | 50     |       |      |       |                   | 21 d | LC50  | mortality        | 22.4   | 21.4    | 2            |     | 18,39,58,74 | EC (1996a, 1996b)           |
| Oncorhynchus mykiss | 4 mo; 2.5 g; 5.4 cm | Y | F    | TPT-OH   | 50     |       |      |       |                   | 21 d | LC50  | slowed reactions | 10     | 9.5     | 4            |     | 18,39,58,74 | EC (1996a, 1996b)           |
| Oryzias latipes     | Fish from market    | Ν | R    | TPT-CI   |        | dtw   |      | 20    |                   | 96 h | LC50  | mortality        | 64     |         | 3            |     | 18,19,30    | Nagase et al. (1991)        |
| Oryzias latipes     | Fish from market    | Ν | R    | TPT-OH   |        | dtw   |      | 20    |                   | 96 h | LC50  | mortality        | 66.1   |         | 3            |     | 18,19,30    | Nagase et al. (1991)        |
| Oryzias latipes     | Fish from market    | Ν | R    | TPT-Ac   |        | dtw   |      | 20    |                   | 96 h | LC50  | mortality        | 74     |         | 3            |     | 18,19,30    | Nagase et al. (1991)        |
| Oryzias latipes     |                     | Y |      | TPT-OH   | 97.6   |       |      |       | 25                | 48 h | LC50  | mortality        | 52.9   | 50.5    | 2            |     |             | NITE (2011)                 |
| Pimephales promelas | 41 days old         | Y | F    | TPT-OH   |        |       |      |       |                   | 96 h | LC50  | mortality        | 9.6    | 9.2     | 2            |     | 17, 53      | EC (1996a, 1996b)           |
| Pimephales promelas | larvae <24 h        | Y | S    | TPT-OH   |        |       | 7-8  | 25    | 46.6              | 96 h | LC50  | mortality        | 7.1    | ļ       | 4            | *   | 53          | EC (1996a, 1996b)           |
| Pimephales promelas | larvae <24 h        | Y | F    | TPT-OH   |        |       | 7-8  | 25    | 46.6              | 72 h | LC50  | mortality        | 6      |         | 4            | *   | 53          | EC (1996a, 1996b)           |
| Pimephales promelas | larvae <24 h        | Y | S    | TPT-OH   | 96     | nw    | 7-8  | 24-25 | 46.6              | 96 h | LC50  | mortality        | 7.1    | 6.8     | 1            |     | 16,17,67    | Jarvinen et al. (1988)      |
| Pimephales promelas | larvae <24 h        | Y | F    | TPT-OH   | 96     | nw    | 7-8  | 24-25 | 46.6              | 96 h | LC50  | mortality        | 5.4    | 5.1     | 1            |     | 16,17       | Jarvinen et al. (1988)      |

| Species              | Species           | A | Test | Test        | Purity | Test  | pН  | Т     | Hardness          | Exp. | Crit. | Endpoint        | Value  | Value   | Value  | Ri | Notes     | Ref                         |
|----------------------|-------------------|---|------|-------------|--------|-------|-----|-------|-------------------|------|-------|-----------------|--------|---------|--------|----|-----------|-----------------------------|
|                      | properties        |   | type | compound    |        | water |     |       | CaCO <sub>3</sub> | time |       |                 |        | TPT-ion | Sn     |    |           |                             |
|                      |                   |   |      |             | [%]    |       |     | [°C]  | [mg/L]            |      |       |                 | [µg/L] | [µg/L]  | [µg/L] |    |           |                             |
| Pimephales promelas  | larvae <24 h      | Y | F    | TPT-OH      | 96     | nw    | 7-8 | 25    | 46.6              | 72 h | LC50  | mortality       | 6      | 5.7     |        | 1  | 16,17     | Jarvinen et al. (1988)      |
| Pimephales promelas  | larvae <24 h      | Y | F    | TPT-OH      | 96     | nw    | 7-8 | 25    | 46.6              | 72 h | LC50  | mortality       | 6      | 5.7     |        | 1  | 16,17     | Jarvinen et al. (1988)      |
| Pimephales promelas  | 0.9 g             | N | S    | TPT-OH      | tg     |       | 7.1 | 18    | 44                | 96 h | LC50  | mortality       | 20     |         |        | 4* |           | Mayer and Ellersieck (1986) |
| Pimephales promelas  |                   |   |      | TPT-OH      |        |       |     |       |                   | 96 h | LC50  | mortality       | 20     |         |        | 4* |           | Mayer (1974)                |
| Pimephales promelas  | 0.9 g             | N | S    | TPT-OH      | tg     |       | 7-8 | 18    | 40-50             | 96 h | LC50  | mortality       | 20     |         |        | 3  |           | Johnson and Finley (1980)   |
| Pimephales promelas  |                   |   |      | TPT-OH      |        |       |     |       |                   | 96 h | EC50  |                 | 20     |         |        | 4  | 47        | Roessink et al. (2006a)     |
| Poecilia reticulata  |                   |   |      | TPT-CI      |        | am    |     | 24    |                   | 48 h | LC50  | mortality       | 100    |         |        | 4  |           | Visser and Linders (1992)   |
| Poecilia reticulata  |                   |   |      | TPT-CI      |        | am    |     | 24    |                   | 96 h | LC50  | mortality       | 30     |         |        | 4  |           | Visser and Linders (1992)   |
| Poecilia reticulata  |                   |   | R    | TPT-CI      |        | am    |     | 24    |                   | 14 d | LC50  | mortality       | 5      |         |        | 4  |           | Visser and Linders (1992)   |
| Poecilia reticulata  | 2-3 months        | N | R    | TPT-CI      |        | rw    |     | 22    | 25                | 14 d | LC50  | mortality       | 9.25   |         |        | 3  | 26        | Könemann (1981)             |
| Poecilia reticulata  | 250 mg            | Ν | S    | TPT-Ac      |        |       |     | 19    |                   | 48 h | LC50  | mortality       | 34     |         |        | 3  | 11,54     | EC (1996a, 1996b)           |
| Rasbora heteromorpha | 1-3 cm            | N | F    | TPT-OH      | 100    |       | 8.1 | 20    | 20                | 24 h | LC10  | mortality       | 38     |         |        | 3  | 2,4       | Tooby et al. (1975)         |
| Rasbora heteromorpha | 1-3 cm            | N | F    | TPT-OH      | 100    |       | 8.1 | 20    | 20                | 24 h | LC50  | mortality       | 62     |         |        | 3  | 2,4       | Tooby et al. (1975)         |
| Rasbora heteromorpha | 1-3 cm            | N | F    | TPT-OH      | 100    |       | 8.1 | 20    | 20                | 48 h | LC10  | mortality       | 24     |         |        | 3  | 2,4       | Tooby et al. (1975)         |
| Rasbora heteromorpha | 1-3 cm            | N | F    | TPT-OH      | 100    |       | 8.1 | 20    | 20                | 48 h | LC50  | mortality       | 42     |         |        | 3  | 2,4       | Tooby et al. (1975)         |
| Rasbora heteromorpha | 1.3-3 cm          | N | F    | formulation | 20     |       | 7.2 | 20    | 20                | 48 h | LC50  | mortality       | 220    |         |        | 3  | 22        | Alabaster (1969)            |
| Rasbora heteromorpha |                   |   | F    | TPT-OH      |        |       | 8.1 | 20    | 20                | 24 h | LC50  | mortality       | 62     |         |        | 4* |           | Visser and Linders (1992)   |
| Rasbora heteromorpha |                   |   | F    | TPT-OH      |        |       | 8.1 | 20    | 20                | 48 h | LC50  | mortality       | 42     |         |        | 4* |           | Visser and Linders (1992)   |
| Rasbora heteromorpha |                   |   | F    | TPT-OH      | 19     |       | 8.1 | 20    | 20                | 24 h | LC50  | mortality       | 360    |         |        | 4  |           | Visser and Linders (1992)   |
| Rasbora heteromorpha |                   |   | F    | TPT-OH      | 19     |       | 8.1 | 20    | 20                | 48 h | LC50  | mortality       | 230    |         |        | 4  |           | Visser and Linders (1992)   |
| Rasbora heteromorpha |                   |   | F    | TPT-OH      | 19     |       | 8.1 | 20    | 20                | 96 h | LC50  | mortality       | 70     |         |        | 4  |           | Visser and Linders (1992)   |
| Rasbora heteromorpha |                   |   |      | TPT-OH      |        |       |     |       |                   | 48 h | EC50  |                 | 96.1   |         |        | 4  | 47        | Roessink et al. (2006a)     |
| Rutilus rutilus      |                   |   |      | TPT-CI      |        | am    |     | 24    |                   | 24 h | LC50  | mortality       | 30     |         |        | 4  |           | Visser and Linders (1992)   |
| Rutilus rutilus      |                   |   |      | TPT-CI      |        | am    |     | 24    |                   | 24 h | LC50  | mortality       | 20     |         |        | 4  |           | Visser and Linders (1992)   |
| Rutilus rutilus      |                   |   |      | TPT-CI      |        | am    |     | 24    |                   | 24 h | LC50  | mortality       | 10     |         |        | 4  |           | Visser and Linders (1992)   |
|                      |                   |   |      |             |        |       |     |       |                   |      |       |                 |        |         |        |    |           |                             |
| Amphibia             |                   |   |      |             |        |       |     |       |                   |      |       |                 |        |         |        |    |           |                             |
| Rana esculenta       | tadpoles; 20-21 d | N | S    | TPT-CI      | >97    | tw    | 8.2 | 20-22 |                   | 48 h | NOEC  | swimming behav. | 10     |         |        | 3  | 2,5,34,35 | Semlitsch et al. (1995)     |
| Rana esculenta       | tadpoles; 20-21 d | N | S    | TPT-CI      | >97    | tw    | 8.2 | 20-22 |                   | 48 h | NOEC  | feeding         | 5      |         |        | 3  | 2,5,34,35 | Semlitsch et al. (1995)     |

- 1 Solvent concentration >0.01%.
- 2 Solvent: acetone.
- 3 Solvent: DMSO.
- 4 No solvent control performed.
- 5 Solvent control performed.
- 6 Water control <50% of the lowest exposure concentration.
- 7 Solvent concentration  $\leq 0.01\%$ .
- 8 No mention of controls performed.
- 9 Value recalculated from data in table.

- 10 Solvent unknown.
- 11 Solvent: ethanol.
- 12 Test concentrations >> water solubility.
- 13 Biomass was calculated using adsorption at 680 nm.
- 14 Primary production measured as  ${}^{14}CO_2$  uptake.
- 15 No details on any use of solvents.
- 16 No solvent used, water concentrations prepared with a saturator system.
- 17 Results based on measured concentrations.
- 18 According to OECD guideline.

- 19 Solvent: DMSO + surfactant; solvent control perfomed.
- 20 Solvent: DMSO or acetone.
- 21 No detail on TPT species.
- 22 Formulation used, contains for 80% unfdefined auxiliary agents, no control for blank formulation performed.
- According to DIN 38412 Teil 11.
- 24 Value recalculated from graph in paper.
- 25 Exposure in plastic tanks.
- 26 Solvent: acetone or propanol-2.
- 27 Original reference in Japanese.
- 28 Exposure in microplates with lettuce infusion.
- 29 Exposure in plastic Petri dishes; measurements not specified but 'analytical analysis showed that the total tin concentration remained constant during the test period'. Since this is not further specified, may have been without organisms present, and the exposure was in plastic, the validity of the studie is Ri 3.
- 30 Duration of experiment unclear: in the test 96 hours is mentioned but in the table 48 hours is reported. 10 fish were exposed in 2 L of water, weight of the fish is not reported. Fish are bought at local market and thus possible pre-exposure is not known.
- 31 Not a real aquatic LC50; contact toxicity study with soaked chromatography paper in paper cups.
- 32 Measured concentrations in bioconcentration tests after 8 days close to nominal concentrations; average concentration was 64.8% of nominal; renewal every two days.
- 33 The total tin concentration remained constant during the study, it is not reported if TPT concentrations were measured.
- 34 Positive effects of solvent may have masked toxicity effects at the lowest exposure levels.
- 35 Exposure in plastic dishpans; renewal after 3 days.
- 36 EC50 and EC10 calculated with Graphpad, using reported data.
- 37 Value unreliable, extrapolated too far out of the measured range.
- 38 Value from list of endpoints, no further information available.
- 39 Results based on nominal concentrations.
- 40 Detection limit 1  $\mu$ g/L; GC-MSC; DOC of test medium was 8.8 mg/L.
- 41 Results from a range-finding test.
- 42 Measured concentrations were within 20% of nominal after 96 hours.

- 43 Measured concentration decreased to 24.1% of nominal after 96 hours, probably due to a too high loading of biomass.
- 44 Measured concentration decreased to 20.9% of nominal after 96 hours, probably due to a too high loading of biomass.
- 45 Medium enriched with nutrients.
- 46 Measured concentrations decreased to below detection limits (1  $\mu$ g/L) after 14 days.
- 47 Original data cannot be retrieved.
- 48 Solvent: DMF.
- 49 According to EPA guideline from 1975.
- 50 According to BBA guidelines, but no replicates.
- 51 According to EPA guidelines, but no replicates.
- 52 Solvent: triethylene glycol.
- 53 According to the FIFRA protocol.
- 54 Exposure in Petri dishes.
- 55 Exposrue far above solubility (precipitate present).
- 56 According to EPA guideline.
- 57 Fish loading was 0.08 g/L.
- 58 Measured concentrations were above 80% of nominal.
- 59 Fish loading was 0.11 g/L.
- 60 Value is not in accordance with presented data.
- 61 Corrected for average recovery in bioconcentration test.
- 62 Low concentration range of 2 and 5  $\mu$ g/L.
- 63 High concentration range of 5, 10, 25, and 50  $\mu$ g/L.
- 64 Low and high concentration range combined.
- 65 Measured concentrations in bioconcentration tests after 8 days close to nominal concentrations; average measured concentration was 61% of nominal; renewal every two days.
- 66 Measured concentrations after 7 d were 33% (algae) and 77.5% (*S. obliquus*) of nominal, concentration in blanc samples containted 91.3% after 7 d; results based on nominal concentrations; control in exponential growth until 48 h.
- 67 Mean value of seven tests, ranging from 4.3 to 9.6 μg/L; static test based on initial measured concentrations.

- 68 Measured concentrations were within 79-80% of nominal; unclear if results are expressed on basis of nominal or measured concentrations; reported LOEC for death higher than LC50 therefore reported figures unreliable.
- 69 Probably wrong unit reported in table 1 of publication.
- 70 Details of analysis unclear, endpoint based on nominal concentrations.
- 71 Endpoint > watersolubility.
- 72 Results of analysis unknown.
- 73 Endpoints not specified; mean measured concentrations over the exposure time were calculated to be 66% of nominal, thus all concentrations were corrected by 66% of their nominal value.

- Fish loading was 0.69 g/L.
- 75 Value recalculated for growth rate from data in table according to OECD guideline 201.
- 76 Confidence interval very large.
- 77 Exposure period too chort for a cyanobacterium.
- 78 Solvent: methanol.
- 79 Exposure period exceeds exponential growth phase.
- 80 The artificial medium consists of artificial synthetic waste water.

#### Table A2.2: Chronic toxicity for freshwater organisms.

| Species                         | Species         | А | Test | Test   | Purity | Test  | pН  | Т    | Hardness          | Exp. | Crit. | Endpoint                | Value  | Value   | Value  | Ri | Notes     | Ref                             |
|---------------------------------|-----------------|---|------|--------|--------|-------|-----|------|-------------------|------|-------|-------------------------|--------|---------|--------|----|-----------|---------------------------------|
|                                 | properties      |   | type | comp.  | 50/3   | water |     | F    | CaCO <sub>3</sub> | time |       |                         | F (1.7 | TPT-ion | Sn     |    |           |                                 |
|                                 |                 |   |      |        | [%]    |       |     | [°C] | [mg/L]            |      |       |                         | [µg/L] | [µg/L]  | [µg/L] |    |           | 4                               |
| Cyanobacteria                   |                 |   |      | 777 0  |        |       |     |      |                   | -    | 5010  |                         |        | 544     |        | _  | 43.53     |                                 |
| Anabaena cylindrica             |                 | N |      | TPT-CI |        | am    |     | 25   |                   | 5 m  | EC10  | photosynthesis          |        | 566     |        | 3  | 17,57     | Avery et al. (1991)             |
| Anabaena cylindrica             |                 | N |      | IPI-CI |        | am    |     | 25   |                   | 3 h  | EC10  | nitrogenase             |        | 55      |        | 3  | 17,57     | Avery et al. (1991)             |
| Anabaena flos-aquae             |                 | Ν | S    | TPT-Ac | 95     | am    |     | 24   |                   | 96 h | NOEC  | biomass                 | 1      |         |        | 3  | 3,5,14    | Ma et al. (2004)                |
| Anabaena flos-aquae             |                 | Ν | S    | TPT-Ac | 95     | am    |     | 24   |                   | 96 h | EC10  | biomass                 | 1.5    |         |        | 3  | 3,5,14    | Ma et al. (2004)                |
| Microcystis aeruginosa          |                 | Ν | S    | TPT-Ac | 95     | am    |     | 24   |                   | 96 h | NOEC  | biomass                 | 2      |         |        | 3  | 3,5,14    | Ma et al. (2004)                |
| Microcystis aeruginosa          |                 | Ν | S    | TPT-Ac | 95     | am    |     | 24   |                   | 96 h | EC10  | biomass                 | 5.3    |         |        | 3  | 3,5,14    | Ma et al. (2004)                |
| Microcystis flos-aquae          |                 | Ν | S    | TPT-Ac | 95     | am    |     | 24   |                   | 96 h | NOEC  | biomass                 | 0.5    |         |        | 3  | 3,5,14    | Ma et al. (2004)                |
| Microcystis flos-aquae          |                 | N | S    | TPT-Ac | 95     | am    |     | 24   |                   | 96 h | EC10  | biomass                 | 0.8    |         |        | 3  | 3,5,14    | Ma et al. (2004)                |
| Plectonema boryanum             |                 | Ν |      | TPT-CI |        | am    |     | 25   |                   | 5 m  | EC10  | photosynthesis          |        | 160     |        | 3  | 17,57     | Avery et al. (1991)             |
|                                 |                 |   |      |        |        |       |     |      |                   |      |       |                         |        |         |        |    |           |                                 |
| Algae                           |                 |   |      |        |        |       |     |      |                   |      |       |                         |        |         | -      | _  |           |                                 |
| Ankistrodesmus falcatus         | log-phase       | Ν |      | TPT-CI |        | am    | 8   | 20   |                   | 24 h | EC10  | primary prod.           |        |         | 2      | 3  | 3,15,17   | Wong et al. (1982)              |
| Ankistrodesmus falcatus         | log-phase       | Ν |      | TPT-CI |        | am    | 8   | 20   |                   | 8 d  | EC10  | growth                  |        |         | 1      | 3  | 3,17      | Wong et al. (1982)              |
| Chlorella pyrenoidosa           |                 | Ν | S    | TPT-Ac | 95     | am    |     | 24   |                   | 96 h | NOEC  | biomass                 | 5      |         |        | 3  | 3,5,14    | Ma et al. (2004)                |
| Chlorella pyrenoidosa           |                 | Ν | S    | TPT-Ac | 95     | am    |     | 24   |                   | 96 h | EC10  | biomass                 | 13     |         |        | 3  | 3,5,14    | Ma et al. (2004)                |
| Chlorella vulgaris              |                 | N | S    | TPT-CI | >98    |       |     | 22   |                   | 22 h | NOEC  | photosynthetic activity | <386   | <350    |        | 3  | 62        | Murkowski and Skorska<br>(2010) |
| Desmodesmus subspicatus         |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 48 h | EC10  | photosynth. act.        | 15.9   |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Desmodesmus subspicatus         |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 48 h | NOEC  | photosynth. act.        | 10     |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Desmodesmus subspicatus         |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 72 h | EC10  | photosynth. act.        | 2.6    |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Desmodesmus subspicatus         |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 72 h | NOEC  | photosynth. act.        | 3      |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Desmodesmus subspicatus         |                 | N | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 96 h | EC10  | photosynth. act.        | 3.2    |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Desmodesmus subspicatus         |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 96 h | NOEC  | photosynth. act.        | 3      |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Monoraphidium minutum           |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 48 h | EC10  | photosynth. act.        | 39.2   |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Monoraphidium minutum           |                 | N | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 48 h | NOEC  | photosynth. act.        | 10     |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Monoraphidium minutum           |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 72 h | EC10  | photosynth. act.        | 14.3   |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Monoraphidium minutum           |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 72 h | NOEC  | photosynth. act.        | 10     |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Monoraphidium minutum           |                 | N | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 96 h | EC10  | photosynth. act.        | 2.5    |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Monoraphidium minutum           |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 96 h | NOEC  | photosynth. act.        | 10     |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Pseudokirchneriella subcapitata |                 | N | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 48 h | EC10  | photosynth. act.        | 5.5    |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Pseudokirchneriella subcapitata |                 | Ν | S    | TPT-Ac | aq     | am    |     | 20±1 |                   | 48 h | NOEC  | photosynth. act.        | 3      |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Pseudokirchneriella subcapitata |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 72 h | EC10  | photosynth. act.        | 2.6    |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Pseudokirchneriella subcapitata |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 72 h | NOEC  | photosynth. act.        | 3      |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Pseudokirchneriella subcapitata |                 | Ν | S    | TPT-Ac | aq     | am    |     | 20±1 |                   | 96 h | EC10  | photosynth. act.        | 3.2    |         |        | 3  | 5,9       | Roessink et al. (2006a)         |
| Pseudokirchneriella subcapitata |                 | Ν | S    | TPT-Ac | ag     | am    |     | 20±1 |                   | 96 h | NOEC  | photosynth, act.        | 3      |         |        | 3  | 5.9       | Roessink et al. (2006a)         |
| Scenedesmus obliguus            | log-phase       | Y | S    | TPT-CI |        | am    | 1   | 25   | 50                | 96 h | EC10  | growth                  | 1.29   | 1       |        | 3  | 5,9,34,47 | Huang et al. (1993)             |
| Scenedesmus obliguus            | log-phase       | Y | S    | TPT-CI |        | am    |     | 25   | 50                | 48 h | EC10  | growth rate             | 2.5    | 2.3     |        | 2  | 5,9,47,55 | Huang et al. (1993)             |
| Scenedesmus obliguus            | log-phase       | Y | S    | TPT-CI | 1      | am    | 1   | 25   | 50                | 72 h | EC10  | growth rate             | 6.9    |         |        | 3  | 5,9,47,55 | Huang et al. (1993)             |
| Scenedesmus obliauus            | log-phase       | Y | S    | TPT-CI |        | am    | 1   | 25   | 50                | 96 h | EC10  | growth rate             | 7.0    |         |        | 3  | 5.9.47.55 | Huang et al. (1993)             |
| Scenedesmus quadricauda         | log-phase       | N |      | TPT-CI |        | am    | 8   | 20   |                   | 24 h | EC10  | primary prod.           |        |         | 20     | 3  | 3.15.17   | Wong et al. (1982)              |
| Scenedesmus quadricauda         | 7-d old culture | Ν | S    | TPT-CI |        | am    | 7.2 | 25   |                   | 48 h | EC10  | tot. chlorophyll        | 0.29   |         | 1      | 3  | 22,25     | Fargašová (1996)                |

| Species                 | Species         | А  | Test | Test   | Purity | Test  | pН   | Т    | Hardness          | Exp. | Crit. | Endpoint            | Value  | Value   | Value  | Ri | Notes              | Ref                              |
|-------------------------|-----------------|----|------|--------|--------|-------|------|------|-------------------|------|-------|---------------------|--------|---------|--------|----|--------------------|----------------------------------|
|                         | properties      |    | type | comp.  | 50/3   | water |      | F    | CaCO <sub>3</sub> | time |       |                     | 5 4 3  | TPT-ion | Sn     |    |                    |                                  |
|                         |                 |    | -    |        | [%]    |       |      |      | [mg/L]            | 10.1 | 5010  |                     | [µg/L] | [µg/L]  | [µg/L] |    | 00.05.06           | E X ((1996)                      |
| Scenedesmus quadricauda | 7-d old culture | N  | S    | TPT-Ac | _      | am    | 7.2  | 25   | -                 | 48 h | EC10  | tot. chlorophyll    | 0.005  | -       | -      | 3  | 22,25,26           | Fargasova (1996)                 |
| Scenedesmus quadricauda | 7-d old culture | N  | 5    | TPT-CI | _      | am    | 7.2  | 25   | -                 | 48 h | ECIO  | chlorophyll-a cont. | 0.05   | -       | -      | 3  | 22,25,26           | Fargasova (1996)                 |
| Scenedesmus quadricauda | 7-d old culture | N  | S    | TPT-Ac | _      | am    | 7.2  | 25   | -                 | 48 h | EC10  | chlorophyll-a cont. | 0.001  | -       | -      | 3  | 22,25,26           | Fargasova (1996)                 |
| Scenedesmus quadricauda | 7-d old culture | N  | S    | TPT-CI |        | am    | 7.2  | 25   |                   | 48 h | EC10  | chlorophyll-b cont. | 0.96   |         |        | 3  | 22,25              | Fargašová (1996)                 |
| Scenedesmus quadricauda | 7-d old culture | N  | S    | TPT-Ac |        | am    | 7.2  | 25   |                   | 48 h | EC10  | chlorophyll-b cont. | 0.01   |         |        | 3  | 22,25,26           | Fargašová (1996)                 |
| Scenedesmus quadricauda | 7-d old culture | Ν  | S    | TPT-CI |        | am    | 7.2  | 25   |                   | 48 h | EC10  | respiration         | 0.83   |         |        | 3  | 22,25              | Fargasova and Drtil<br>(1996)    |
| Scenedesmus quadricauda | 7-d old culture | Ν  | S    | TPT-Ac |        | am    | 7.2  | 25   |                   | 48 h | EC10  | respiration         | 0.57   |         |        | 3  | 22,25              | Fargašová and Drtil<br>(1996)    |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-CI |        | am    | 7.2  | 25   |                   | 12 d | EC10  | growth rate         | 0.01   |         |        | 3  | 22,25,26           | Fargašová (1997b)                |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-CI |        | am    | 7.2  | 25   |                   | 9 d  | NOEC  | chlorophyll-a cont. | 10     |         |        | 3  | 22,25              | Fargašová (1997b)                |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-CI |        | am    | 7.2  | 25   |                   | 9 d  | NOEC  | respiration         | 1      |         |        | 3  | 22,25              | Fargašová (1997b)                |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-Ac |        | am    | 7.2  | 25   |                   | 12 d | EC10  | growth rate         | 0.03   |         |        | 3  | 22,25,26           | Fargašová (1997b)                |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-Ac |        | am    | 7.2  | 25   |                   | 9 d  | EC10  | chlorophyll-a cont. | 10     |         |        | 3  | 22,25              | Fargašová (1997b)                |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-Ac |        | am    | 7.2  | 25   |                   | 9 d  | EC10  | respiration         | 1      |         |        | 3  | 22,25              | Fargašová (1997b)                |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-CI |        | am    | 7.2  | 25   |                   | 12 d | EC10  | growth              | 0.01   |         |        | 3  | 22,25,26           | Fargašová and Kizlink<br>(1996b) |
| Scenedesmus quadricauda | exp. growth     | Ν  | S    | TPT-Ac |        | am    | 7.2  | 25   |                   | 12 d | EC10  | growth              | 0.03   |         |        | 3  | 22,25,26           | Fargašová and Kizlink<br>(1996b) |
| Scenedesmus quadricauda |                 | N  | S    | TPT-Ac | ag     | am    |      | 20±1 |                   | 48 h | EC10  | photosynth. act.    | 54.6   |         |        | 3  | 5,9                | Roessink et al. (2006a)          |
| Scenedesmus quadricauda |                 | N  | S    | TPT-Ac | ag     | am    |      | 20±1 |                   | 48 h | NOEC  | photosynth. act.    | 30     |         |        | 3  | 5,9                | Roessink et al. (2006a)          |
| Scenedesmus quadricauda |                 | N  | S    | TPT-Ac | ag     | am    |      | 20±1 |                   | 72 h | EC10  | photosynth. act.    | 7.2    |         |        | 3  | 5,9                | Roessink et al. (2006a)          |
| Scenedesmus quadricauda |                 | N  | S    | TPT-Ac | ag     | am    |      | 20±1 |                   | 72 h | NOEC  | photosynth. act.    | 3      |         |        | 3  | 5,9                | Roessink et al. (2006a)          |
| Scenedesmus quadricauda |                 | N  | S    | TPT-Ac | ag     | am    |      | 20±1 |                   | 96 h | EC10  | photosynth. act.    | 17     |         |        | 3  | 5,9                | Roessink et al. (2006a)          |
| Scenedesmus quadricauda |                 | N  | S    | TPT-Ac | ag     | am    |      | 20±1 |                   | 96 h | NOEC  | photosynth. act.    | 3      |         |        | 3  | 5,9                | Roessink et al. (2006a)          |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-CI |        | am    |      | 22   |                   | 12 d | NOEC  | growth rate         | 4      |         |        | 3  | 1,36,58            | Xu et al. (2011)                 |
| Scenedesmus quadricauda | exp. growth     | Ν  | S    | TPT-CI |        | am    |      | 22   |                   | 12 d | NOEC  | fluorescence        | 2      |         |        | 3  | 1,36,58            | Xu et al. (2011)                 |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-CI |        | am    |      | 22   |                   | 8 d  | EC10  | growth rate         | 1.9    |         |        | 3  | 1,17,36            | Xu et al. (2011)                 |
| Scenedesmus quadricauda | exp. growth     | N  | S    | TPT-CI |        | am    |      | 22   |                   | 12 d | EC10  | growth rate         | 2.4    |         |        | 3  | 1,17,36,58         | Xu et al. (2011)                 |
| Scenedesmus subspicatus |                 | N  | S    | TPT-Ac |        |       |      |      |                   | 72 h | NOEC  | biom., cell deform. | 10     |         |        | 3  | 22,31              | EC (1996a, 1996b)                |
| Scenedesmus subspicatus |                 | Ν  | S    | TPT-Ac | 50     |       |      |      |                   | 72 h | NOEC  | growth rate, biom.  | 10     |         |        | 3  | 18                 | EC (1996a, 1996b)                |
| Scenedesmus vacuolatus  | onset log phase | Y  | S    | TPT-Cl | 98     | am    | 6.9  | 28   |                   | 24 h | NOEC  | algal reproduction  | 45.5   | 44.5    |        | 2  | 7,12               | Walter et al. (2002)             |
| Macrophyta              |                 |    |      |        |        |       |      |      |                   |      |       |                     |        |         |        |    |                    |                                  |
| Ceratophyllum demersum  | appr. 2 g ww    | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2 |                   | 2 d  | EC10  | photosynth. act.    | 62.2   |         |        | 3  | 5,9,51,52,53,54,60 | Roessink et al. (2006a)          |
| Ceratophyllum demersum  | appr. 2 g ww    | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2 |                   | 7 d  | EC10  | photosynth. act.    | 1.6    |         |        | 3  | 5,9,51,52,53,54,60 | Roessink et al. (2006a)          |
| Ceratophyllum demersum  | appr. 2 g ww    | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2 |                   | 21 d | EC10  | photosynth. act.    | 48.1   |         |        | 3  | 5,9,51,52,53,54,60 | Roessink et al. (2006a)          |
| Ceratophyllum demersum  | appr. 2 g ww    | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2 |                   | 21 d | EC10  | relative growth     | 0.4    |         |        | 3  | 5,9,51,52,53,54,60 | Roessink et al. (2006a)          |
| Elodea canadensis       | appr. 2 g ww    | Y? | S    | TPT-Ac | ag     | nw    | 7-9  | 20±2 |                   | 2 d  | EC10  | photosynth. act.    | 5.1    |         |        | 4  | 5,9,51,52,53,60    | Roessink et al. (2006a)          |
| Elodea canadensis       | appr. 2 g ww    | Y? | S    | TPT-Ac | ag     | nw    | 7-9  | 20±2 |                   | 7 d  | EC10  | photosynth. act.    | 2.1    |         |        | 4  | 5,9,51,52,53,60    | Roessink et al. (2006a)          |
| Elodea canadensis       | appr. 2 g ww    | Y? | S    | TPT-Ac | ag     | nw    | 7-9  | 20±2 |                   | 21 d | EC10  | photosynth. act.    | 1.8    |         |        | 4  | 5,9,51,52,53,60    | Roessink et al. (2006a)          |
| Elodea canadensis       | appr. 2 g ww    | Y? | S    | TPT-Ac | ag     | nw    | 7-9  | 20±2 |                   | 21 d | EC10  | relative growth     | 1.5    |         |        | 4  | 5,9,51,52,53,60    | Roessink et al. (2006a)          |
| Elodea nuttallii        | appr. 2 g ww    | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2 |                   | 2 d  | EC10  | photosynth. act.    | 6.1    |         |        | 3  | 5,9,51,52,53,54,60 | Roessink et al. (2006a)          |
| Elodea nuttallii        | appr. 2 g ww    | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2 |                   | 7 d  | EC10  | photosynth. act.    | 34.8   |         |        | 3  | 5,9,51,52,53,54,60 | Roessink et al. (2006a)          |

| Species               | Species             | A  | Test | Test   | Purity | Test  | pН   | Т     | Hardness          | Exp. | Crit. | Endpoint           | Value   | Value   | Value  | Ri | Notes                | Ref                     |
|-----------------------|---------------------|----|------|--------|--------|-------|------|-------|-------------------|------|-------|--------------------|---------|---------|--------|----|----------------------|-------------------------|
|                       | properties          |    | type | comp.  |        | water |      |       | CaCO <sub>3</sub> | time |       |                    |         | TPT-ion | Sn     |    |                      |                         |
|                       |                     |    |      |        | [%]    |       |      | [°C]  | [mg/L]            |      |       |                    | [µg/L]  | [µg/L]  | [µg/L] |    |                      |                         |
| Elodea nuttallii      | appr. 2 g ww        | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2  |                   | 21 d | EC10  | photosynth. act.   | 79.9    |         |        | 3  | 5,9,51,52,53,54,60   | Roessink et al. (2006a) |
| Elodea nuttallii      | appr. 2 g ww        | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2  |                   | 21 d | EC10  | relative growth    | 1.8     |         |        | 3  | 5,9,51,52,53,54,60   | Roessink et al. (2006a) |
| Lemna minor           | from the field      | Y  | R    | TPT    |        | am    |      | 25    | 300               | 8 d  | NOEC  | chlorophyll cont.  |         | 5.8     | 2      | 2  | 20,21,22,            | Song and Huang (2001)   |
| Lemna minor           | from the field      | Y  | R    | TPT    |        | am    |      | 25    | 300               | 8 d  | NOEC  | growth rate        |         |         | <2     | 4  | 20,21,22,            | Song and Huang (2001)   |
| Lemna minor           | from the field      | Ν  | R    | TPT-?  |        | am    |      | 25    | 300               | 8 d  | EC10  | growth rate        |         | 0.09    | 0.03   | 2  | 21,22,20,17,43,44    | Song and Huang (2001)   |
| Lemna minor           | from the field      | N  | R    | TPT-?  |        | am    |      | 25    | 300               | 8 d  | EC10  | growth rate        |         | 2.6     | 0.9    | 2  | 21,22,20,17,43,45    | Song and Huang (2001)   |
| Lemna minor           | from the field      | Ν  | R    | TPT-?  |        | am    |      | 25    | 300               | 8 d  | EC10  | growth rate        |         | 0.9     | 0.3    | 2  | 21,22,20,17,43,46    | Song and Huang (2001)   |
| Lemna minor           | from the field      | Ν  | R    | TPT-?  |        | am    |      | 25    | 300               | 8 d  | EC10  | chlorophyll cont.  |         |         | 2.9    | 3  | 21,22,20,25,43,45,56 | Song and Huang (2001)   |
| Lemna minor           | appr. 2 g ww        | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2  |                   | 2 d  | EC10  | photosynth. act.   | 910     |         |        | 3  | 5,9,51,52,53,54,60   | Roessink et al. (2006a) |
| Lemna minor           | appr. 2 g ww        | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2  |                   | 7 d  | EC10  | photosynth. act.   | 104.8   |         |        | 3  | 5,9,51,52,53,54,60   | Roessink et al. (2006a) |
| Lemna minor           | appr. 2 g ww        | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2  |                   | 21 d | EC10  | photosynth. act.   | 96.7    |         |        | 3  | 5,9,51,52,53,54,60   | Roessink et al. (2006a) |
| Lemna minor           | appr. 2 g ww        | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2  |                   | 21 d | EC10  | relative growth    | 180     |         |        | 3  | 5,9,51,52,53,54,60   | Roessink et al. (2006a) |
| Lemna polyrhiza       | from the field      | Y  | R    | TPT-?  |        | am    |      | 25    | 300               | 8 d  | EC10  | growth rate        |         | 2.2     | 0.77   | 2  | 21,22,42,17,43,44    | Song and Huang (2005)   |
| Lemna polyrhiza       | from the field      | Y  | R    | TPT-?  |        | am    |      | 25    | 300               | 8 d  | EC10  | growth rate        |         | 6.4     | 2.2    | 2  | 21,22,42,17,43,45    | Song and Huang (2001)   |
| Lemna polyrhiza       | from the field      | Y  | R    | TPT-?  |        | am    |      | 25    | 300               | 8 d  | EC10  | growth rate        |         | 2.2     | 0.75   | 2  | 21,22,42,17,43,46    | Song and Huang (2001)   |
| Lemna polyrhiza       | from the field      | Y  | R    | TPT-?  |        | am    |      | 25    | 300               | 8 d  | EC10  | chlorophyll cont.  |         | 4.6     | 1.6    | 2  | 21,22,42,25,43,45    | Song and Huang (2001)   |
| Lemna trisulca        | appr. 2 g ww        | Y? | S    | TPT-Ac | ag     | nw    | 7-9  | 20±2  |                   | 2 d  | EC10  | photosynth. act.   | 21.9    |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Lemna trisulca        | appr. 2 g ww        | Y? | S    | TPT-Ac | ag     | nw    | 7-9  | 20±2  |                   | 7 d  | EC10  | photosynth. act.   | 9.9     |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Lemna trisulca        | appr. 2 g ww        | Y? | S    | TPT-Ac | aq     | nw    | 7-9  | 20±2  |                   | 21 d | EC10  | photosynth. act.   | 11.2    |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Lemna trisulca        | appr. 2 g ww        | Y? | S    | TPT-Ac | ag     | nw    | 7-9  | 20±2  |                   | 21 d | EC10  | relative growth    | 1.8     |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Myriophyllum spicatum | appr. 2 g ww        | Y  | S    | TPT-Ac | ag     | nw    | 7-10 | 20±2  |                   | 21 d | EC10  | relative growth    | 32.3    |         |        | 3  | 5,9,51,52,53,54,60   | Roessink et al. (2006a) |
| Potamogeton crispus   | appr. 2 g ww        | Y? | S    | TPT-Ac | aq     | nw    | 7-10 | 20±2  |                   | 2 d  | EC10  | photosynth. act.   | 9       |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Potamogeton crispus   | appr. 2 g ww        | Y? | S    | TPT-Ac | aq     | nw    | 7-10 | 20±2  |                   | 7 d  | EC10  | photosynth. act.   | 5.6     |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Potamogeton crispus   | appr. 2 g ww        | Y? | S    | TPT-Ac | aq     | nw    | 7-10 | 20±2  |                   | 21 d | EC10  | relative growth    | 23.8    |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Spirodela polyrhiza   | appr. 2 g ww        | Y? | S    | TPT-Ac | aq     | nw    | 6-9  | 20±2  |                   | 2 d  | EC10  | photosynth. act.   | 386.2   |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Spirodela polvrhiza   | appr. 2 g ww        | Y? | S    | TPT-Ac | aq     | nw    | 6-9  | 20±2  |                   | 7 d  | EC10  | photosynth, act.   | 5.6     |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Spirodela polvrhiza   | appr. 2 g ww        | Y? | S    | TPT-Ac | aq     | nw    | 6-9  | 20±2  |                   | 21 d | EC10  | photosynth. act.   | 28.9    |         |        | 4  | 5,9,51,52,53,60      | Roessink et al. (2006a) |
| Spirodela polyrhiza   | appr. 2 g ww        | Y? | S    | TPT-Ac | ag     | nw    | 6-9  | 20±2  |                   | 21 d | EC10  | relative growth    | 0.1     |         |        | 4  | 5.9.51.52.53.60      | Roessink et al. (2006a) |
|                       |                     |    | -    |        | ÷3     |       |      |       |                   |      |       |                    |         |         |        |    |                      | ()                      |
| Mollusca              |                     |    |      |        |        |       |      |       |                   |      |       |                    |         |         |        |    |                      |                         |
|                       |                     |    |      | TPT-OH |        |       |      |       |                   |      |       |                    |         |         |        |    |                      | Oliveira-Filho et al.   |
| Biomphalaria glabrata | eggs <15 h          | N  | s    | _      | 97     |       |      | 25    |                   | 96 h | NOEC  | hatching           | 0.1     |         |        | 3  | 1,9                  | (2010)                  |
| Indoplanorbis exustus | freshly laid viable | Ν  | S    | TPT-CI | 60     | tw    |      | 25-27 |                   | 24 h | LC50  | mortality          | 0.00062 |         |        | 3  | 10,11                | Goel and Prasad (1978)  |
|                       | eggs                |    |      | form.  |        |       |      |       |                   |      |       |                    |         |         |        |    | -                    | . ,                     |
| Indoplanorbis exustus | freshly laid viable | Ν  | S    | TPT-CI | 60     | tw    |      | 25-27 |                   | 24 h | LC50  | mortality          | 0.00094 |         |        | 3  | 10,11,25             | Goel and Prasad (1978)  |
|                       | eggs                |    |      | form.  |        |       |      |       |                   |      |       | -                  |         |         |        |    |                      | . ,                     |
| Indoplanorbis exustus | freshly laid viable | Ν  | S    | TPT-CI | 60     | tw    |      | 25-27 |                   | 24 h | LC10  | mortality          | 0.00039 |         |        | 3  | 10,11,25             | Goel and Prasad (1978)  |
|                       | eggs                |    |      | form.  |        |       |      |       |                   |      |       |                    |         |         |        |    |                      |                         |
| Indoplanorbis exustus | freshly laid viable | N  | S    | TPT-CI | 60     | tw    |      | 25-27 |                   | 24 h | EC10  | hatching time      | 0.00005 |         |        | 3  | 10,11,25,26          | Goel and Prasad (1978)  |
|                       | eggs                |    |      | form.  |        |       |      |       |                   |      |       |                    |         |         |        |    |                      |                         |
| Lymnea stagnalis      |                     | Ν  | S    | TPT-OH |        |       |      | 22    |                   | 5 w  | NOEC  | growth, egg prod., | <2      |         |        | 3  | 22                   | EC (1996a, 1996b)       |
|                       |                     |    |      |        |        |       |      |       |                   |      |       | hatching success   |         |         |        |    |                      |                         |
| Marisa cornuarietis   | sex. mature $P$ ;   | Ν  | R    | TPT-CI | rg     | rw    | 7.5  | 24    |                   | 50 d | NOEC  | imposex            |         | 1       | 0.25   | 3  | 5,7,9,27             | Janer et al. (2006)     |
|                       | >18 mo              |    |      |        |        |       |      |       |                   | 1    |       |                    |         |         |        |    |                      |                         |

| Species                  | Species<br>properties    | A | Test<br>type | Test<br>comp. | Purity<br>[%] | Test<br>water | pН  | т<br>[°С] | Hardness<br>CaCO <sub>3</sub><br>[mg/L] | Exp.<br>time | Crit. | Endpoint                             | Value<br>[µq/L] | Value<br>TPT-ion<br>[µg/L] | Value<br>Sn<br>[µg/L] | Ri | Notes      | Ref                               |
|--------------------------|--------------------------|---|--------------|---------------|---------------|---------------|-----|-----------|-----------------------------------------|--------------|-------|--------------------------------------|-----------------|----------------------------|-----------------------|----|------------|-----------------------------------|
| Marisa cornuarietis      | sex. mature ♀;<br>>18 mo | N | R            | TPT-CI        | rg            | rw            | 7.5 | 24        |                                         | 150 d        | NOEC  | imposex                              |                 |                            | 0.125                 | 3  | 5,7,9,27   | Janer et al. (2006)               |
| Marisa cornuarietis      |                          | Y | R            | TPT           |               | am            |     |           |                                         | 5 mo         | NOEC  | egg production                       |                 | < 0.003                    |                       | 3  | 5,9,48     | Albanis et al. (2006)             |
| Marisa cornuarietis      |                          | Y | R            | TPT           |               | am            |     |           |                                         | 5 mo         | EC10  | egg production                       |                 | 0.002                      |                       | 3  | 5,9,48     | Albanis et al. (2006)             |
| Marisa cornuarietis      |                          | Y | R            | TPT           |               | am            |     |           |                                         | 5 mo         | NOEC  | virilization                         |                 | 15.7                       |                       | 3  | 5,9,48     | Albanis et al. (2006)             |
| Marisa cornuarietis      |                          | Y | R            | TPT           |               | am            |     |           |                                         | 5 mo         | EC10  | virilization                         |                 | 0.02                       |                       | 3  | 5,9,48     | Albanis et al. (2006)             |
| Marisa cornuarietis      |                          |   |              | TPT           |               |               |     |           |                                         |              | EC10  | imposex                              |                 |                            | 0.0159                | 4  |            | Oehlmann et al. (2007)            |
| Marisa cornuarietis      |                          |   |              | TPT           |               |               |     |           |                                         |              | EC10  | egg production                       |                 |                            | 0.0006.25             | 4  |            | Oehlmann et al. (2007)            |
| Marisa cornuarietis      | adult                    | Y | R            | TPT-CI        |               | tw            |     | 22        |                                         | 4 mo         | NOEC  | imposex, fecundity                   |                 | <0.126                     | <0.0434               | 2  | 4,5,9      | Schulte-Oehlmann et al. (2000)    |
| Marisa cornuarietis      | adult                    | Y | R            | TPT-CI        |               | tw            |     | 22        |                                         | 4 mo         | EC10  | imposex (VDSI)                       |                 | 0.0357                     | 0.0123                | 2  | 4,5,9      | Schulte-Oehlmann et al.<br>(2000) |
| Marisa cornuarietis      | adult                    | Y | R            | TPT-CI        |               | tw            |     | 22        |                                         | 4 mo         | EC50  | imposex (VDSI)                       |                 | 0.583                      | 0.201                 | 2  | 4,5,9      | Schulte-Oehlmann et al.<br>(2000) |
| Marisa cornuarietis      | adult                    | Y | R            | TPT-CI        |               | tw            |     | 22        |                                         | 4 mo         | EC10  | imposex (fem.penis<br>sheath length) |                 | 0.0432                     | 0.0149                | 2  | 4,5,9      | Schulte-Oehlmann et al.<br>(2000) |
| Marisa cornuarietis      | adult                    | Y | R            | TPT-CI        |               | tw            |     | 22        |                                         | 4 mo         | EC50  | imposex (fem.penis<br>sheath length) |                 | 0.632                      | 0.218                 | 2  | 4,5,9      | Schulte-Oehlmann et al.<br>(2000) |
| Marisa cornuarietis      | adult                    | Y | R            | TPT-CI        |               | tw            |     | 22        |                                         | 4 mo         | EC10  | spawning mass prod.                  |                 | 0.0162                     | 0.00559               | 2  | 4,5,9,26   | Schulte-Oehlmann et al.<br>(2000) |
| Marisa cornuarietis      | adult                    | Y | R            | TPT-CI        |               | tw            |     | 22        |                                         | 4 mo         | EC50  | spawning mass prod.                  |                 | 0.133                      | 0.0458                | 2  | 4,5,9      | Schulte-Oehlmann et al.<br>(2000) |
| Marisa cornuarietis      | adult                    | Y | R            | TPT-CI        |               | tw            |     | 22        |                                         | 4 mo         | EC10  | egg production                       |                 | 0.0167                     | 0.00577               | 2  | 4,5,9,26   | Schulte-Oehlmann et al.<br>(2000) |
| Marisa cornuarietis      | adult                    | Y | R            | TPT-CI        |               | tw            |     | 22        |                                         | 4 mo         | EC50  | egg production                       |                 | 0.122                      | 0.042                 | 2  | 4,5,9      | Schulte-Oehlmann et al.<br>(2000) |
| Potamopyrgus antipodarum |                          | Ν | S            | TPT           |               | am            |     |           |                                         | 56 d         | NOEC  | mortality                            |                 | 0.25                       |                       | 3  | 5,9,49     | Albanis et al. (2006)             |
| Potamopyrgus antipodarum |                          | Ν | S            | TPT           |               | am            |     |           |                                         | 56 d         | NOEC  | embryo develop.                      |                 | 0.03                       |                       | 3  | 5,9,49     | Albanis et al. (2006)             |
| Potamopyrgus antipodarum |                          | Ν | S            | TPT           |               | am            |     |           |                                         | 56 d         | EC10  | number of embryos                    |                 | 0.02                       |                       | 3  | 5,9,49     | Albanis et al. (2006)             |
| Potamopyrgus antipodarum |                          | Ν | S            | TPT           |               | am            |     |           |                                         | 56 d         | EC10  | shelled embr./female                 |                 | 0.06                       |                       | 3  | 5,9,49     | Albanis et al. (2006)             |
| Potamopyrgus antipodarum |                          | N | S            | ТРТ           |               | am            |     |           |                                         | 56 d         | EC10  | unshelled<br>embryos/female          |                 | 0.03                       |                       | 3  | 5,9,49     | Albanis et al. (2006)             |
| Crustacea                |                          |   |              |               |               |               |     |           |                                         |              |       |                                      |                 |                            |                       |    |            |                                   |
|                          |                          |   | R            | TPT-CI        |               | am            |     | 24        | -                                       | 10 d         | 1.050 | mortality                            | 10              |                            |                       | 4  |            | Visser and Linders (1992)         |
| Cyclops vernalis         | caught in field; 1st     | N | S            | TPT-OH        | 95            | nw            |     | 23        |                                         | 21 d         | NOEC  | reproduction                         | ≥3              |                            |                       | 3  | 3,28       | EC (1996a, 1996b)                 |
| Daphnia magna            | <48 h                    | N |              | TPT-OH        |               |               |     | 18±1      |                                         | 4 w          | NOEC  | mortality                            | 0.1             |                            |                       | 3  | 1,36       | EC (1996a, 1996b)                 |
| Daphnia magna            | <24 h                    | Y | F            | TPT-OH        |               |               | 8   | 21        | 180                                     | 21 d         | NOEC  | erratic swimming                     | < 0.20          | < 0.19                     |                       | 2  | 4,5,32,37  | EC (1996a, 1996b)                 |
| Daphnia magna            | <24 h                    | Y | F            | TPT-OH        |               |               | 8   | 21        | 180                                     | 21 d         | LC100 | survival                             | 1.5             | 1.4                        |                       | 2  | 4,5,32,37  | EC (1996a, 1996b)                 |
| Daphnia magna            | <24 h                    | Y | F            | TPT-OH        |               |               | 8   | 21        | 180                                     | 21 d         | NOEC  | survival, reprod.                    | 0.77            | 0.73                       |                       | 2  | 4,5,32,37  | EC (1996a, 1996b)                 |
| Daphnia magna            | <24 h                    | Y | S            | TPT-Ac        |               |               | 8   | 20±1      | 245                                     | 21 d         | LC50  | parental survival                    | 3.98            | 3.41                       | 1                     | 2  | 5,38,39,41 | EC (1996a, 1996b)                 |
| Daphnia magna            | <24 h                    | Y | S            | TPT-Ac        |               |               | 8   | 20±1      | 245                                     | 21 d         | NOEC  | mortality                            | 1               | 0.86                       |                       | 2  | 5,38,39,41 | EC (1996a, 1996b)                 |
| Daphnia magna            | <24 h                    | Y | S            | TPT-Ac        |               |               | 8   | 20±1      | 245                                     | 21 d         | NOEC  | reproduction                         | 3.2             | 2.7                        |                       | 2  | 5,38,39,41 | EC (1996a, 1996b)                 |
| Daphnia magna            | <24 h                    | Y | S            | TPT-OH        | 50            |               |     |           |                                         | 21 d         | LC50  | mortality                            | 4.7             | 4.5                        | 1                     | 2  | 31,40      | EC (1996a, 1996b)                 |

| Species                        | Species<br>properties      | A | Test<br>type | Test<br>comp. | Purity | Test<br>water | pН  | T    | Hardness<br>CaCO <sub>3</sub> | Exp.<br>time | Crit. | Endpoint                          | Value   | Value<br>TPT-ion | Value<br>Sn<br>[ug/L] | Ri | Notes            | Ref                            |
|--------------------------------|----------------------------|---|--------------|---------------|--------|---------------|-----|------|-------------------------------|--------------|-------|-----------------------------------|---------|------------------|-----------------------|----|------------------|--------------------------------|
| Danhnia magna                  | < 24 h                     | v | S            | TPT-OH        | 50     |               |     |      | [IIIg/L]                      | 21 d         | NOEC  | mortality reprod                  | 2 3     | 2 2              | [µ9/∟]                | 2  | 31.40            | EC (1996a, 1996b)              |
| Daphnia magna<br>Daphnia magna | N24 II                     |   | 5            | TPT-Ac        | 50     |               |     |      |                               | 21 d         | FC50  | mortanty, reprod.                 | 0.8     | 2.2              |                       | 4  | 30               | Roessink et al. (2006a)        |
| Hvalella azteca                | 3-5 days                   |   | R            | TPT           |        |               |     |      |                               | 3 m          | NOFC  | mortality                         | 0.0     | 03               |                       | 3  | 30               | Albanis et al. (2006)          |
| Hyalella azteca                | 3-5 days                   |   | R            | TPT           |        |               |     |      |                               | 3 m          | NOEC  | time to sex mat                   |         | <0.24            | 1                     | 3  |                  | Albanis et al. (2006)          |
|                                | 5 5 44 45                  |   | IX.          |               |        |               |     |      |                               | 5 111        | NOLC  |                                   |         | <b>N0.2</b> 4    | 1                     | 5  |                  | Albanis et al. (2000)          |
| Insecta                        |                            |   |              |               |        |               |     |      |                               |              |       |                                   |         |                  |                       |    |                  |                                |
| Chironomus riparius            | 1st instar                 | Y | S            | TPT-OH        |        |               |     |      |                               | 28 d         | EC50  | emergence                         | 8.5     |                  |                       | 2  | 1.4              | EC (2001)                      |
| Chironomus riparius            | 1st instar                 | Y | S            | TPT-OH        |        |               |     |      |                               | 28 d         | NOEC  | emergence                         | 6       |                  |                       | 2  | 0.83             | EC (2001)                      |
| Chironomus riparius            | 1st instar                 | Y | S            | TPT-OH        |        |               |     |      |                               | 28 d         | NOEC  | development                       | 3.5     |                  |                       | 2  | 0.52             | EC (2001)                      |
|                                |                            |   |              |               |        |               |     |      |                               |              |       | ·                                 |         |                  |                       |    |                  |                                |
| Pisces                         |                            |   |              |               |        |               |     |      |                               |              |       |                                   |         |                  |                       |    |                  |                                |
| Danio Rerio                    | eggs                       | Ν | R            | TPT-Ac        | 98     | nw            | 8   | 28   | 379                           | 96 h         | NOEC  | hatching time                     | <0.5    |                  |                       | 3  | 3,5              | Strmac and Braunbeck (1999)    |
| Danio Rerio                    | eggs                       | Ν | R            | TPT-Ac        | 98     | nw            | 8   | 28   | 379                           | 96 h         | NOEC  | mortality                         | 5       |                  |                       | 3  | 3,5              | Strmac and Braunbeck (1999)    |
| Danio Rerio                    | eggs                       | N | R            | TPT-Ac        | 98     | nw            | 8   | 28   | 379                           | 96 h         | LC50  | mortality                         | 40      |                  |                       | 3  | 3,5              | Strmac and Braunbeck<br>(1999) |
| Danio Rerio                    | eggs                       | N | R            | TPT-Ac        | 98     | nw            | 8   | 28   | 379                           | 96 h         | NOEC  | development<br>(malformations)    | 5       |                  |                       | 3  | 3,5              | Strmac and Braunbeck<br>(1999) |
| Oncorhynchus mykiss            | fry                        | N | F            | TPT-CI        | ag     | tw            | 7   | 14±2 | 100                           | 110 d        | NOEC  | mortality                         | 0.046   | 0.042            |                       | 2  | 3,5,50           | De Vries et al. (1991)         |
| Oncorhynchus mykiss            | fry                        | N | F            | TPT-CI        | ag     | tw            | 7   | 14±2 | 100                           | 110 d        | EC50  | mortality                         | 0.82    | 0.74             |                       | 2  | 3,5,17,50        | De Vries et al. (1991)         |
| Oncorhynchus mykiss            | fry                        | N | F            | TPT-CI        | ag     | tw            | 7   | 14±2 | 100                           | 110 d        | EC10  | mortality                         | 0.2     | 0.18             |                       | 2  | 3,5,17,50        | De Vries et al. (1991)         |
| Oncorhynchus mykiss            | fry                        | N | F            | TPT-CI        | ag     | tw            | 7   | 14±2 | 100                           | 110 d        | NOEC  | body weight                       | ≥1.2    | ≥1.0             |                       | 2  | 3,5,50           | De Vries et al. (1991)         |
| Oryzias latipes                | 5 months; 650<br>mg; 32 mm | N | F            | TPT-CI        |        | nw            | 7.9 | 25±1 | 81                            | 5 w          | NOEC  | reproduction                      | 0.0016  | 0.0015           |                       | 2  | 5,13,18,59       | Zhang et al. (2008)            |
| Oryzias latipes                | 5 months; 650<br>mg; 32 mm | Ν | F            | TPT-CI        |        | nw            | 7.9 | 25   | 81                            | 5 w          | NOEC  | fertilization success             | >1      | >0.9             |                       | 2  | 5,13,18,59       | Zhang et al. (2008)            |
| Oryzias latipes                | 5 months; 650<br>mg; 32 mm | Ν | F            | TPT-CI        |        | nw            | 7.9 | 25   | 81                            | 5 w          | NOEC  | larval survival                   | <0.0016 | <0.0015          |                       | 2  | 5,13,18,59       | Zhang et al. (2008)            |
| Oryzias latipes                | 5 months; 650<br>mg; 32 mm | N | F            | TPT-CI        |        | nw            | 7.9 | 25   | 81                            | 5 w          | EC50  | larval survival                   | 0.0078  | 0.0071           |                       | 2  | 5,13,17,18,59    | Zhang et al. (2008)            |
| Oryzias latipes                | 5 months; 650<br>mg; 32 mm | N | F            | TPT-CI        |        | nw            | 7.9 | 25   | 81                            | 5 w          | EC10  | larval survival                   | 0.00047 | 0.00043          |                       | 2  | 5,13,17,18,59,61 | Zhang et al. (2008)            |
| Oryzias latipes                | 5 months; 650<br>mg; 32 mm | N | F            | TPT-CI        |        | nw            | 7.9 | 25   | 81                            | 5 w          | NOEC  | larval ocular develop.            | 0.008   | 0.007            |                       | 2  | 5,13,18,59       | Zhang et al. (2008)            |
| Oryzias latipes                | 5 months; 650<br>mg; 32 mm | N | F            | TPT-CI        |        | nw            | 7.9 | 25   | 81                            | 5 w          | NOEC  | larval morphological deformations | 0.04    | 0.04             |                       | 2  | 5,13,18,59       | Zhang et al. (2008)            |
| Phoxinus phoxinus              | 24h fert. embr.            | Y | R            | TPT-CI        | >97    | nw            | 8   | 16   |                               | 9 d          | NOEC  | mortality, morph.<br>deform.      |         | 0.2              |                       | 2  | 3,4,5            | Fent and Meier (1994)          |
| Phoxinus phoxinus              | 24h fert. embr.            | Y | R            | TPT-CI        | >97    | nw            | 8   | 16   | 1                             | 9 d          | NOEC  | hatching success                  |         | 5.1              | 1                     | 2  | 3,4,5            | Fent and Meier (1994)          |
| Phoxinus phoxinus              | 24h fert. embr.            | Y | R            | TPT-CI        | >97    | nw            | 8   | 21   |                               | 5 d          | NOEC  | hatching success                  |         | ≥14.2            |                       | 2  | 3,4,5            | Fent and Meier (1994)          |
| Phoxinus phoxinus              | 24h fert. embr.            | Y | R            | TPT-CI        | >97    | nw            | 8   | 21   |                               | 5 d          | NOEC  | mortality, morph.<br>deform.      |         | <6.6             |                       | 2  | 3,4,5            | Fent and Meier (1994)          |
| Phoxinus phoxinus              | newly hatched<br>larvae    | Y | R            | TPT-CI        | >97    | nw            | 8   | 16   |                               | 5 d          | NOEC  | mortality, morph.<br>deformities  |         | <1.8             |                       | 2  | 3,4,5            | Fent and Meier (1994)          |

| Species                 | Species<br>properties | A | Test<br>type | Test<br>comp. | Purity | Test<br>water | pН  | T     | Hardness<br>CaCO <sub>3</sub> | Exp.<br>time     | Crit. | Endpoint                           | Value  | Value<br>TPT-ion | Value<br>Sn<br>[ug/L] | Ri | Notes          | Ref                      |
|-------------------------|-----------------------|---|--------------|---------------|--------|---------------|-----|-------|-------------------------------|------------------|-------|------------------------------------|--------|------------------|-----------------------|----|----------------|--------------------------|
| Pimenhales prometas     | <18 h embryos         | v | F2           | TPT-OH        | 07.3   |               | 8   | 25    | 21                            | 30 d             | NOEC  | hatchability growth                | 0.48   | 0.46             | [µg/L]                | 2  | 4 5 32         | EC (1996a, 1996b)        |
| Fillephales prometas    |                       |   |              | 111-011       | 57.5   |               | 0   | 23    | 51                            | post-<br>hatch   | NOLC  | natchability, growth               | 0.40   | 0.40             |                       | 2  | 4,3,32         |                          |
| Pimephales promelas     | <48 h embryos         | Y | F?           | TPT-OH        | 97.3   |               | 8   | 25    | 31                            | 30 d             | NOEC  | survival                           | 1.1    | 1                |                       | 2  | 4,5,32         | EC (1996a, 1996b)        |
|                         |                       |   |              |               |        |               |     |       |                               | post-<br>hatch   |       |                                    |        |                  |                       |    |                |                          |
| Pimephales promelas     | <24 h                 | Y | F?           | TPT-OH        | 97.3   |               | 7-8 | 24-25 | 42                            | 30 d             | NOEC  | mortality                          | 0.15   |                  |                       | 4* | 33             | EC (1996a, 1996b)        |
| Pimephales promelas     | <24 h                 | Y | F?           | TPT-OH        | 97.3   |               | 7-8 | 24-25 | 42                            | 30 d             | LC50  | mortality                          | 1.5    |                  |                       | 4* | 33             | EC (1996a, 1996b)        |
| Pimephales promelas     | <24 h                 | Y | F?           | TPT-OH        | 97.3   |               | 7-8 | 24-25 | 42                            | 30 d             | EC50  | growth                             | 0.23   |                  |                       | 4  | 33             | EC (1996a, 1996b)        |
| Pimephales promelas     | newly fert. eggs      | Y | F            | TPT-OH        | 97-99  |               |     | 14-15 |                               | 183 d            | NOEC  | parental length and wet<br>weight  | 0.161  | 0.154            |                       | 2  | 3,4,5,35       | EC (1996a, 1996b)        |
| Pimephales promelas     | newly fert. eggs      | Y | F            | TPT-OH        | 97-99  |               |     | 14-15 |                               | 183 d            | NOEC  | reproduction                       | >0.914 | >0.88            |                       | 2  | 3,4,5,35       | EC (1996a, 1996b)        |
| Pimephales promelas     | newly fert. eggs      | Y | F            | TPT-OH        | 97-99  |               |     | 14-15 |                               | 183 d            | NOEC  | hatching success                   | >0.914 | >0.88            |                       | 2  | 3,4,5,35       | EC (1996a, 1996b)        |
| Pimephales promelas     | newly fert. eggs      | Y | F            | TPT-OH        | 97-99  |               |     | 14-15 |                               | 183 d            | NOEC  | F1 survival                        | 0.469  | 0.449            |                       | 2  | 3,4,5,35       | EC (1996a, 1996b)        |
| Pimephales promelas     | newly fert. eggs      | Y | F            | TPT-OH        | 97-99  |               |     | 14-15 |                               | 183 d            | NOEC  | F1 length and wet<br>weight        | >0.914 | >0.88            |                       | 2  | 3,4,5,35       | EC (1996a, 1996b)        |
| Pimephales promelas     | larvae <24 h          | Y | F            | TPT-OH        | 96     | nw            | 7-8 | 24-25 | 47                            | 30 d             | NOEC  | mortality                          | 1.26   | 1.14             |                       | 1  | 4,8            | Jarvinen et al. (1988)   |
| Pimephales promelas     | larvae <24 h          | Y | F            | TPT-OH        | 96     | nw            | 7-8 | 24-25 | 47                            | 30 d             | LC50  | mortality                          | 1.5    | 1.4              |                       | 1  | 4,8            | Jarvinen et al. (1988)   |
| Pimephales promelas     | larvae <24 h          | Y | F            | TPT-OH        | 96     | nw            | 7-8 | 24-25 | 47                            | 30 d             | LC50  | mortality                          | 1.9    | 1.7              |                       | 1  | 4,8,25         | Jarvinen et al. (1988)   |
| Pimephales promelas     | larvae <24 h          | Y | F            | TPT-OH        | 96     | nw            | 7-8 | 24-25 | 47                            | 30 d             | LC10  | mortality                          | 1.8    | 1.6              |                       | 1  | 4,8,25         | Jarvinen et al. (1988)   |
| Pimephales promelas     | larvae <24 h          | Y | F            | TPT-OH        | 96     | nw            | 7-8 | 24-25 | 47                            | 30 d             | NOEC  | weight                             | 0.15   | 0.14             |                       | 1  | 4,8            | Jarvinen et al. (1988)   |
| Pimephales promelas     | larvae <24 h          | Y | F            | TPT-OH        | 96     | nw            | 7-8 | 24-25 | 47                            | 30 d             | EC50  | weight                             | 1.7    | 1.5              |                       | 1  | 4,8,25         | Jarvinen et al. (1988)   |
| Pimephales promelas     | larvae <24 h          | Y | F            | TPT-OH        | 96     | nw            | 7-8 | 24-25 | 47                            | 30 d             | EC10  | weight                             | 0.2    | 0.19             |                       | 1  | 4,8,25         | Jarvinen et al. (1988)   |
| Pimephales promelas     |                       |   | F            | TPT           |        |               |     |       |                               | 21 d             | EC10  | egg prod., fecundity               |        | 0.707            |                       | 3  |                | Albanis et al. (2006)    |
| Pimephales promelas     |                       |   | F            | TPT           |        |               |     |       |                               | 21 d             | EC50  | egg prod., fecundity               |        | 0.918            |                       | 3  |                | Albanis et al. (2006)    |
| Pimephales promelas     |                       |   |              | TPT-OH        |        |               |     |       |                               | 96 h             | EC50  |                                    | 1.2    |                  |                       | 4  | 30             | Roessink et al. (2006a)  |
| Rutilus rutilus         | 2 year old            |   | R            | TPT           |        |               |     |       |                               | 14 d             | LOEC  | spermato- & oogenesis              |        |                  | 0.594                 | 4  |                | Albanis et al. (2006)    |
|                         |                       |   |              |               |        |               |     |       |                               |                  |       |                                    |        |                  |                       |    |                |                          |
| Amphibia                |                       |   |              |               |        |               |     |       |                               |                  |       |                                    |        |                  |                       |    |                |                          |
| Ambystoma barbouri      | larvae                | Ν | R            | TPT-CI        | >95    |               | 7-8 | 21-24 |                               | 96 d             | NOEC  | mortality                          | 1      |                  |                       | 3  | 3,5,19,60      | Rehage et al. (2002)     |
| Ambystoma barbouri      | larvae                | Ν | R            | TPT-CI        | >95    |               | 7-8 | 21-24 |                               | 24 d             | NOEC  | feeding, growth                    | <1     |                  |                       | 3  | 3,5,19,60      | Rehage et al. (2002)     |
| Ambystoma barbouri      | larvae                | Ν | R            | TPT-CI        | >95    |               | 7-8 | 21-24 |                               | 37 d             | NOEC  | time to metamorph.                 | <1     |                  |                       | 3  | 3,5,19,60      | Rehage et al. (2002)     |
| Ambystoma barbouri      | larvae                | Ν | R            | TPT-CI        | >95    |               | 7-8 | 21-24 |                               | 33 d             | NOEC  | swimming behave.                   | 1      |                  |                       | 3  | 3,5,19,60      | Rehage et al. (2002)     |
| Rana esculenta          | tadpoles              | Y | R            | TPT-CI        |        | tw            | 6/8 | 23-25 |                               | 73 d             | NOEC  | survival, time to<br>metamorphosis |        | 0.11             |                       | 2  | 3,5,6,23,24    | Fioramonti et al. (1997) |
| Rana lessonae           | tadpoles              | Y | R            | TPT-CI        |        | tw            | 6/8 | 23-25 |                               | 73 d             | NOEC  | survival, time to<br>metamorphosis |        | 0.11             |                       | 2  | 3,5,6,23,24    | Fioramonti et al. (1997) |
| Rana esculenta          | tadpoles              | Y | R            | TPT-CI        |        | tw            | 6/8 | 23-25 | 1                             | 30 d             | NOEC  | body mass                          |        | 0.11             |                       | 2  | 3,5,6,23,24    | Fioramonti et al. (1997) |
| Rana lessonae           | tadpoles              | Y | R            | TPT-CI        |        | tw            | 6/8 | 23-25 |                               | 30 d             | NOEC  | body mass                          |        | 0.11             |                       | 2  | 3,5,6,23,24    | Fioramonti et al. (1997) |
| Rana lessonae/esculenta | tadpoles              | Y | R            | TPT-CI        |        | tw            | 6/8 | 23-25 |                               | 73 d             | LC50  | survival                           |        | 1.5              |                       | 2  | 3,5,6,17,23,24 | Fioramonti et al. (1997) |
| Rana lessonae/esculenta | tadpoles              | Y | R            | TPT-CI        |        | tw            | 6/8 | 23-25 |                               | 73 d             | LC10  | survival                           |        | 0.34             |                       | 2  | 3,5,6,17,23,24 | Fioramonti et al. (1997) |
| Xenopus laevis          | stage 42/43           |   | R            | TPT           |        |               |     |       |                               | larval<br>stadia | LOEC  | mortality + larval<br>development  |        |                  | 1.187                 | 4  |                | Albanis et al. (2006)    |
| Xenopus laevis          | 3-4 vear              | 1 | R            | TPT           |        |               | 1   |       | 1                             | 14 d             | LOEC  | spermato- & oogenesis              |        |                  | 0.119                 | 4  |                | Albanis et al. (2006)    |
|                         | , .                   |   |              |               |        |               | _   |       |                               |                  | _     |                                    |        |                  |                       |    |                | ()                       |

- 1 No solvent control performed.
- Solvent unknown. 2
- 3 Solvent: acetone.
- 4 Result based on mean measured concentration.
- 5 Solvent control performed.
- 6 Positive effects of solvent may have masked toxicity effects at the lowest exposure levels.
- 7 Solvent concentration  $\leq 0.01\%$ .
- 8 No solvent used, water concentrations prepared with a saturator system.
- 9 Solvent: ethanol.
- 10 Formulation used: TPT chloride wettable powder, solutions of the powder were further diluted.
- 11 No control for blank formulation.
- Result based on measured concentrations. 12
- 13 Solvent 0.005% DMSO.
- 14 Biomass was calculated using adsorption at 680 nm.
- 15 primary production measured as  $CO_2$  uptake.
- NOEC=LOECD/3; 40% effect at 10 µg/L. 16
- 17 Value recalculated from graph in paper.
- 18 Concentrations in water were kept to the designed exposure doses; flow-through with a 4-fold volume of water flowing through every 24 hours; no parent mortality observed even at highest dose  $(1 \mu q/L)$ ; embryos and larvae were observed in clean filtered water after transfer of eggs in the last week of exposure.
- Renewal every 96 hours. 19
- 20 Measured concentrations in bioconcentration tests after 8 days close to nominal concentrations; average concentration was 61% of nominal: renewal every two days.
- No detail on TPT species. 21
- 22 No details on use of solvents.
- Exposure in plastic dishpans: renewal after 3 days. 23
- 24 Measured concentrations did not differ significantly from nominal; results based on measured concentrations.
- 25 Value recalculated from table in paper.

- 26 Value unreliable, extrapolated too far out of the measured range.
- 27 Renewal every 24 hours.
- 28 Exposure in Petri dishes.
- Exposed in artificial sediment containing 10% OM and 20% clay; 29 active ingredient was spiked in water. Value is mean measured value recalculated over the period of exposure in the basis of data in the DAR; measured pH and temperature not reported but mentioned as within acceptable levels for survival of midge larvae. 30
  - Original data cannot be retrieved.
- 31 According to OECD guidelines.
- 32 Solvent: triethylene glycol.
- 33 No solvent used. 34
  - Endpoint recalculated from data in the ref.
- 35 According to FIFRA 72-5 guideline.
- 36 Solvent: methanol.
- 37 Mean measured concentrations were 60-67% of nominal.
- 38 Solvent: DMF.
- 39 Measured concentrations were >80% of nominal; results based on nominal concentrations.
- Lowest mean measured concentration was 71% of nominal; all 40 nominal concentrations were corrected by 71%.
- 41 Analysis performed throughout the test.
- 42 Measured concentrations in bioconcentration tests after 8 days close to nominal concentrations: average concentration was 64.8% of nominal; renewal every two days.
- 43 Corrected for average recovery in bioconcentration test (61%).
- 44 Low concentration range of 2 and 5  $\mu$ g/L.
- 45 High concentration range of 5, 10, 25, and 50  $\mu$ g/L.
- 46 Low and high concentration range combined.
- Measured concentrations after 7 d were 33% (algae) and 77.5% 47 (S. obliquus) of nominal, concentration in blanc samples contained 91.3% after 7 d: results based on nominal concentrations: control in exponential growth until 48 h.
- 30 snails in 40 liters of water, renewal every day. 48
- 20 or 40 (unclear) snails in one liter of water. 49

- 50 Final solvent concentration of 0.225 mg/L.
- 51 Results based on nominal concentrations.
- 52 detection limit 1 μg/L; GC-MSC; DOC of test medium was 8.8 mg/L.
- 53 Medium enriched with nutrients.
- 54 Measured concentrations decreased to below detection limits (1  $\mu$ g/L) after 14 days.
- 55 Value recalculated for growth rate from data in table according to OECD guideline 201.

- 56 Confidence interval very large.
- 57 Exposure period too short for a cyanobacterium.
- 58 Exposure period exceeds exponential growth phase.
- 59 The used water was treated with activated carbon.
- 60 The used water was filtered.
- 61 See additional summary below.
- 62 Only two concentrations tested.

Short summary Zhang et al.(2008).

Adult Medaka (*Oryzias latipes*) were exposed for 5 weeks in a flow-through system to 1.6, 8, 40, 200, or 1000 ng/L TPT-Cl or a vehicle control (0.005% DMSO). The concentration in water was not measured, but 'kept to the designated doses'. At the last week of exposure, eggs were collected a few hours after oviposition. Fertilized eggs were further cultured until 10 days post-hatch, in TFT-free water. NOECs of 1.6 ng/L and even lower were obtained for various endpoints, including larval survival, fecundity, hatching success and malformations/development.

The results of this study are about a factor of 100-1000 lower than results from other studies. The main difference is that exposure in this study was performed through maternal transfer, while in the other studies the eggs or fry were exposed directly. The article gives some mechanistical explanations in the introduction:

- TFT inhibits the conversion of testosterone to estrogen;
- TFT inhibits plasma vitellogenin, the precursor of yolk protein, and thus oocyte development;
- TFT inhibits all kinds of hormonal processes;
- TPT can be highly accumulated in eggs via maternal transfer.

In the other studies, also other fish species were used (there are no other studies using Oryzias latipes).

#### Table A2.3: Acute toxicity for marine organisms.

| Species                  | Species                  | А | Test | Test      | Purity | Test  | pН  | Т    | Salinity | Exp.    | Crit. | Endpoint             | Value  | Value   | Value  | Ri | Notes    | Ref                        |
|--------------------------|--------------------------|---|------|-----------|--------|-------|-----|------|----------|---------|-------|----------------------|--------|---------|--------|----|----------|----------------------------|
|                          | properties               |   | type | compound  |        | water |     | _    |          | time    |       |                      |        | TPT-ion | Sn     |    |          |                            |
|                          |                          |   |      |           | [%]    |       |     | [°C] | [‰]      |         |       |                      | [µg/L] | [µg/L]  | [µg/L] |    |          |                            |
| Bacteria                 |                          |   |      |           |        |       |     |      |          |         |       |                      |        |         |        |    |          |                            |
| Vibrio fischeri          |                          | N | S    | TPT-CI    |        | am    | 6-8 |      |          | 15 m    | EC50  | luminescence         | 20     | 18      |        | 2  | 6,25     | Argese et al. (1998)       |
| Vibrio fischeri          |                          | Ν | S    | TPT-CI    |        | am    | 6-8 |      |          | 15 m    | EC50  | luminescence         | 96     | 87      |        | 2  | 6,18     | Macken et al. (2008)       |
| Vibrio fischeri          |                          | N | S    | TPT-CI    |        | am    | 6-8 |      |          | 30 m    | EC50  | luminescence         | 71     | 64      |        | 2  | 6,18     | Macken et al. (2008)       |
|                          |                          |   |      |           |        |       |     |      |          |         |       |                      |        |         |        |    |          |                            |
| Algae                    |                          |   |      |           |        |       |     |      |          |         |       |                      |        |         |        |    |          |                            |
| Dunaliella tertiolecta   |                          | Ν | IF   | TPT-CI    |        | am    |     | 17   |          | 60-75 m | EC50  | photosynthesis       | 1079   |         |        | 3  | 6,14     | Mooney and Patching (1995) |
| Dunaliella tertiolecta   |                          | Ν | IF   | TPT-CI    |        | am    |     | 17   |          | 60-75 m | EC50  | photosynthesis       | 837    |         |        | 3  | 6,14,22  | Mooney and Patching (1995) |
| Dunaliella tertiolecta   |                          | Ν | IF   | TPT-CI    |        | am    |     | 17   |          | 75 m    | EC50  | respiration          | 835    |         |        | 3  | 6,14,22  | Mooney and Patching (1995) |
| Platymonas sp.           | log-phase                | N | S    | TPT-CI    | >99    | am    | 7.8 | 25   |          | 96 h    | EC50  | growth               |        |         | 0.63   | 3  | 6,14,28  | Huang et al. (1996)        |
| Platymonas sp.           | log-phase                | Ν | S    | TPT-OH    | >99    | am    | 7.8 | 25   |          | 96 h    | EC50  | growth               |        |         | 0.7    | 3  | 6,14,28  | Huang et al. (1996)        |
| Platymonas sp.           | log-phase                | Ν | S    | TPT-Ac    | >99    | am    | 7.8 | 25   |          | 96 h    | EC50  | growth               |        |         | 0.61   | 3  | 6,14,28  | Huang et al. (1996)        |
| Skeletonema costatum     | log-phase; 2500 cells/ml | Ν | S    | TPT-Ac    |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | growth (cell nb.)    | 0.86   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | log-phase; 2500 cells/ml | N | S    | TPT-CI    |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | growth (cell nb.)    | 0.92   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | log-phase; 2500 cells/ml | Ν | S    | TPT-OH    |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | growth (cell nb.)    | 0.59   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | log-phase; 2500 cells/ml | Ν | S    | bis-TPT-O |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | growth (cell nb.)    | 0.81   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | post exponential growth  | Ν | S    | TPT-Ac    |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | fluorescence         | 5.40   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | post exponential growth  | Ν | S    | TPT-CI    |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | fluorescence         | 3.60   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | post exponential growth  | Ν | S    | TPT-OH    |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | fluorescence         | 1.70   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | post exponential growth  | Ν | S    | bis-TPT-O |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | fluorescence         | 2.40   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | post exponential growth  | Ν | S    | TPT-Ac    |        | am    | 8.1 | 20   | 30       | 72 h    | LC50  | mortality            | 16.80  |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | post exponential growth  | Ν | S    | TPT-CI    |        | am    | 8.1 | 20   | 30       | 72 h    | LC50  | mortality            | 13.80  |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | post exponential growth  | Ν | S    | TPT-OH    |        | am    | 8.1 | 20   | 30       | 72 h    | LC50  | mortality            | 13.90  |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     | post exponential growth  | Ν | S    | bis-TPT-O |        | am    | 8.1 | 20   | 30       | 72 h    | LC50  | mortality            | 4.30   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Skeletonema costatum     |                          | Ν | IF   | TPT-CI    |        | am    |     | 17   |          | 60-75 m | EC50  | photosynthesis       | 31     |         |        | 3  | 6,14     | Mooney and Patching (1995) |
| Skeletonema costatum     |                          | Ν | IF   | TPT-CI    |        | am    |     | 17   |          | 60-75 m | EC50  | photosynthesis       | 30     |         |        | 3  | 6,14,22  | Mooney and Patching (1995) |
| Skeletonema costatum     |                          | Ν | IF   | TPT-CI    |        | am    |     | 17   |          | 60-75 m | EC50  | respiration          | 147    |         |        | 3  | 6,14,22  | Mooney and Patching (1995) |
| Skeletonema costatum     |                          |   |      | TPT-Ac    |        |       |     |      |          | 72 h    | EC50  |                      | 0.7    |         |        | 4  | 27       | Roessink et al. (2006a)    |
| Spirulina subsalsa       |                          | Ν | S    |           |        | am    |     | 25±1 |          | 8 d     | EC50  | growth rate          | 15.63  |         |        | 3  | 11,13,19 | Zhihui and Guolan (2000)   |
| Spirulina subsalsa       |                          | Ν | S    |           |        | am    |     | 25±1 |          | 8 d     | EC50  | Chlorophyll-a        | 9.38   |         |        | 3  | 11,13,19 | Zhihui and Guolan (2000)   |
| Spirulina subsalsa       |                          | Ν | S    | TPT-CI    |        | am    |     | 25   |          | 8 d     | IC50  | growth rate          | 15.63  |         |        | 3  | 11,20    | Huang et al. (2002)        |
| Spirulina subsalsa       |                          | Ν | S    | TPT-CI    |        | am    |     | 25   |          | 8 d     | IC50  | chlorophyll content  | 9.38   |         |        | 3  | 11,20    | Huang et al. (2002)        |
| Spirulina subsalsa       |                          | Ν | S    | TPT-CI    |        | am    |     | 25   |          | 8 d     | IC50  | phycocyanin cont.    | 31.45  |         |        | 3  | 11,20    | Huang et al. (2002)        |
| Spirulina subsalsa       |                          | Ν | S    | TPT-CI    |        | am    |     | 25   |          | 8 d     | IC50  | nitrate reduct. act. | 6.05   |         |        | 3  | 11,20    | Huang et al. (2002)        |
| Tetraselmis suecica      |                          | Ν | S    | TPT-CI    |        | nw    |     | 20   | 29-32    | 72 h    | EC50  | growth rate          | 5.0    |         |        | 3  | 6,17,18  | Macken et al. (2008)       |
| Thalassiosira guillardii |                          |   |      | TPT-Ac    |        |       |     |      |          | 72 h    | EC50  |                      | 1.10   |         |        | 4  | 27       | Roessink et al. (2006a)    |
| Thalassiosira pseudonana | log-phase; 2500 cells/ml | Ν | S    | TPT-Ac    |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | growth (cell nb.)    | 1.09   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Thalassiosira pseudonana | log-phase; 2500 cells/ml | Ν | S    | TPT-CI    |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | growth (cell nb.)    | 1.34   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Thalassiosira pseudonana | log-phase; 2500 cells/ml | N | S    | TPT-OH    |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | growth (cell nb.)    | 1.07   |         |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Thalassiosira pseudonana | log-phase; 2500 cells/ml | N | S    | bis-TPT-O |        | am    | 8.1 | 20   | 30       | 72 h    | EC50  | growth (cell nb.)    | 1.25   | 1       |        | 3  | 6,7,12   | Walsh et al. (1985)        |
| Thalassiosira pseudonana |                          |   |      | TPT-Ac    |        |       |     |      | 1        | 72 h    | EC50  | r · í                | 1.50   |         |        | 4  | 27       | Roessink et al. (2006a)    |
| · ·                      |                          |   |      |           |        |       |     |      |          |         |       | 1                    |        | 1       |        |    |          |                            |

| Species                      | Species<br>properties | A  | Test<br>type | Test<br>compound | Purity    | Test<br>water | pН  | T     | Salinity | Exp.<br>time | Crit. | Endpoint       | Value  | Value<br>TPT-ion | Value<br>Sn | Ri | Notes           | Ref                        |
|------------------------------|-----------------------|----|--------------|------------------|-----------|---------------|-----|-------|----------|--------------|-------|----------------|--------|------------------|-------------|----|-----------------|----------------------------|
| Macrophyta                   |                       |    |              | -                | [-70]     |               |     |       | [%00]    | -            |       |                | [µg/L] | [µy/L]           | [µy/L]      |    | -               |                            |
| Porphyra vozooncic           |                       | N  | c            |                  | 1         | <b>D</b> 144  |     | 15    |          | 19 h         | ECEO  | choro adhocion | 20     |                  |             | 2  | 11              | Maruwama et al. (1001)     |
| Porphyra yezoensis           |                       | N  | 5            | TPT-Ac           | 1         | nw            |     | 15    |          | 40 II        | EC50  | spore adhesion | 50     |                  |             | 3  | 11              | Maruyama et al. (1991)     |
| Porphyra yezoensis           |                       | N  | S            |                  | 1         | DW/           |     | 15    |          | 48 h         | EC50  | germination    | 3.6    |                  |             | 3  | 11              | Maruyama et al. (1991)     |
| Porphyra yezoensis           |                       | N  | S            |                  |           | 1100          |     | 15    |          | 40 H         | EC50  | germination    | 6.2    |                  | 1           | 2  | 11              | Maruyama et al. (1991)     |
|                              |                       | IN | 5            | TFT-AC           |           | 1100          |     | 15    |          | 30 11        | LCJU  | germination    | 0.5    |                  |             | 5  | 11              |                            |
| Mollusca                     |                       |    |              |                  |           |               |     |       |          |              |       |                |        |                  |             |    |                 |                            |
| Haliotis discus discus       | larvae                | Y  | S            | TPT-CI           |           | am            |     | 20    |          | 48 h         | LC50  | mortality      | 1.4    |                  |             | 3  | 33.34           | Horiguchi et al. (1998)    |
| Haliotis madaka              | larvae                | Ý  | S            | TPT-CI           |           | am            |     | 20    |          | 48 h         | LC50  | mortality      | 1.5    |                  |             | 3  | 33.34           | Horiguchi et al. (1998)    |
| Thais clavigera              | larvae                | Ý  | S            | TPT-CI           |           | am            |     | 20    |          | 48 h         | LC50  | mortality      | 4.6    |                  |             | 3  | 33,34           | Horiguchi et al. (1998)    |
|                              |                       |    |              |                  |           |               |     |       |          |              |       |                |        |                  |             |    |                 | <b>J</b>                   |
| Crustacea                    |                       |    |              |                  |           |               |     |       |          |              |       |                |        |                  |             |    |                 |                            |
| Artemia salina               | 24 h after hatching   | Y? | S            | TPT-OH           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 1461   |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 24 h after hatching   | Y? | S            | TPT-CI           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 898    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 24 h after hatching   | Y? | S            | TPT-Ac           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 818    |                  |             | 3  | 6,14,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 24 h after hatching   | Y? | S            | TPT-F            |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 1520   |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 48 h after hatching   | Y? | S            | TPT-OH           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 661    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 48 h after hatching   | Y? | S            | TPT-CI           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 571    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 48 h after hatching   | Y? | S            | TPT-Ac           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 601    |                  |             | 3  | 6,14,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 48 h after hatching   | Y? | S            | TPT-F            |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 546    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 72 h after hatching   | Y? | S            | TPT-OH           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 595    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 72 h after hatching   | Y? | S            | TPT-CI           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 501    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 72 h after hatching   | Y? | S            | TPT-Ac           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 470    |                  |             | 3  | 6,14,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 72 h after hatching   | Y? | S            | TPT-F            |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 561    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 96 h after hatching   | Y? | S            | TPT-OH           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 382    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 96 h after hatching   | Y? | S            | TPT-CI           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 459    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 96 h after hatching   | Y? | S            | TPT-Ac           |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 270    |                  |             | 3  | 6,14,23         | Nguyen et al. (2000a)      |
| Artemia salina               | 96 h after hatching   | Y? | S            | TPT-F            |           | am            |     | 25-30 | 34.7     | 24 h         | LC50  | mortality      | 380    |                  |             | 3  | 6,18,23         | Nguyen et al. (2000a)      |
| Carcinoscorpius rotundicauda | embryos               | N  | R            | TPT-CI           |           | nw            | 8   |       |          | 24 h         | LC100 | ) survival     | 10000  |                  |             | 3  | 14,15           | Itow et al. (1998)         |
| Crangon crangon              |                       |    | S            | TPT-Ac           |           | nw            |     | 15    |          | 48h          | LC50  |                | >33000 |                  |             | 3  | 6               | Portmann and Wilson (1971) |
| Limulus polyphemus           | embryos               | N  | R            | TPT-CI           |           | nw            | 8   |       |          | 24 h         | LC100 | ) survival     | 10000  |                  |             | 3  | 14,15           | Itow et al. (1998)         |
| Nitocra spinipes             | adult                 | N  | S            | TPT-FI           | 31.94% Sn | nw            | 7.8 | 21    | 7        | 96 h         | LC50  | mortality      | 8      |                  |             | 3  | 6,7             | Lindén et al. (1979)       |
| Palaemonetes pugio           |                       | Y  | F            | TPT-O?           |           | nw            |     | 22-25 |          | 96 h         | LC50  | mortality      | 50     |                  |             | 4  | 2,8,9           | Clark et al.(1987)         |
| Tisbe battagliai             | 6 ± 2 days old        | N  | S            | TPT-CI           |           | nw            |     | 20    | 29-32    | 24 h         | LC50  | mortality      | 6.2    |                  |             | 3  | 6,18,21         | Macken et al. (2008)       |
| Tisbe battagliai             | 6 ± 2 days old        | N  | S            | TPT-CI           |           | nw            |     | 20    | 29-32    | 48 h         | LC50  | mortality      | 3.5    |                  |             | 3  | 6,18,21         | Macken et al. (2008)       |
| Tisbe battagliai             | 6 ± 2 days old        | N  | S            | TPT-CI           |           | nw            |     | 20    | 29-32    | 48 h         | NOEC  | mortality      | 2.9    |                  |             | 3  | 6,18,21         | Macken et al. (2008)       |
| Echinodermata                |                       |    |              |                  |           |               |     |       |          |              |       | +              |        |                  |             | +  |                 |                            |
| Antedon mediterranea         | amputated animals     | N  | R            | TPT-CI           |           | asw           |     | 14    |          | 72 h         | LC50  | mortality      | ≈1.0   |                  |             | 3  | 8,14,6,29,30,31 | Barbaglio et al. (2006)    |
|                              |                       |    |              |                  |           |               |     |       |          |              |       |                |        |                  |             |    |                 |                            |
| Pisces                       |                       |    |              |                  |           |               |     |       |          |              |       |                |        |                  |             |    |                 |                            |
| Alburnus alburnus            | 8 cm                  | N  | S            | TPT-FI           | 31.94% Sn | nw            | 7.8 | 10    | 7        | 96 h         | LC50  | mortality      | 400    |                  |             | 3  | 6,7,8,31        | Lindén et al. (1979)       |
| Chasmichthys dolichognathus  | 5.2 cm, 1.7 g         | Y  |              | TPT-CI           |           | nw            | 8   | 25    | 33-34    | 96 h         | LC50  | mortality      | 19     | 17               |             | 2  | 1,2,3           | Shimizu and Kimura (1991)  |
| Chasmichthys dolichognathus  | 5.4 cm, 1.8 g         | Y  |              | TPT-CI           |           | asw           | 8   | 25    | 33       | 96 h         | LC50  | mortality      | 22     | 20               |             | 2  | 1,2,3,4         | Shimizu and Kimura (1991)  |

| Species                     | Species               | А | Test | Test     | Purity | Test  | pН | т    | Salinity | Exp. | Crit. | Endpoint  | Value  | Value   | Value  | Ri | Notes      | Ref                       |
|-----------------------------|-----------------------|---|------|----------|--------|-------|----|------|----------|------|-------|-----------|--------|---------|--------|----|------------|---------------------------|
|                             | properties            |   | type | compound |        | water |    |      |          | time |       |           |        | IPI-ion | Sn     |    |            |                           |
|                             |                       |   |      |          | [%]    |       |    | [°C] | [‰]      |      |       |           | [µg/L] | [µg/L]  | [µg/L] |    |            |                           |
| Chasmichthys dolichognathus | 5.0-5.3 cm, 1.5-1.9 g | Y |      | TPT-CI   |        | asw   | 8  | 25   | 33-34    | 96 h | LC50  | mortality | 22     | 20      |        | 2  | 1,2,3,5,32 | Shimizu and Kimura (1991) |
| Lepomis macrochirus         |                       |   |      | TPT-Ac   |        |       |    |      |          | 96 h | EC50  |           | 23     |         |        | 4  | 27         | Roessink et al. (2006a)   |
| Oryzias latipes             |                       |   |      | TPT-Ac   |        |       |    |      |          | 48 h | EC50  |           | 20     |         |        | 4  | 27         | Roessink et al. (2006a)   |
| Pagrus major                |                       |   |      | TPT-CI   |        |       |    |      |          | 48 h | LC50  | mortality | 13     |         |        | 4  |            | Yamada and Takayanagi     |
|                             |                       |   |      |          |        |       |    |      |          |      |       |           |        |         |        |    |            | (1992)                    |

- 1 Data from abstracts and tables, paper in Japanese.
- 2 Measured concentrations 70-80% of nominal.
- 3 Results based on measured concentrations.
- 4 AM without Na<sub>2</sub>SiO<sub>3</sub>.
- 5 AM with Na<sub>2</sub>SiO<sub>3</sub>.
- 6 Solvent control performed.
- 7 Solvent: acetone.
- 8 Results based on nominal concentration.
- 9 Unclear which compound has been tested, either TPT-hydroxide or Bis(TPT)-oxide.
- 10 Solvent concentration 0.01%.
- 11 No mentioning of solvent use.
- 12 Stock solutions were analysed; test solutions were below detection limits so could not be analysed.
- 13 Unclear which compound has been tested.
- 14 Solvent ethanol.
- 15 Exposure concentration > water solubility.
- 16 No solvent control performed.
- 17 According to ISO guideline.
- 18 Solvent: DMSO.
- 19 Growth rate and Chlorophyll-a content measured using absorption at 560 and 665 nm, respectively.
- 20 Not clear which range of concentrations was used and how IC50 is calculated.
- 21 According to ISO guideline with slight modifications.

- 22 EC50 calculated using data from graphs in paper and Graphpad.
- 23 Exposure in plastic Petri dishes; measurements not specified but 'analytical analysis showed that the total tin concentration remained constant during the test period'. Since this is not further specified, may have been without organisms present, and the exposure was in plastic, the validity of the study is Ri 3.
- 24 Nominal concentrations were verified by analysis with GC/FPD', but this is not further specified. Only a short abstract is available with not enough information to make a judgement.
- 25 Solvent ethanol or DMSO.
- 26 Compound was measured, but below detection limits.
- 27 Original data cannot be retrieved.
- 28 Wrong unit reported in table 1 of publication.
- 29 Solvent concentration 0.025 mL/L.
- 30 Time weighted average measured concentrations in similar exposure systems over 28 days were 5.5, 14 and 33 ng/L at 100, 225 and 500 ng/L (5-6% of nominal), reported in Tremolada et al. (2006).
- 31 Acetone concentration max. 0.5 mL/L.
- 32 Geometric mean of two trials, LC50 18 and 27 µg/L.
- 33 According to OECD guideline.
- 34 Measured concentrations for TPT-exposure not reported; result based on nominal concentrations.

### Table A2.4: Chronic toxicity for marine organisms.

| Species                   | Species    | A  | Test   | Test     | Purity   | Test  | pН  | Т    | Salinity | Exp.        | Crit. | Endpoint        | Value  | Value   | Value  | Ri     | Notes    | Ref                        |
|---------------------------|------------|----|--------|----------|----------|-------|-----|------|----------|-------------|-------|-----------------|--------|---------|--------|--------|----------|----------------------------|
|                           | properties | _  | type   | compound |          | water |     |      |          | time        |       |                 |        | TPT-ion | Sn     |        |          |                            |
|                           |            |    |        |          | [%]      |       |     | [°C] | [‰]      |             |       |                 | [µg/L] | [µg/L]  | [µg/L] |        |          |                            |
| Bacteria                  |            |    |        |          |          |       |     |      |          |             |       |                 |        |         |        |        |          |                            |
| Aeromonas hydrophyla      |            | Ν  | S      | TPT-CI   | >97      | am    |     | 20   | 15       | 24 h        | NOEC  | growth          |        |         | ≥0.3   | 3      | 9,29     | Mendo et al. (2003)        |
| Aeromonas salmonicida     |            | N  | S      | TPT-CI   | >97      | am    |     | 20   | 15       | 24 h        | NOEC  | growth          |        |         | ≥0.3   | 3      | 9,29     | Mendo et al. (2003)        |
| Bacillus megaterium       |            | N  | S      | TPT-CI   | >97      | am    |     | 20   | 15       | 24 h        | NOEC  | growth          |        |         | 0.02   | 3      | 9,29     | Mendo et al. (2003)        |
| Corynebacterium auris     |            | N  | S      | TPT-CI   | >97      | am    |     | 20   | 15       | 24 h        | NOEC  | growth          |        |         | 0.08   | 3      | 9,29     | Mendo et al. (2003)        |
| Enterobacter intermedius  |            | N  | S      | TPT-CI   | >97      | am    |     | 20   | 15       | 24 h        | NOEC  | growth          |        |         | ≥0.3   | 3      | 9,29     | Mendo et al. (2003)        |
| Kurthia gibsonii          |            | Ν  | S      | TPT-CI   | >97      | am    |     | 20   | 15       | 24 h        | NOEC  | growth          |        |         | 0.08   | 3      | 9,29     | Mendo et al. (2003)        |
| Microbacterium spp.       |            | N  | S      | TPT-CI   | >97      | am    |     | 20   | 15       | 24 h        | NOEC  | growth          |        |         | 0.08   | 3      | 9,29     | Mendo et al. (2003)        |
| Micrococcus luteus        |            | Ν  | S      | TPT-CI   | >97      | am    |     | 20   | 15       | 24 h        | NOEC  | growth          |        |         | 0.08   | 3      | 9,29     | Mendo et al. (2003)        |
| Oersinia xanthineolytica  |            | Ν  | S      | TPT-CI   | >97      | am    |     | 20   | 15       | 24 h        | NOEC  | growth          |        |         | ≥0.3   | 3      | 9,29     | Mendo et al. (2003)        |
| Vibrio fischeri           |            | Ν  | S      | TPT-CI   |          | am    | 6-8 |      |          | 15 m        | NOEC  | luminescence    | 44     |         |        | 2      | 8,9      | Macken et al. (2008)       |
| Vibrio fischeri           |            | Ν  | S      | TPT-CI   |          | am    | 6-8 |      |          | 30 m        | NOEC  | luminescence    | 44     |         |        | 2      | 8,9      | Macken et al. (2008)       |
|                           |            |    |        |          |          |       |     |      |          |             |       |                 |        |         |        |        | -        |                            |
| Algae                     |            |    | 15     |          | 0.6      |       |     | 47   |          | 75          | 5610  |                 | 770    | l       |        | -      | 0.44.20  |                            |
| Dunaliella tertiolecta    |            | N  | 11-    | TPT-CI   | 96       | am    |     | 1/   |          | 75 m        | EC10  | photosynthesis  | //8    |         |        | 3      | 8,11,28  | Mooney and Patching (1995) |
| Dunaliella tertiolecta    |            | N  | 11-    | TPT-CI   | 96       | am    |     | 1/   |          | 75 m        | NOEC  | photosynthesis  | 809    |         |        | 3      | 8,11     | Mooney and Patching (1995) |
| Dunaliella tertiolecta    |            | N  | 1F     | IPI-CI   | 96       | am    |     | 1/   |          | 75 m        | EC10  | respiration     | /83    |         |        | 3      | 8,11,28  | Mooney and Patching (1995) |
| Dunaliella tertiolecta    |            | N  | IF     | TPT-CI   | 96       | am    |     | 17   |          | 75 m        | NOEC  | respiration     | 809    |         |        | 3      | 8,11,28  | Mooney and Patching (1995) |
| Enteromorpha intestinalis | spores     | N  | S      | TPT-CI   |          | nw    |     | 15   |          |             | NOEC  | respiration     | 1.93   |         |        | 3      | 1,11     | Callow et al. (1979)       |
| Enteromorpha intestinalis | spores     | N  | S      | TPT-CI   |          | nw    |     | 15   |          |             | NOEC  | photosynthesis  | 1.93   |         |        | 3      | 1,11     | Callow et al. (1979)       |
| Pavlova lutheri           |            | Y  | F      | TPT-CI   |          | nw    |     | 17.5 | 29.2     | 8 d         | NOEC  | growth rate     | 0.04   | 0.04    |        | 2      | 6,7,27   | Marsot et al. (1995)       |
| Porphyra yezoensis        |            | N  | S      | TPT-CI   |          | nw    |     | 15   |          | 48 h        | NOEC  | spore adhesion  | 3      |         |        | 3      | 2,3,33   | Maruyama et al. (1991)     |
| Porphyra yezoensis        |            | N  | S      | TPT-Ac   |          | nw    |     | 15   |          | 96 h        | NOEC  | spore adhesion  | 15     |         |        | 3      | 2,3,33   | Maruyama et al. (1991)     |
| Porphyra yezoensis        |            | N  | S      | TPT-CI   |          | nw    |     | 15   |          | 48 h        | LOEC  | germination     | 1-1.6  |         |        | 3      | 11,33    | Maruyama et al. (1991)     |
| Porphyra yezoensis        |            | Ν  | S      | TPT-Ac   |          | nw    |     | 15   |          | 96 h        | LOEC  | germination     | 2      |         |        | 3      | 11,33    | Maruyama et al. (1991)     |
| Skeletonema costatum      |            | N  | F      | TPT-CI   | 96       | am    |     | 17   |          | 75 m        | EC10  | photosynthesis  | 4.8    |         |        | 3      | 8,11,28  | Mooney and Patching (1995) |
| Skeletonema costatum      |            | N  | F      | TPT-CI   | 96       | am    |     | 17   |          | 75 m        | EC10  | respiration     | 6.8    |         |        | 3      | 8,11,28  | Mooney and Patching (1995) |
| Spirulina subsalsa        |            | N  | S      |          |          | am    |     | 25   |          | 8 d         | NOEC  | growth rate     | 5      |         |        | 3      | 23,24,25 | Zhihui and Guolan (2000)   |
| Spirulina subsalsa        |            | Ν  | S      |          |          | am    |     | 25   |          | 8 d         | NOEC  | Chlorophyll-a   | 5      |         |        | 3      | 23,24,25 | Zhihui and Guolan (2000)   |
| Ulothrix flacca           | spores     | Ν  | S      | TPT-CI   |          | nsw   |     | 15   |          |             | NOEC  | respiration     | 193    |         |        | 3      | 1,11     | Callow et al. (1979)       |
| Ulothrix flacca           | spores     | Ν  | S      | TPT-Cl   |          | nsw   |     | 15   |          |             | NOEC  | photosynthesis  | 19.3   |         |        | 3      | 1,11     | Callow et al. (1979)       |
| Mollusca                  |            | -  |        |          | <u> </u> |       |     |      |          |             |       |                 |        |         |        |        |          |                            |
| Arenicola cristata        | embryo     | N  | c      |          | >00 6    | nw    |     |      | 28       | 7 d         | NOEC  | mortality       | 2 50   |         |        | 3      |          | Crommentuiin et al. (1997) |
| Arenicola cristata        | ombryo     | N  | 5      |          | > 00.6   | 1100  |     |      | 20       | 7 u<br>7 d  | NOEC  | morphology      | 2.50   | -       |        | 2      | ł        | Crommontuijn et al. (1997) |
| Crassoctrop gigas         | embryo     | N  | 5<br>C | TPT-CI   | 299.0    |       |     | 25   | 20       | 7 u<br>24 h |       | mortality       | 0.30   | 0.52    |        | 3<br>2 |          | Teupomasa and Okamura      |
| Crassostrea yiyas         | embryo     | IN | 5      | 181-1    |          | asw   |     | 25   |          | 24 11       | LCIU  | mortality       |        | 0.52    |        | 2      |          | (2011)                     |
| Haliotis gigantea         |            |    | F      | TPT      |          |       |     |      |          | 63 d        | LOEC  | spermatogenesis |        |         | 0.10   | 4      | 4        | Horiguchi et al. (2002)    |
| Haliotis madaka           | eggs       | Y  | S      |          |          |       |     |      |          | 48 h        | EC50  | development     | 0.19   |         |        | 4      | 4,8,30   | Treuner et al. (2005)      |
| Nassarius reticulatus     |            |    |        | TPT      |          |       |     |      |          |             | LOEC  | imposex         |        |         | 0.10   | 4*     |          | Oehlmann et al. (2007)     |
| Nassarius reticulatus     |            | N  | R      | TPT-CI   | 97       | asw   |     | 18   |          | 2 mo        | LOEC  | imposex         |        |         | 0.10   | 3      | 8,9      | Barroso et al. (2002)      |

| Nucle         Induity         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N        N <th< th=""><th>Species</th><th>Species<br/>properties</th><th>A</th><th>Test<br/>type</th><th>Test<br/>compound</th><th>Purity<br/>[%]</th><th>Test<br/>water</th><th>pН</th><th>т<br/>[°С]</th><th>Salinity<br/>[‰]</th><th>Exp.<br/>time</th><th>Crit.</th><th>Endpoint</th><th>Value<br/>[µg/L]</th><th>Value<br/>TPT-ion<br/>[µg/L]</th><th>Value<br/>Sn<br/>[µg/L]</th><th>Ri</th><th>Notes</th><th>Ref</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Species                  | Species<br>properties | A | Test<br>type | Test<br>compound | Purity<br>[%] | Test<br>water | pН | т<br>[°С] | Salinity<br>[‰] | Exp.<br>time | Crit. | Endpoint                   | Value<br>[µg/L] | Value<br>TPT-ion<br>[µg/L] | Value<br>Sn<br>[µg/L] | Ri | Notes             | Ref                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|---|--------------|------------------|---------------|---------------|----|-----------|-----------------|--------------|-------|----------------------------|-----------------|----------------------------|-----------------------|----|-------------------|-----------------------------------|
| Anendia         Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nucella lapillus         | adult                 | N | R            | TPT-CI           |               | asw           |    | 14        |                 | 3 mo         | NOEC  | male sex organ<br>develop. |                 | 0.15                       | 0.05                  | 2  | 8,10,34           | Schulte-Oehlmann et al.<br>(2000) |
| Annelia         ambrons         N         TP-C         99.6         now         20         28         96.h         MORE         annotational and the state of the sta                                                                                 |                          |                       |   |              |                  |               |               |    |           |                 |              |       |                            |                 |                            |                       |    |                   |                                   |
| Americal critizita         embryos         N         IPT-C         >99.6         Nov         20         28         96.h         NOEC         derival         2.5         IPT-C         3         2.2.2.43         Wash et al. (1986)           Americal cristata         embryos         N         TPT-C         >99.6         new         20         28         96.h         NOEC         development         1.         3         2.2.2.43         Wash et al. (1986)           Americal cristata         embryos         N         bis-TPT-O         >99.6         new         20         28         96.h         NOEC         development         0.5         3         2.2.2.43         Wash et al. (1986)           Americal cristata         embryos         N         bis-TPT-O         99.6         new         20         28         96.h         NOEC         development         0.5         3         2.2.2.43         Wash et al. (1986)           Americal cristata         embryos         N         bis-TPT-O         99.6         new         20         28         16.h         NOEC         development         0.5         3         2.2.2.43         Wash et al. (1986)           Americal cristata         embryos         N         bis-TPT-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Annelida                 |                       |   | _            |                  |               |               |    |           |                 |              |       |                            |                 |                            |                       | -  |                   |                                   |
| Amenical cristal         embryos         N         IPI-D         399.6         new         20         28         96 h         NOEC         development         1         1         3         2,2,43         Walen et al. (1985)           Amenical cristal         embryos         N         Tibo TPC         395.6         new         20         28         166.h         NOEC         surval         0.5         3         2,2,43         Walen et al. (1986)           Amenical cristal         embryos         N         bis TPT-0         396.6         new         20         28         166.h         NOEC         surval         0.5         3         2,22,43         Walen et al. (1986)           Amenical cristal         embryos         N         bis TPT-0         396.6         new         20         28         168.h         NOEC         surval         1.5         3         2,22,43         Waleh et al. (1986)           Arenicola cristal         embryos         N         bis TPT-0         399.6         new         20         28         168.h         NOEC         surval         1.5         3         2,22,43         Waleh et al. (1986)           Arenicola cristal         embryos         N         R         TPT<-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arenicola cristata       | embryos               | N |              | TPT-CI           | >99.6         | nsw           |    | 20        | 28              | 96 h         | NOEC  | survival                   | 2.5             |                            |                       | 3  | 2,22,43           | Walsh et al. (1986)               |
| Amenical cristita         embryos         N         ITT-C         >99.5         new         2.0         2.8         18.8         NOEC         environ         1.5         1.3         2.2.4.3         Wate et al. (1986)           Amenical cristita         embryos         N         Die-TPT-O         50.6         new         2.0         2.8         16.8         NOEC         development         0.5          3         2.2.4.3         Wate et al. (1986)           Arenical cristita         embryos         N         Die-TPT-O         9.9.6         new         2.0         2.8         16.8         NOEC         development         0.5          3         2.2.2.43         Wate et al. (1986)           Arenical cristita         embryos         N         Die-TPT-O         9.9.6         new         2.0         2.8         16.8         NOEC         development         0.5          3         2.2.2.43         Wate et al. (1986)           Arenical cristita         embryos         N         Die-TPT-O         9.9.6         new         2.0         2.8         16.8         NOEC         development         0.5          3         2.2.2.4.3         Wate et al. (1986)           Cotations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arenicola cristata       | embryos               | N |              | TPT-CI           | >99.6         | nsw           |    | 20        | 28              | 96 h         | NOEC  | development                | 1               |                            |                       | 3  | 2,22,43           | Walsh et al. (1986)               |
| Arenicad cristal         embryos         N         TPT-C         >99.6         nsw         20         28         166.         MOEC         development         0.5         3         2,22.43         Walsh et al. (1986)           Arenicad cristal         embryos         N         bb-TPT-O         59.6         new         20         28         96.1         NOEC         development         0.5         3         2,22.43         Walsh et al. (1986)           Arenicad cristal         embryos         N         bb-TPT-O         59.6         new         20         28         96.1         NOEC         development         0.5         2         22.24.3         Walsh et al. (1986)           Arenicod cristala         embryos         N         bb-TPT-O         29.6         new         20         28         168.h         NOEC         development         0.5         2         22.24.3         Walsh et al. (1986)           Acarta forsa         A         PT         P         P         2         2         28         168.h         NOEC         development         0.5         A         39         Abanis et al. (206)           Acarta forsa         A         R         TPT         A         A         A <t< td=""><td>Arenicola cristata</td><td>embryos</td><td>Ν</td><td>_</td><td>TPT-CI</td><td>&gt;99.6</td><td>nsw</td><td></td><td>20</td><td>28</td><td>168 h</td><td>NOEC</td><td>survival</td><td>2.5</td><td></td><td></td><td>3</td><td>2,22,43</td><td>Walsh et al. (1986)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arenicola cristata       | embryos               | Ν | _            | TPT-CI           | >99.6         | nsw           |    | 20        | 28              | 168 h        | NOEC  | survival                   | 2.5             |                            |                       | 3  | 2,22,43           | Walsh et al. (1986)               |
| Arenicod cristata         empryos         N         Dist-IPT-O         >99.6         now         20         28         96.1         NOEC         survival         2         3         2,2,2,43         Walsh et al. (1986)           Arenicod cristata         embryos         N         bis-IPT-O         >96.6         nsw         20         28         16.6         NOEC         survival         1.5         3         2,22,43         Walsh et al. (1986)           Arenicod cristata         embryos         N         N         bis-IPT-O         >96.6         nsw         20         28         16.6         NOEC         survival         1.5         3         2,22,43         Walsh et al. (1986)           Arenical cristata         embryos         N         N         TPT         20         28         16.6         NOEC         survival         0.7         4         3         2,22,43         Walsh et al. (2966)           Acarda tonsa         R         TPT         R         TPT         L         LC10         marida development         0.0005         4         39         Albanis et al. (2066)           Acarda tonsa         R         TPT-C         N         N         R         TPT-C         N         LC10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arenicola cristata       | embryos               | N | _            | TPT-CI           | >99.6         | nsw           |    | 20        | 28              | 168 h        | NOEC  | development                | 0.5             |                            |                       | 3  | 2,22,43           | Walsh et al. (1986)               |
| Arenical cristate         embryos         N         bis: IPT-O         >96.6         new         20         28         96.h         NOEC         development         0.5         Image: Construction of the constructio                                                                                                   | Arenicola cristata       | embryos               | Ν |              | bis-TPT-O        | >99.6         | nsw           |    | 20        | 28              | 96 h         | NOEC  | survival                   | 2               |                            |                       | 3  | 2,22,43           | Walsh et al. (1986)               |
| Arencode cristate         embryos         N         bis-TPT-0         >99.6         new         20         28         168 h         NOEC         survival         1.5         33         2.22.43         Walsh et al. (1996)           Arencode cristate         embryos         N         bis-TPT-0         99.6         new         20         28         168 h         NOEC         survival         1.5         33         2.22.43         Walsh et al. (1996)           Crustaces         B         PT         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Arenicola cristata       | embryos               | Ν | _            | bis-TPT-O        | >99.6         | nsw           |    | 20        | 28              | 96 h         | NOEC  | development                | 0.5             |                            |                       | 3  | 2,22,43           | Walsh et al. (1986)               |
| Arenicale cristate         embryos         N         bis-TP-O         >99.6         new         20         28         168 h         NOEC         development         0.5         Image: Construction of the constructio                                                                                                   | Arenicola cristata       | embryos               | N |              | bis-TPT-O        | >99.6         | nsw           |    | 20        | 28              | 168 h        | NOEC  | survival                   | 1.5             |                            |                       | 3  | 2,22,43           | Walsh et al. (1986)               |
| Crustacea         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arenicola cristata       | embryos               | N |              | bis-TPT-O        | >99.6         | nsw           |    | 20        | 28              | 168 h        | NOEC  | development                | 0.5             |                            |                       | 3  | 2,22,43           | Walsh et al. (1986)               |
| Acartia tonsa         R         TPT         R         TPT         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         R         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Crustacea                |                       |   |              |                  |               |               |    |           |                 |              |       |                            |                 |                            |                       |    |                   |                                   |
| Acartia toosa         R         TPT         R         TPT         R         P         LOEC         maform.or genetals         0.0006         A         4         39         Albanis et al. (2006)           Acartia toosa         R         TPT         R         R         TPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acartia tonsa            |                       |   | R            | TPT              |               |               |    |           |                 |              | LC10  | mortality                  | 0.27            |                            |                       | 4  | 39                | Albanis et al. (2006)             |
| Acartis tonsa         R         TPT         R         R         TPT         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acartia tonsa            |                       |   | R            | TPT              |               |               |    |           |                 |              | LOEC  | malform, of genitals       | 0.0006          |                            |                       | 4  | 39                | Albanis et al. (2006)             |
| Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acartia tonsa            |                       |   | R            | TPT              |               |               |    |           |                 |              | LC10  | larval development         | 0.00095         |                            |                       | 4  | 39                | Albanis et al. (2006)             |
| Rhithropanopeus harrisii         Iarvae         N         R         TPT-CI         nw         Io-12 d         LC50         zoeal development         35.6         32         Lauphin et al. (1984)           Rhithropanopeus harrisii         Iarvae         N         R         TPT-OH         >97         nw         25         15         12 d         LC50         mortality         35.6         34         2         13,14,32         Lauphin et al. (1985)           Rhithropanopeus harrisii         Iarvae         N         R         TPT-OH         >97         nw         25         15         12 d         NOEC         mortality         10         9.5         2         13,14,32         Lauphin et al. (1985)           Rhithropanopeus harrisii         Iarvae         N         R         TPT-OH         >97         nw         25         15         12 d         NOEC         reproductive stages         0.1         4         39,40         Albanis et al. (2006)           Antedon mediterranea         adult         Y         R         TPT-C         98         asw         16         37         w         LOEC         eggize         0.033         3,1,1,6,73         Barbagio et al. (2006)           Antedon mediterranea         ampute eggs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |   |              |                  |               |               |    |           |                 |              |       |                            |                 |                            |                       |    |                   | ()                                |
| Rhithropanopeus harrisii         Iarvae         TPT         Image: Construction of the second secon                  | Rhithropanopeus harrisii | larvae                | N | R            | TPT-CI           |               | nw            |    |           |                 | 10-12 d      | LC50  | zoeal development          | 35.6            |                            |                       | 3  | 32                | Laughlin et al. (1984)            |
| Rhithropanopeus harrisii         Iarvae         N         R         TPT-OH         >97         nw         25         15         12.d         CS0         mortality         10         9.5         2         13,14,32         Loughlin et al. (1985)           Rhithropanopeus harrisii         Iarvae         N         R         TPT-OH         >97         nw         25         15         12.d         NOEC         mortality         10         9.5         2         13,14,32         Loughlin et al. (1985)           Rhithropanopeus harrisii         Iarvae         N         R         TPT         NOEC         reproductive stages         0.1         4         39,40         Albanis et al. (2006)           Antedon mediterranea         R         TPT         NOEC         reproductive stages         0.25         4         39,40         Albanis et al. (2006)           Antedon mediterranea         amult         Y         R         TPT-CL         8sw         16         37         2w         LoECE         egg size         0.033         3         8,11,19,38         Buogini et al. (2006)           Antecodor mediterranea         amult         R         TPT-CL         9s         asw         1         1mo         NOEC         regeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rhithropanopeus harrisii | larvae                |   |              | TPT              |               |               |    |           |                 | 10-12 d      | LC50  |                            | 37              |                            |                       | 2* | -                 | UNEP (1989)                       |
| Rhithropanopeus harrisii         larvae         N         R         TPT-OH         >97         nw         25         15         12 d         NOEC         montality         10         9.5         2         13,14,32         Laughlin et al. (1985)           Echinodermata         R         PT         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rhithropanopeus harrisii | larvae                | N | R            | TPT-OH           | >97           | nw            |    | 25        | 15              | 12 d         | LC50  | mortality                  | 35.6            | 34                         |                       | 2  | 13.14.32          | Laughlin et al. (1985)            |
| Droc         Droc <thdroc< th="">         Droc         Droc         <thd< td=""><td>Rhithropanopeus harrisii</td><td>larvae</td><td>N</td><td>R</td><td>TPT-OH</td><td>&gt;97</td><td>nw</td><td></td><td>25</td><td>15</td><td>12 d</td><td>NOEC</td><td>mortality</td><td>10</td><td>9.5</td><td></td><td>2</td><td>13.14.32</td><td>Laughlin et al. (1985)</td></thd<></thdroc<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rhithropanopeus harrisii | larvae                | N | R            | TPT-OH           | >97           | nw            |    | 25        | 15              | 12 d         | NOEC  | mortality                  | 10              | 9.5                        |                       | 2  | 13.14.32          | Laughlin et al. (1985)            |
| Echinodermata         Image: Construct of the construct of |                          |                       |   |              |                  |               |               |    |           |                 |              |       |                            |                 |                            |                       |    |                   | ···· <b>y</b> ···· <b>y</b>       |
| Antedon mediterranea         R         TPT         R         TPT         NOEC         reproductive stages         0.1         A         4         39,40         Albanis et al. (2006)           Antedon mediterranea         adult         Y         R         TPT-Cl         >98         asw         16         37         2w         LOEC         egg size         0.25         4         39,40         Albanis et al. (2006)           Antedon mediterranea         amputated animals         N         R         TPT-Cl         >98         asw         16         37         2w         LOEC         egg size         0.033         3         8,11,9,37         Barbaglio et al. (2006)           Antedon mediterranea         amputated animals         N         R         TPT-Cl         asw         14         14 d         NOEC         regeneration         0.05         4         39,40         Albanis et al. (2006)           Anteodon differranea         mature eggs         N         S         TPT-Cl         95         asw         15 mi         EC50         permtox         310         281         2         8,9,41,42         Shim et al. (2006)           Anthoidaris crassispina         meture eggs         N         S         TPT-Cl         95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Echinodermata            |                       |   |              |                  |               |               |    |           |                 |              |       |                            |                 |                            |                       |    |                   |                                   |
| Antedon mediterranea         N         R         TPT         M         M         NOEC         egg size         0.225         4         39,40         Albanis et al. (2006)           Antedon mediterranea         adult         Y         R         TPT-Cl         >98         asw         16         37         2w         LOCC         egg size         0.033         3         8,11,19,33         Barbaglio et al. (2000)           Antedon mediterranea         mputated animals         N         R         TPT-Cl         asw         14         14 d         NOEC         regeneration         0.05         3         8,11,42,38         Barbaglio et al. (2006)           Anthocidaris crassispina         sperm         N         S         TPT-Cl         95         asw         15 mil         EC50         fertilization         2400         2179         2         8,9,41,42         Shim et al. (2006)           Anthocidaris crassispina         mature eggs         N         S         TPT-Cl         95         asw         15 mil         EC50         fertilization         245         2         8,9,41,42         Shim et al. (2006)           Paracentrotus lividus         fertilized eggs         N         S         TPT-Cl         95         asw <t< td=""><td>Antedon mediterranea</td><td></td><td></td><td>R</td><td>TPT</td><td></td><td></td><td></td><td></td><td></td><td></td><td>NOEC</td><td>reproductive stages</td><td>0.1</td><td></td><td></td><td>4</td><td>39,40</td><td>Albanis et al. (2006)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Antedon mediterranea     |                       |   | R            | TPT              |               |               |    |           |                 |              | NOEC  | reproductive stages        | 0.1             |                            |                       | 4  | 39,40             | Albanis et al. (2006)             |
| Antedon mediterranea         adult         Y         R         TPT-Cl         >98         asw         16         37         2w         LOEC         egg size         0.033         3         8,11,19,38         Sugni et al. (2010)           Antedon mediterranea         amputated animals         N         R         TPT-Cl         asw         14         14 d         NOEC         regeneration         0.05         3         8,11,19,38         Sugni et al. (2006)           Antedon mediterranea         R         TPT-Cl         95         asw         1         1mo         NOEC         regeneration         0.05         4*         39,40         Albanis et al. (2006)           Anthocidaris crassispina         mature eggs         N         S         TPT-Cl         95         asw         15 mi         EC50         sperm tox         310         281         2         8,9,41,42         Shim et al. (2006)           Anthocidaris crassispina         fertilized eggs         N         S         TPT-Cl         95         asw         15 mi         EC50         fertilized eggs         8,941,42         Shim et al. (2006)           Paracentrotus lividus         fertilized eggs         N         S         TPT-Cl         95         asw         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Antedon mediterranea     |                       |   | R            | TPT              |               |               |    |           |                 |              | NOEC  | egg size                   | 0.225           |                            |                       | 4  | 39,40             | Albanis et al. (2006)             |
| Antedon mediterranea         amputated animals         N         R         TPT-Cl         asw         14         14 d         NOEC         regeneration         0.05         3         8,11,36,37         Barbaglio et al. (2006)           Antedor mediterranea         R         TPT-Cl         95         asw         1 mo         NOEC         regeneration         0.05         4*         39,40         Albanis et al. (2006)           Anthocidaris crassispina         mature eggs         N         S         TPT-Cl         95         asw         15 mi         EC50         sperm tox         310         281         2         8,9,41,42         Shim et al. (2006)           Anthocidaris crassispina         mature eggs         N         S         TPT-Cl         95         asw         15 mi         EC50         fertilization         2400         2179         2         8,9,41,42         Shim et al. (2006)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         asw         8         18         35         72 h         EC50         development         1.17         3         8,31         Arizzi Novelli et al. (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Antedon mediterranea     | adult                 | Y | R            | TPT-CI           | >98           | asw           |    | 16        | 37              | 2w           | LOEC  | egg size                   |                 | 0.033                      |                       | 3  | 8,11,19,38        | Sugni et al. (2010)               |
| Antedon mediterranea         R         TPT         Imo         NOEC         regeneration         0.05         4*         39,40         Albans et al. (2006)           Anthocidaris crassispina         sperm         N         S         TPT-Cl         95         asw         15 mi         ECS0         sperm tox         310         281         2         8,9,41,42         Shim et al. (2006)           Anthocidaris crassispina         mature eggs         N         S         TPT-Cl         95         asw         15 mi         ECS0         fertilization         2400         2179         2         8,9,41,42         Shim et al. (2006)           Anthocidaris crassispina         fertilized eggs         N         S         TPT-Cl         95         asw         15 mi         ECS0         development         270         245         2         8,9,41,42         Shim et al. (2006)           Paracentrotus lividus         fertilized eggs         N         S         TPT-Cl         95         asw         8         18         35         72 h         ECS0         development         1.11         3         8,31         Arizzi Novelli et al. (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         asw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Antedon mediterranea     | amputated animals     | N | R            | TPT-CI           |               | asw           |    | 14        |                 | 14 d         | NOEC  | regeneration               | 0.05            |                            |                       | 3  | 8,11,36,37        | Barbaglio et al. (2006)           |
| Anthocidaris crassispina         sperm         N         S         TPT-CL         95         asw         I         15 mi         EC50         sperm tox         310         281         2         8,9,41,42         Shim et al. (2006)           Anthocidaris crassipina         mature eggs         N         S         TPT-CL         95         asw         L         15 mi         EC50         fertilization         240         2179         2         8,9,41,42         Shim et al. (2006)           Anthocidaris crassipina         fertilized eggs         N         S         TPT-CL         95         asw         L         15 mi         EC50         fertilization         240         2179         2         8,9,41,42         Shim et al. (2006)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         asw         8         18         35         72 h         EC50         development         1.11         3         8,31         Arizzi Novelli et al. (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-Ac         asw         8         18         35         72 h         NOEC         development         0.48         3         8,31         Arizzi Novelli et al. (2002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Antedon mediterranea     |                       |   | R            | TPT              |               |               |    |           |                 | 1 mo         | NOEC  | regeneration               | 0.05            |                            |                       | 4* | 39,40             | Albanis et al. (2006)             |
| Anthocidaris crassispina         mature eggs         N         S         TPT-Cl         95         asw         I         IS mi         EC50         fertilization         2400         2179         2         8,9,41,42         Shim et al. (2006)           Anthocidaris crassispina         fertilized eggs         N         S         TPT-Cl         95         asw         IS mi         EC50         embryo development         270         245         2         8,9,41,42         Shim et al. (2006)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         asw         8         18         35         72 h         EC50         development         1.11         3         8,31         Arizzi Novelli et al. (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         asw         8         18         35         72 h         NOEC         development         0.4         3         8,31         Arizzi Novelli et al. (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         asw         8         18         35         72 h         NOEC         development         0.4         3         8,31         Arizzi Novelli et al. (2002)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anthocidaris crassispina | sperm                 | Ν | S            | TPT-CI           | 95            | asw           |    |           |                 | 15 mi        | EC50  | sperm tox                  | 310             | 281                        |                       | 2  | 8,9,41,42         | Shim et al. (2006)                |
| Anthocidaris crassispina         fertile eggs         N         S         TPT-Cl         95         asw         8         15 mi         EC50         embryo development         270         245         2         8,9,41,42         Shim et al. (2006)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         asw         8         18         35         72 h         EC50         development         1.11         3         8,31         Arizzi Novelli et al. (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-AC         asw         8         18         35         72 h         EC50         development         1.11         3         8,31         Arizzi Novelli et al. (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-AC         asw         8         18         35         72 h         NOEC         development         0.4         3         8,31         Arizzi Novelli et al. (2002)           Paracentrotus lividus         sperm         N         S         TPT-AC         asw         8         18         35         1 h         EC50         development         0.48         3         8,31         Arizzi Novelli et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Anthocidaris crassispina | mature eggs           | Ν | S            | TPT-CI           | 95            | asw           |    |           |                 | 15 mi        | EC50  | fertilization              | 2400            | 2179                       |                       | 2  | 8,9,41,42         | Shim et al. (2006)                |
| Paracentrotus lividusfertilized eggsNSTPT-OHasw8183572 hEC50development1.1138,31Arizzi Novelli et al. (2002)Paracentrotus lividusfertilized eggsNSTPT-Acasw8183572 hEC50development1.1138,31Arizzi Novelli et al. (2002)Paracentrotus lividusfertilized eggsNSTPT-Acasw8183572 hNOECdevelopment1.1738,31Arizzi Novelli et al. (2002)Paracentrotus lividusfertilized eggsNSTPT-Acasw8183572 hNOECdevelopment0.438,31Arizzi Novelli et al. (2002)Paracentrotus lividusfertilized eggsNSTPT-Acasw8183572 hNOECdevelopment0.4838,31Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-Acasw818351 hEC50% fertilization16.515.728,31,41,42Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-Acasw818351 hEC50% fertilization16.515.728,31,41,42Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-OHam15351 hEC50% fertilization18.516.8 </td <td>Anthocidaris crassispina</td> <td>fertile eggs</td> <td>Ν</td> <td>S</td> <td>TPT-CI</td> <td>95</td> <td>asw</td> <td></td> <td></td> <td></td> <td>15 mi</td> <td>EC50</td> <td>embryo development</td> <td>270</td> <td>245</td> <td></td> <td>2</td> <td>8,9,41,42</td> <td>Shim et al. (2006)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Anthocidaris crassispina | fertile eggs          | Ν | S            | TPT-CI           | 95            | asw           |    |           |                 | 15 mi        | EC50  | embryo development         | 270             | 245                        |                       | 2  | 8,9,41,42         | Shim et al. (2006)                |
| Paracentrotus lividusfertilized eggsNSTPT-Acasw8183572 hEC50development1.17I38,31Arizzi Novelli et al. (2002)Paracentrotus lividusfertilized eggsNSTPT-OHasw8183572 hNOECdevelopment0.4I38,31Arizzi Novelli et al. (2002)Paracentrotus lividusfertilized eggsNSTPT-Acasw8183572 hNOECdevelopment0.4I38,31Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-OHasw8183572 hNOECdevelopment0.48I38,31Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-OHasw818351 hEC50% fertilization16.515.728,31,41,42Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-Acasw818351 hEC50% fertilization18.516.828,31,41,42Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-Acasw818351 hEC50% fertilization18.516.828,31,41,42Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-OHam15351 hEC50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Paracentrotus lividus    | fertilized eggs       | N | S            | TPT-OH           |               | asw           | 8  | 18        | 35              | 72 h         | EC50  | development                | 1.11            |                            |                       | 3  | 8,31              | Arizzi Novelli et al. (2002)      |
| Paracentrotus lividusfertilized eggsNSTPT-OHasw8183572 hNOECdevelopment0.4Image: Constraint of the system o                                                                                                     | Paracentrotus lividus    | fertilized eggs       | N | S            | TPT-Ac           |               | asw           | 8  | 18        | 35              | 72 h         | EC50  | development                | 1.17            |                            |                       | 3  | 8,31              | Arizzi Novelli et al. (2002)      |
| Paracentrotus lividusfertilized eggsNSTPT-Acasw8183572 hNOECdevelopment0.4838,31Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-OHasw818351 hEC50% fertilization16.515.728,31,41,42Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-Acasw818351 hEC50% fertilization18.516.828,31,41,42Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-OHasw818351 hEC50% fertilization18.516.828,31,41,42Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-OHam15351 hEC50% fertilization18.516.828,31,42,41Moschino and Marin (2002)Paracentrotus lividusspermNSTPT-OHam15351 hEC10% fertilization1.081.0328,11,28,41Moschino and Marin (2002)Paracentrotus lividusfertilized eggsNSTPT-OHam223548 hNOECdevelopment238,11,42Moschino and Marin (2002)Paracentrotus lividusfertilized eggsNSTPT-OHam223548 hNOECdevelopment23<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paracentrotus lividus    | fertilized eggs       | Ν | S            | TPT-OH           |               | asw           | 8  | 18        | 35              | 72 h         | NOEC  | development                | 0.4             |                            |                       | 3  | 8,31              | Arizzi Novelli et al. (2002)      |
| Paracentrotus lividus         sperm         N         S         TPT-OH         asw         8         18         35         1 h         EC50         % fertilization         16.5         15.7         2         8,31,41,42         Arizzi Novelli et al. (2002)           Paracentrotus lividus         sperm         N         S         TPT-Ac         asw         8         18         35         1 h         EC50         % fertilization         18.5         16.8         2         8,31,41,42         Arizzi Novelli et al. (2002)           Paracentrotus lividus         sperm         N         S         TPT-OH         am         15         35         1 h         EC50         % fertilization         18.5         16.8         2         8,31,41,42         Arizzi Novelli et al. (2002)           Paracentrotus lividus         sperm         N         S         TPT-OH         am         15         35         1 h         EC50         % fertilization         8.3         7.9         2         8,11,28,41         Moschino and Marin (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         am         22         35         48 h         NOEC         development         2         8,11,42         Moschino and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Paracentrotus lividus    | fertilized eggs       | Ν | S            | TPT-Ac           |               | asw           | 8  | 18        | 35              | 72 h         | NOEC  | development                | 0.48            |                            |                       | 3  | 8,31              | Arizzi Novelli et al. (2002)      |
| Paracentrotus lividusspermNSTPT-Acasw818351 hEC50% fertilization18.516.828,31,41,42Arizzi Novelli et al. (2002)Paracentrotus lividusspermNSTPT-OHam15351 hEC50% fertilization8.37.928,11,28,41,Moschino and Marin (2002)Paracentrotus lividusspermNSTPT-OHam15351 hEC10% fertilization1.081.0328,11,28,41,Moschino and Marin (2002)Paracentrotus lividusfertilized eggsNSTPT-OHam223548 hNOECdevelopment238,11,42Moschino and Marin (2002)Paracentrotus lividusfertilized eggsNSTPT-OHam223548 hNOECdevelopment238,11,42Moschino and Marin (2002)Paracentrotus lividusfertilized eggsNSTPT-OHam223548 hNOECdevelopment1.538,11,42Moschino and Marin (2002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paracentrotus lividus    | sperm                 | Ν | S            | TPT-OH           |               | asw           | 8  | 18        | 35              | 1 h          | EC50  | % fertilization            | 16.5            | 15.7                       |                       | 2  | 8,31,41,42        | Arizzi Novelli et al. (2002)      |
| Paracentrotus lividus       sperm       N       S       TPT-OH       am       15       35       1 h       EC50       % fertilization       8.3       7.9       2       8,11,28,41, 4/2       Moschino and Marin (2002)         Paracentrotus lividus       sperm       N       S       TPT-OH       am       15       35       1 h       EC10       % fertilization       8.3       7.9       2       8,11,28,41, 4/2       Moschino and Marin (2002)         Paracentrotus lividus       fertilized eggs       N       S       TPT-OH       am       22       35       48 h       NOEC       development       2       3       8,11,42       Moschino and Marin (2002)         Paracentrotus lividus       fertilized eggs       N       S       TPT-OH       am       22       35       48 h       NOEC       development       2       3       8,11,42       Moschino and Marin (2002)         Paracentrotus lividus       fertilized eggs       N       S       TPT-OH       am       22       35       48 h       NOEC       development       1.5       3       8,11,42       Moschino and Marin (2002)         Paracentrotus lividus       fertilized eggs       N       S       TPT-OH       am       22 <td< td=""><td>Paracentrotus lividus</td><td>sperm</td><td>N</td><td>S</td><td>TPT-Ac</td><td></td><td>asw</td><td>8</td><td>18</td><td>35</td><td>1 h</td><td>EC50</td><td>% fertilization</td><td>18.5</td><td>16.8</td><td></td><td>2</td><td>8,31,41,42</td><td>Arizzi Novelli et al. (2002)</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paracentrotus lividus    | sperm                 | N | S            | TPT-Ac           |               | asw           | 8  | 18        | 35              | 1 h          | EC50  | % fertilization            | 18.5            | 16.8                       |                       | 2  | 8,31,41,42        | Arizzi Novelli et al. (2002)      |
| Paracentrotus lividus         sperm         N         S         TPT-OH         am         15         35         1 h         EC10         % fertilization         1.08         1.03         2         8,11,28,41,42         Moschino and Marin (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         am         22         35         48 h         NOEC         development         2         3         8,11,42         Moschino and Marin (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         am         22         35         48 h         NOEC         development         2         3         8,11,42         Moschino and Marin (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         am         22         35         48 h         NOEC         development         1.5         3         8,11,42         Moschino and Marin (2002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paracentrotus lividus    | sperm                 | Ν | S            | TPT-OH           |               | am            |    | 15        | 35              | 1 h          | EC50  | % fertilization            | 8.3             | 7.9                        |                       | 2  | 8,11,28,41,       | Moschino and Marin (2002)         |
| Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         am         22         35         48 h         NOEC         development         2         3         8,11,42         Moschino and Marin (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         am         22         35         48 h         NOEC         development         2         3         8,11,42         Moschino and Marin (2002)           Paracentrotus lividus         fertilized eggs         N         S         TPT-OH         am         22         35         48 h         NOEC         development         1.5         3         8,11,42         Moschino and Marin (2002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Paracentrotus lividus    | sperm                 | N | S            | TPT-OH           |               | am            |    | 15        | 35              | 1 h          | EC10  | % fertilization            | 1.08            | 1.03                       |                       | 2  | 8,11,28,41,<br>42 | Moschino and Marin (2002)         |
| Paracentrotus lividus fertilized eggs N S TPT-OH am 22 35 48 h NOEC development 1.5 3 8,11,42 Moschino and Marin (2002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Paracentrotus lividus    | fertilized eggs       | N | S            | TPT-OH           | 1             | am            | 1  | 22        | 35              | 48 h         | NOEC  | development                | 2               |                            |                       | 3  | 8,11,42           | Moschino and Marin (2002)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Paracentrotus lividus    | fertilized eggs       | N | S            | TPT-OH           | 1             | am            | 1  | 22        | 35              | 48 h         | NOEC  | development                | 1.5             |                            |                       | 3  | 8,11,42           | Moschino and Marin (2002)         |

| Species               | Species                                        | A    | Test | Test      | Purity | Test  | pН  | Т     | Salinity | Exp.          | Crit. | Endpoint                             | Value     | Value   | Value         | Ri | Notes                | Ref                       |
|-----------------------|------------------------------------------------|------|------|-----------|--------|-------|-----|-------|----------|---------------|-------|--------------------------------------|-----------|---------|---------------|----|----------------------|---------------------------|
|                       | properties                                     |      | type | compound  | 50/ 3  | water |     | [00]  | 50/ 1    | time          |       |                                      | Free /1 1 | IPI-ion | Sn<br>Lug (L) | -  |                      |                           |
| Paracentretus lividus | fortilized eggs                                | NI   | c    |           | [%]    |       |     |       | 25       | 40 h          | NOEC  | development                          | [µg/L]    | [µg/L]  | [µg/L]        | 2  | 0 11 47              | Maaching and Marin (2002) |
| Paracentrotus lividus | fortilized eggs                                | N    | 5    |           |        | am    |     | 22    | 22       | 40 II<br>40 h | NOEC  | development                          | 1 5       | -       |               | 2  | 0,11,42              | Moschino and Marin (2002) |
| Paracentrotus lividus |                                                | IN N | 5    | TPT-OH    |        | dili  |     | 22    | 35       | 40 11         | NOEC  | development                          | 1.5       | -       |               | 2  | 0,11,42              | Moschino and Marin (2002) |
| Paracentrotus lividus | fertilized eggs                                | IN N | 5    | TPT-OH    |        | am    |     | 22    | 35       | 48 N          | NOEC  | larval growth                        | 1         |         |               | 3  | 8,11,42              | Moschino and Marin (2002) |
| Paracentrotus lividus | fertilized eggs                                | N    | 5    | TPT-OH    |        | am    |     | 22    | 35       | 48 h          | NOEC  | larval growth                        | 0.5       | -       |               | 3  | 8,11,42              | Moschino and Marin (2002) |
| Paracentrotus lividus | fertilized eggs                                | N    | S    | TPT-OH    |        | am    |     | 22    | 35       | 48 h          | NOEC  | larval growth                        | <0.1      |         |               | 3  | 8,11,42              | Moschino and Marin (2002) |
| Paracentrotus lividus | fertilized eggs                                | N    | S    | TPT-OH    |        | am    |     | 22    | 35       | 48 h          | NOEC  | larval growth                        | 0.5       |         |               | 3  | 8,11,42              | Moschino and Marin (2002) |
| Paracentrotus lividus | spent ♂ and ♀, just after<br>spawning; 22-47 g | N    | R    | TPT-CI    | >98    | asw   |     | 16    | 37       | 4 w           | NOEC  | testosterone and<br>estradiol levels |           |         | 0.1           | 3  | 8,11,12, 18          | Lavado et al. (2006)      |
| Paracentrotus lividus | adult                                          | Ν    | R    | TPT-CI    | >98    | asw   |     | 16    | 37       | 4 w           | NOEC  | reprod.: egg diameter                | < 0.1     |         |               | 3  | 8,11,20              | Sugni et al. (2007)       |
| Paracentrotus lividus | adult                                          | Ν    | R    | TPT-CI    | >98    | asw   |     | 16    | 37       | 4 w           | NOEC  | gonad growth                         | >0.5      |         |               | 3  | 8,11,19              | Sugni et al. (2007)       |
| Paracentrotus lividus |                                                |      | R    | TPT       |        |       |     |       |          | 1 mo          | LOEC  | spermato- &                          | 0.1       |         |               | 3* | 39,40                | Albanis et al. (2006)     |
|                       |                                                |      |      |           |        |       |     |       |          |               |       | oogenesis                            |           |         |               |    |                      |                           |
| Platymonas sp.        | log-phase                                      | Ν    | S    | TPT-CI    | >99    | am    | 7.8 | 25    | 18       | 96 h          | EC50  | growth                               |           |         | 0.00063       | 3  | 11,15                | Huang et al. (1996)       |
| Platymonas sp.        | log-phase                                      | Ν    | S    | TPT-OH    | >99    | am    | 7.8 | 25    | 18       | 96 h          | EC50  | growth                               |           |         | 0.0007        | 3  | 11,15                | Huang et al. (1996)       |
| Platymonas sp.        | log-phase                                      | Ν    | S    | TPT-Ac    | >99    | am    | 7.8 | 25    | 18       | 96 h          | EC50  | growth                               |           |         | 0.00061       | 3  | 11,15                | Huang et al. (1996)       |
| Ophioderma brevispina |                                                | N    | F    | (bis)TPTO |        | sw    |     | 24-28 | 18-22    | 4 w           | EC10  | regeneration                         | 0.0092    | 0.009   |               | 2  | 8,13,16,17,<br>21,43 | Walsh et al. (1986)       |
| Ophioderma brevispina |                                                | N    | F    | (bis)TPTO |        | sw    |     | 24-28 | 18-22    | 4 w           | EC10  | regeneration                         | 0.0129    | 0.0126  |               | 2  | 8,13,16,17,<br>21,43 | Walsh et al. (1986)       |
|                       |                                                |      |      |           |        |       |     |       |          |               |       |                                      |           |         |               |    |                      |                           |
| Pisces                |                                                |      |      |           |        |       |     |       |          |               |       |                                      |           |         |               |    |                      |                           |
| Pagrus major          |                                                |      |      |           |        |       |     |       |          | 8 w           | NOEC  | feeding activity                     | 1.16      |         |               | 4  | 5                    | Kuroshima et al. (1997)   |
| Sparus aurata         | fertilized eggs                                | N    | S    | TPT-CI    | >95    | nw    |     | 19    |          | 24 h          | LC50  | mortality                            | 34.17     |         |               | 3  | 8,13,42              | Dimitrou et al. (2003)    |
| Sparus aurata         | fertilized eggs                                | N    | S    | TPT-CI    | >95    | nw    |     | 19    |          | 24 h          | NOEC  | mortality                            | 30        |         |               | 3  | 8,13,42              | Dimitrou et al. (2003)    |

- 1 Numbers in text and figures don't match.
- 2 NOEC estimated from graph and information in text.
- 3 No mentioning of solvent use and no controls performed.
- 4 No detail on TPT species.
- 5 Paper in Japanese; feeding activity is not considered as endpoint for risk limit derivation.
- 6 Chemostat culture.
- 7 No information on solvent use in preparation of test solutions but solvent has had time to evaporate.
- 8 Solvent control performed.
- 9 Solvent: DMSO.
- 10 Solvent: glacial acetic acid.
- 11 Solvent: ethanol.
- 12 Assumed concentration is given as concentration TPT.

- 13 Solvent: acetone.
- 14 Solvent concentration 0.01%.
- 15 No solvent control performed.
- 16 The used water has been filtered.
- 17 Replicate test with concentrations 0.01, 0.1, 1  $\mu$ g/L; because of wide spacing duplicate NOECs differ by factor of 10; recalculated EC10 is therefore considered more appropriate.
- 18 According to Tremolada et al. (2006), time weighted average actual concentration at NOEC was 0.0025 µg/L, expressed as ion.
- 19 According to Tremolada et al. (2006), time weighted average actual concentration at NOEC was 0.0055 µg/L, expressed as ion.
- 20 According to Tremolada et al. (2006), time weighted average actual concentration at NOEC was 0.0011  $\mu$ g/L, expressed as ion.
- 21 Toxicant analysed in stock solution.

- 22 Stock solutions were analysed, but exposure concentrations could not be confirmed because they were below the detection limit.
- 23 No mentioning of solvent use.
- 24 Unclear which compound has been tested.
- 25 Growth rate and Chlorophyll-a content measured using absorption at 560 and 665 nm, respectively.
- 26 Effects on reproductive cells at lowest concentration; 94% abnormal cells at 100 ng/L compared to 14% in the control.
- 27 NOEC based on measured concentration in supernatant of overflow water; nominal concentration at inflow was 8.1  $\mu$ g/L.
- 28 EC50/EC10 calculated using data from graphs in paper and Graphpad.
- 29 Exposure on agar plates.
- 30 Nominal concentrations were verified by analysis with GC/FPD', but this is not further specified. Only a short abstract is available with not enough information to make a judgement.
- 31 Solvent ethanol and DMSO.
- 32 All solution renewed daily.
- 33 Exposure with small drops on Petri dishes.
- Renewal every 24 hours; Exposure concentrations were checked in a test with Marisa (see freshwater); range of recoveries obtained from 7 sampling points over 24 h was 19-98% at 75 ng/L, 20-140% at 150 ng/L, 32-150% at 250 ng/L and 70-130% at 500 ng/L; mean recovery over 24 h was 57.8-94.3% of nominal, recovery increased with increasing exposure concentration.

- 35 Total volume 55 L; 15L of which was renewed twice a week.
- 36 Solvent concentration 0.025 mL/L.
- 37 Result based on nominal; time weighted average measured concentrations in similar exposure systems over 28 days were 5.5, 14 and 33 ng/L at 100, 225 and 500 ng/L (5-6% of nominal), reported in Tremolada et al, (2005).
- 38 Significant effect reported for 39 ng/L (= predicted concentration at 500 ng/L nominal; 33 ng/L measured), but similar non-significant effect at 7.7 ng/L (= predicted at 100 ng/L nominal; 5.5 ng/L measured); concentration-response relationship absent, and not fully clear whether intermediate concentration 17 ng/L predicted (22 ng/L nominal; 14 ng/L measured) has been tested.
- 39 Expression of endpoint not clear.
- 40 Differences with original paper.
- 41 Not measured, but endpoint accepted in view of short exposure period.
- 42 Short-term test, but considered as chronic endpoint in view of parameter and life-stage.
- 43 The used water has been filtered.

#### Table A2.5: Toxicity for sediment organisms.

| Species                  | Species      | Sediment   | А  | Test     | Purity   | pН | o.m. | ClayT | т     | Exp.<br>time | Criterion | Endpoint          | Value                   | Value                   | Value<br>standard       | Value                   | Ri | Notes     | Ref                             |
|--------------------------|--------------|------------|----|----------|----------|----|------|-------|-------|--------------|-----------|-------------------|-------------------------|-------------------------|-------------------------|-------------------------|----|-----------|---------------------------------|
|                          | properties   | cype       |    | compound |          |    |      |       |       | cirric       |           |                   | sediment                | sediment                | sediment                | sediment                |    |           |                                 |
|                          |              |            |    |          | 50/ 3    |    |      | 50/ 3 | [00]  |              |           |                   | r (1 )                  | Sn                      | r (1 ]                  | TPT-ion                 |    |           |                                 |
| Mallucas                 |              |            |    |          | [%]      |    |      | [%]   | Į℃j   |              |           |                   | [mg/kg <sub>dwt</sub> ] | [mg/kg <sub>dwt</sub> ] | [mg/kg <sub>dwt</sub> ] | [mg/kg <sub>dwt</sub> ] |    |           |                                 |
|                          |              |            | NI | TDT CI   |          | -  |      |       | 1.4   | 2            | NOFC      |                   |                         | > 500                   |                         |                         | 2  | 1 1 1     | Cabulta Oaklasaaa at al. (2000) |
| Hinia reticulata         | adult        | artificial | IN | TPT-CI   |          |    |      |       | 14    | 3 mo         | NUEC      | Imposex (VDSI)    |                         | 2500                    |                         |                         | 3  | 1,11      | Schulte-Denimann et al. (2000)  |
| Hinia reticulata         | adult        | artificial | N  | IPI-CI   |          |    |      |       | 14    | 3 mo         | NOEC      | female gonads     |                         | <50                     |                         |                         | 3  | 1,11      | Schulte-Oenimann et al. (2000)  |
| Potamopyrgus antipodarum |              | artificial | Y  | TPT-CI   | >98      |    | 3.9  | 0     | 15    | 8 w          | EC10      | unshelled embryos |                         | 3.00E-05                |                         | 2.20E-04                | 2  | 7,10      | Duft et al. (2003)              |
| Potamopyrgus antipodarum |              | artificial | Y  | TPT-CI   | >98      |    | 3.9  | 0     | 15    | 8 w          | EC50      | unshelled embryos |                         | 7.40E-04                |                         | 5.50E-03                | 2  | 7,10      | Duft et al. (2003)              |
| Potamopyrgus antipodarum |              | artificial | Y  | TPT-CI   | >98      |    | 3.9  | 0     | 15    | 8 w          | EC50      | unshelled embryos |                         | 7.20E-04                |                         | 5.40E-03                | 4* | 7,8,9,10  | Duft et al. (2002)              |
| Potamopyrgus antipodarum | adult female | artificial | Y  | TPT-CI   |          |    | 3.9  | 0     | 15    | 8 w          | EC10      | unshelled embryos |                         | 3.00E-05                |                         | 2.20E-04                | 4* | 7,9,10    | Duft et al. (2007)              |
| Potamopyrgus antipodarum | adult female | artificial | Y  | TPT-CI   |          |    | 3.9  | 0     | 15    | 8 w          | EC50      | unshelled embryos |                         | 7.40E-04                |                         | 5.50E-03                | 4* | 7,9,10    | Duft et al. (2007)              |
|                          |              |            |    |          |          |    |      |       |       |              |           |                   |                         |                         |                         |                         |    |           |                                 |
| Crustacea                |              |            |    |          |          |    |      |       |       |              |           |                   |                         |                         |                         |                         |    |           |                                 |
| Palaemonetes pugio       |              | mixture    | Y  | TPT-O?   |          |    | 0.75 |       | 22-25 | 96 h         | LC50      | mortality         | 1                       |                         | 13.3                    |                         | 3  | 1,2,3,4,5 | Clark et al. (1987)             |
| Palaemonetes pugio       |              | mixture    | Y  | TPT-O?   |          |    | 0.75 |       | 22-25 | 96 h         | LC50      | mortality         | 420                     |                         | 3150                    |                         | 3  | 1,2,3,4,6 | Clark et al. (1987)             |
|                          |              |            |    |          |          |    |      |       |       |              |           |                   |                         |                         |                         |                         |    |           |                                 |
| Insecta                  |              |            |    |          |          |    |      |       |       |              |           |                   |                         |                         |                         |                         |    |           |                                 |
| Chironomus riparius      | 1st instar   | sandy loam | Y  | TPT-Ac   |          |    | 2    | 8.5   | 20    | 10 d         | EC50      | growth            | 0.7246                  |                         | 3.623                   | 3.10                    | 2  | 13,14     | De Haas et al. (2005)           |
| Chironomus riparius      | 1st instar   | loam       | Y  | TPT-Ac   |          |    | 4.4  | 12    | 20    | 10 d         | EC50      | growth            | 1.279                   |                         | 2.907                   | 2.49                    | 2  | 13,15     | De Haas et al. (2005)           |
| Ephoron virgo            | 1st instar   | sandy loam | Y  | TPT-Ac   |          |    | 2    | 8.5   | 20    | 10 d         | LC50      | survival          | 0.04106                 |                         | 0.2053                  | 0.18                    | 2  | 13,14     | De Haas et al. (2005)           |
| Ephoron virgo            | 1st instar   | sandy loam | Y  | TPT-Ac   |          |    | 2    | 8.5   | 20    | 10 d         | LC10      | survival          | 0.0052                  |                         | 0.026                   | 0.023                   | 2  | 13,14,16  | De Haas et al. (2005)           |
| Ephoron virgo            | 1st instar   | sandy loam | Y  | TPT-Ac   |          |    | 2    | 12    | 20    | 10 d         | EC50      | growth            | 0.1462                  |                         | 0.731                   | 0.63                    | 2  | 13,14     | De Haas et al. (2005)           |
| Ephoron virgo            | 1st instar   | sandy loam | Y  | TPT-Ac   |          |    | 2    | 12    | 20    | 10 d         | EC10      | growth            | 0.0114                  |                         | 0.057                   | 0.049                   | 2  | 13,14,16  | De Haas et al. (2005)           |
| Ephoron virgo            | 1st instar   | loam       | Y  | TPT-Ac   |          |    | 4.4  | 12    | 20    | 10 d         | EC50      | growth            | 0.7718                  |                         | 1.754                   | 1.50                    | 2  | 13,15     | De Haas et al. (2005)           |
| Ephoron virgo            | 1st instar   | loam       | Y  | TPT-Ac   | <u> </u> |    | 4.4  | 12    | 20    | 10 d         | EC10      | growth            | 0.0093                  |                         | 0.046                   | 0.040                   | 2  | 13,15,16  | De Haas et al. (2005)           |

- 1 Solvent control performed.
- 2 Solvent: acetone.
- 3 Unclear which compound has been tested, either TPT-hydroxide or Bis(TPT)-oxide.
- 4 Animals not in sediment but in overlying water during exposure.
- 5 Static test.
- 6 Flow-through test.
- 7 Solvent: methanol, evaporated for 24 h before experiment start, solvent control performed.
- 8 Paper in German.
- 9 Same experiment as Duft et al. 2003.

- 10 Unclear if measured or nominal concentration.
- 11 Solvent: glacial acetic acid.
- 12 Compound was measured but below detection limits.
- 13 Tested sediment originated from mesocosm study and was sampled 15 weeks after addition of the TPT to the water of the system. Results based on measured concentrations in the sediment.
- 14 Original sediment originated from a relative uncontaminated location.
- 15 Original sediment originated from a historical polluted location.
- 16 Endpoint calculated from graph in paper.

## Appendix 3. Summary of mesocosm studies

#### Field study 1.

# Environmental impact of the fungicide Triphenyltin Hydroxide after application to rice fields. (Schaefer et al., 1981).

In a field study in rice fields in California, the effects of one field dose of 1.12 kg a.s./ha triphenyltin hydroxide (TPTH) were studied on phytoplankton, macrophytes, zooplankton, macroinvertebrates, fish and tadpoles. A 0.41 ha area of a rice paddy on the low end (water exit) of a 32.9 ha rice field was selected for treatment. Caged *Gambusia affinis* were placed in the treated paddy, one in an untreated paddy, twice a week after treatment. Residues were measured till 24 d after treatment and average (of 6 samples) concentrations were 146.33  $\mu$ g/L one day after treatment, at day 24 no residues above the limit of detection (0.8  $\mu$ g/L) were found. The application had major effects on almost all organism groups, of which most did not recover within the study period of 5 weeks. Restocking of the cages with healthy fish showed residual toxicity (>40%) for 15 days after treatment (average concentration 8.31  $\mu$ g/L TPTH). No details about statistical elaboration of the results are given.

#### Use of the results for EQS derivation

Since only one dose is applied no endpoint for EQS derivation can be obtained from this study. Given the limited information in the paper, no statistical reliable results can be obtained from the study (Ri 3). The experiment with caged fish shows that concentrations of  $8.31 \mu g/L$  still results in fish mortality. This result can be used to compare with other results of lab and field studies.

# Impact of triphenyltin acetate in microcosms simulating floodplain lakes. I. Influence of sediment quality. (Roessink et al., 2006b).

| Species/Population/Community | zooplankton, macro-invertebrates, phytoplankton, periphyton, macrophytes |
|------------------------------|--------------------------------------------------------------------------|
| Test Method                  | outdoor microcosms                                                       |
| System properties            | 140 x 120 cm, depth 80 cm                                                |
| Formulation                  | Triphenyltin acetate                                                     |
| Analysed                     | Y                                                                        |
| Exposure regime              | 1 application, 0, 1, 10, 30 and 100 µg/L.                                |
| Experimental time            | 40 weeks after treatment                                                 |
| Criterion                    | NOEC                                                                     |
| Test endpoint                | macrophyte community and populations                                     |
| Value [µg/L]                 | NOEC = <1 peak, <0.1 (21 d TWA)                                          |
| Ri                           | 1                                                                        |

#### Test system

20 concrete outdoor microcosms, 140x120 cm, depth 80 cm, 10 cm sediment and 50 cm from two lakes alongside the River Waal, introduced 8 months before the experiment. 10 cosms were filled with sediment from a polluted lake, 10 from a clean lake. Water was obtained from a freshwater reservoir at the experimental facility. 20 shoots of *Elodea nuttallii* were planted in each microcosm, macroinvertebrates were partly introduced with the sediment, but also added 7 and 4 months before the start of the experiment. Phytoplankton and zooplankton were entered with the sediments and with the water. The duration of the experiment was 40 weeks.

Two cosms were left untreated for both the types of cosms, and in each type triphenyltinacetate was applied once (2 replicate) on 18 June, 2001 at concentrations of 1, 10, 30, and 100  $\mu$ g/L, by pouring 4 l into the water and stirring afterwards.

Since some immobile species disappeared from the cosms due to the treatment, a number of individuals were re-introduced in the cosms in order to assess potential recovery. (*Asellus aquaticus, Gammarus pulex, Erpobdella octoculata,* and a number of worm and snail species.)

#### Analytical sampling

Samples of the water of treated tanks were taken from the untreated, 10 and 30  $\mu$ g/L treated cosms only at 3 and 10 h and 1, 3, 7, 14 and 28 d after TPT application. The analytical method did not distinguish between TPT acetate or hydroxide. Sediment samples were taken 2, 4, 15, 25 and 40 weeks after application. The concentration TPT in pore water and in sediment was determined.

#### Effect sampling

Macroinvertebrates were sampled using multi plates and pebble baskets. Individuals were identified (and counted) alive and replaced into the cosm. Phytoplankton, zooplankton and sediment dwelling Nematoda were sampled: total abundance, abundance of major taxonomic groups, abundance of individual taxa and taxa richness. For sampling scheme see table below.

| Date         | Zooplankton | Phytoplankton, | Cover       | Nematoda | Macro-        |
|--------------|-------------|----------------|-------------|----------|---------------|
| (weeks after |             | chlorophyll-a  | macrophytes |          | invertebrates |
| application) |             |                | and algae   |          |               |
| -4           | Х           |                |             |          | Х             |
| -3           |             |                |             | х        |               |
| -2           | х           | х              | Х           |          | х             |
| -1           | Х           | Х              |             |          |               |
| 0.1          |             | Х              | Х           |          |               |
| 0.4          | Х           |                |             |          | Х             |
| 1            | Х           | Х              | Х           |          |               |
| 2            | х           | х              | х           | х        | х             |
| 3            |             |                | Х           |          |               |
| 4            | Х           | Х              | Х           |          | Х             |
| 5            |             |                | Х           |          |               |
| 6            | Х           | Х              | Х           |          |               |
| 7            |             |                | Х           |          |               |
| 8            | Х           | Х              | Х           |          | Х             |
| 10           |             | Х              | Х           |          |               |
| 12           | Х           |                | Х           | х        | Х             |
| 13           |             |                | Х           |          |               |
| 15           |             | X Chl-a        |             |          |               |
| 23           | х           | X Chl-a        |             |          | Х             |
| 40           |             |                |             |          | х             |

#### Sampling scheme

Decomposition of Populus leaves was assessed every 2 weeks.

#### Statistical analysis

Analyses of variance for individual taxa, NOEC with Williams test, PRC for zooplankton, phytoplankton, nematodes and macroinvertebrates.

#### Results

#### Chemical analysis

Measured concentrations in the solution applied were 95-102% of nominal. 3 h after application concentrations in the water column were higher than nominal, probably due to incomplete mixing.

DT50 in the water is 2-4 d (visual estimated from figure), in sediment TPT is very persistent (hardly degradation in 40 d).

#### Biological observations

#### Phytoplankton

A total of 45 taxa were found. Differences were found in community between cosms with clean and polluted sediment. For community and the individual taxa, no clear dose-effect relationship was found. For chlorophyll-*a*, a significant treatment related increase was found, in particular in the polluted cosms, in the two highest treatment levels. At the taxon level, this could only be confirmed for *Cosmarium* in the polluted cosms with a NOEC of 30  $\mu$ g/L.

#### Periphyton and macrophyte cover

A NOEC for macrophyte cover of 30  $\mu$ g/L was found in the clean cosms 2-13 weeks after application; in the polluted cosm, a NOEC of 10  $\mu$ g/L was found in weeks 6, 7, 8 and 13.

#### Zooplankton

A total of 86 taxa were identified (57 in the clean cosms, 76 in the polluted cosms). Community analysis shows a clear dose response relationship. In the period 1-6 weeks post treatment the NOEC is 1 in the polluted cosms, and at week 8 and 12 in the clean cosms. The main zooplankton groups, Copepoda, Cladocera, and Rotifera, showed clear treatment related responses, with Copepoda the most sensitive, with a NOEC of 1  $\mu$ g/L. The most sensitive taxon was *Keratella quadrata*, with a NOEC <1 on two consecutive sampling dates during the first weeks after TPT application in the clean cosm.

#### Nematodes

No significant treatment related effects were found for sediment-dwelling nematodes.

#### Macroinvertebrates

The macroinvertebrate community (83 taxa in total, 82 and 77 in clean and polluted cosms), showed clear significant treatment related effects, with a NOEC of 1  $\mu$ g/L from week 2-23 and <1 at week 4 in the clean sediment, and a NOEC of 1  $\mu$ g/L at weeks 2, 4 and 12 and <1 at weeks 8 and 23 in the polluted sediment.

For the individual taxa significant treatment related effects were found in both types of systems, with NOECs <1-10 for Annelida, Tricaldida and Mollusca in particular. The most sensitive taxa in the clean sediment systems were *Stylaria lacustris* and bivalve molluscs, with NOECs <1  $\mu$ g/L, and *Stylaria lacustris*, *Polycelis nigra/tenuis, Planorbis contortus* and *Physa acuta* in the polluted soil sediments with NOECs <1  $\mu$ g/L.

#### Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- 1. Does the test system represent a realistic freshwater community? Yes, zooplankton, macroinvertebrates, insects, benthic organisms, algae and macrophytes were present. Fish were lacking.
- 2. Is the description of the experimental setup adequate and unambiguous? Yes.
- 3. Is the exposure regime adequately described? Yes. Measured concentrations are presented in figures.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? The compound appeared to have broad biocidal action, represented by the broad range of taxa included in the study.
- 5. Is it possible to evaluate the observed effects statistically? No, raw data were not included in the journal paper.

This results in an overall assessment of the study reliability, -> Ri 1.

Although the substance disappears relatively fast from the water, effects were found for a long period (up to 23 weeks). The NOEC found in the study is <1  $\mu$ g/L. Although effects were found in the lowest dose applied, this value can be used to compare with the MAC-EQS based on other available data. Because the substance disappears relatively fast from the water, the study is not suitable to derive an AA-EQS. As an indication and for comparison with other data, for determining an AA-EQS the 21 d TWA (extrapolated form of the measured concentrations in the 10 and 30  $\mu$ g/L treatment) of <0.1  $\mu$ g/L could be used as a worst case estimate.

#### Impact of triphenyltin acetate in microcosms simulating floodplain lakes. II. Comparison of species sensitivity distributions between laboratory and semi-field. (Roessink et al., 2006a)

In this paper a comparison is made between laboratory toxicity data, and the endpoints derived from it, with data from the semi-field study described above.

The available laboratory toxicity data used in the paper are copied below.

| Species                |    | EC <sub>x</sub> (µg/l) |                 | LC <sub>x</sub> (µg/l) |                  |  |  |
|------------------------|----|------------------------|-----------------|------------------------|------------------|--|--|
| opecies                | ^  | 48 h                   | 96 h            | 48 h                   | 96 h             |  |  |
| Acanthocyclops         | 10 | 2.7 (1.8-4.0)          | 0.1 (0.0-1.5)   | 2.9 (1.9-4.5)          | 0.1 (0.0-0.9)    |  |  |
| venustus               | 50 | 5.8 (4.7-7.1)          | 0.5 (0.1-2.2)   | 6.9 (5.5-8.8)          | 0.8 (0.3-2.0)    |  |  |
| Lumbriculus            | 10 | 4.1 (2.6-6.7)          | 3.5 (2.1-5.8)   | 21.4 (*)               | 13.3 (12.2–14.5) |  |  |
| variegatus             | 50 | 8.8 (6.7-11.5)         | 6.3 (4.8-8.3)   | 22.6 (*)               | 14.8 (13.7–15.9) |  |  |
| Physa fontinalis       | 10 | 5.8 (3.7-8.2)          | 4.2 (2.8-6.1)   | 17.2 (4.3-69.1)        | 10.6 (9.7–11.5)  |  |  |
|                        | 50 | 9.3 (7.6-11.5)         | 7.1 (5.6-9.1)   | 96.3 (36.3-255.0)      | 11.8 (10.9–12.8) |  |  |
| Dugesia sp.            | 10 | 2.7 (1.5-5.0)          | 2.9 (1.7-5.0)   | 24.9 (18.7-33.1)       | 19.0 (18.0-20.0) |  |  |
|                        | 50 | 9.8 (7.2-13.2)         | 6.1 (4.6-8.0)   | 35.3 (29.9-41.6)       | 20.9 (19.9–22.0) |  |  |
| Polycelis niger/tenuis | 10 | 3.1 (1.7-5.6)          | 3.4 (1.9-5.9)   | 42.4 (39.2-45.8)       | 20.8 (*)         |  |  |
|                        | 50 | 10.6 (7.9–14.2)        | 6.6 (5.0-8.8)   | 46.9 (43.1-51.0)       | 23.2 (*)         |  |  |
| Tubifey                | 10 | 2.4 (0.6-9.2)          | 2.3 (0.5-9.3)   | 13.1 (7.7–22.1)        | 9.2 (5.5-15.4)   |  |  |
| TUDITEX                | 50 | 14.2 (8.0-25.3)        | 10.7 (5.5-21.1) | 27.0 (20.5–35.5)       | 12.9 (10.0-16.7) |  |  |

Laboratory toxicity data for invertebrates.

| Species 2                    | ×  | EC <sub>x</sub> (µg/l) |                     | LC <sub>x</sub> (µg/l) |                     |
|------------------------------|----|------------------------|---------------------|------------------------|---------------------|
|                              | ^  | 48 h                   | 96 h                | 48 h                   | 96 h                |
| Planorbis contortis          | 10 | 5.7 (3.0-10.9)         | 3.5 (2.2-5.5)       | _ <sup>a</sup>         | _ <sup>a</sup>      |
|                              | 50 | 14.7 (10.6-20.3)       | 6.6 (5.0-8.6)       | _ <sup>a</sup>         | _ <sup>a</sup>      |
| Danhnia galeata              | 10 | 7.3 (4.9–10.8)         | 5.4 (3.4-8.5)       | 28.2 (14.1-56.5)       | 13.1 (*)            |
| Bapinna galeata              | 50 | 16.1 (13.1–19.9)       | 8.4 (6.8-10.4)      | 41.9 (35.8-49.1)       | 16.0 (*)            |
| Gammarus nulex               | 10 | 5.6 (2.4-13.6)         | 4.5 (2.1-9.8)       | 18.5 (4.6-74.1)        | 11.6 (5.7–23.7)     |
| Gammarus pulex               | 50 | 18.5 (12.3–27.9)       | 8.9 (6.1–12.7)      | 104.4 (39.4–276.5)     | 12.6 (7.0-22.9)     |
| l vmnaea stagnalis           | 10 | 10.0 (5.3-18.6)        | 9.7 (*)             | 263.5 (124.0-559.9)    | 85.8 (*)            |
| Lynnaca stagnans             | 50 | 24.9 (18.3–34.0)       | 11.8 (*)            | 906.9 (387.0-2125.7)   | 92.1 (*)            |
| Erpobdolla juw               | 10 | 15.3 (*)               | 9.6 (6.1–15.0)      | 50.5 (47.1-54.1)       | 23.8 (*)            |
| Lipobucita juv.              | 50 | 25.9 (*)               | 17.1 (13.2–22.1)    | 56.6 (53.2-60.3)       | 27.1 (*)            |
| Cloeon dinterum              | 10 | 34.7 (19.2–63.0)       | 12.3 (4.9–31.2)     | 251.8 (173.6-365.2)    | 39.8 (*)            |
| clocoll alpectalli           | 50 | 120.9 (89.6-163.1)     | 63.0 (42.3-93.8)    | 442.5 (327.4–598.1)    | 168.9 (*)           |
| Proasellus                   | 10 | 37.0 (19.3-71.1)       | 32.4 (17.1–61.2)    | 137.4 (74.7–253.1)     | 39.1 (21.4–71.6)    |
| meridianus/coxalis           | 50 | 139.0 (97.8–197.4)     | 90.9 (65.7-125.8)   | 558.5 (364.7-855.4)    | 138.5 (99.1–193.6)  |
| Asellus aquaticus            | 10 | 78.3 (36.7–167.3)      | 26.0 (8.7–77.8)     | 72.8 (33.9–156.4)      | 72.8 (33.9–156.4)   |
|                              | 50 | 212.8 (146.3-309.5)    | 95.6 (56.6-161.3)   | 271.3 (184.1–399.7)    | 271.3 (184.1-399.7) |
| Endochironomus<br>albipennis | 10 | 343.0 (162.5-724.0)    | 181.9 (170.0–194.6) | 306.8 (163.9-574.0)    | 179.2 (112.5–285.3) |

## Laboratory toxicity data for phytoplankton

| Species                   |                        | x  | Time after application (h) |                  |                  |  |
|---------------------------|------------------------|----|----------------------------|------------------|------------------|--|
|                           |                        |    | 48                         | 72               | 96               |  |
|                           | EC <sub>x</sub> (µg/l) | 10 | 5.5 (4.8-6.3)              | 2.6 (1.9-3.6)    | 3.2 (2.7-3.7)    |  |
| Selenastrum capricornutum |                        | 50 | 58.0 (51.4-65.5)           | 8.8 (7.0-11.0)   | 5.6 (4.9-6.4)    |  |
|                           | NOEC (µg/l)            |    | 3.0                        | 3.0              | 3.0              |  |
|                           | EC <sub>x</sub> (µg/l) | 10 | 15.9 (8.9–28.5)            | 10.1 (8.4–12.3)  | 11.1 (9.9–12.5)  |  |
| Desmodesmus subspicatus   |                        | 50 | 101.9 (84.9-122.4)         | 23.0 (20.1-26.3) | 18.1 (16.5-19.9) |  |
|                           | NOEC (µg/l)            |    | 10.0                       | 10.0             | 10.0             |  |
|                           | EC <sub>x</sub> (µg/l) | 10 | 39.2 (17.5–87.5)           | 14.3 (11.7–17.4) | 2.5 (1.1-6.1)    |  |
| Monoraphidium minutum     |                        | 50 | 187.7 (104.7-336.5)        | 51.5 (40.5-65.4) | 15.8 (10.6-23.7) |  |
|                           | NOEC (µg/l)            |    | 10.0                       | 10.0             | 10.0             |  |
|                           | EC <sub>x</sub> (µg/l) | 10 | 54.6 (35.1-84.8)           | 7.2 (2.9–17.9)   | 17.0 (12.9–22.6) |  |
| Scenedesmus quadricauda   |                        | 50 | 352.9 (133.6-931.7)        | 29.1 (19.4-43.6) | 36.0 (30.8-42.1) |  |
|                           | NOEC (µg/l)            |    | 30.0                       | 3.0              | 3.0              |  |

| Laboratory | toxicity | data | for | macropl | hyte | specie | s. |
|------------|----------|------|-----|---------|------|--------|----|
|            |          |      |     |         |      |        |    |

|                      | x  | EC <sub>x</sub> (µg/l)                                          |                    |                                     | Relative growth   |  |
|----------------------|----|-----------------------------------------------------------------|--------------------|-------------------------------------|-------------------|--|
|                      | ^  | PSII 2 days                                                     | PSII 7 days        | PSII 21 days                        | 21 days           |  |
| Crimedala relymbiae  | 10 | 386.2 (234.0-637.3)                                             | 5.6 (2.3-13.3)     | 28.9 (26.5-31.5)                    | 0.1 (0.0-3.9)     |  |
| Spiroueia polyrniza  | 50 | 5.6*10 <sup>3</sup> (2.6*10 <sup>3</sup> -1.2*10 <sup>4</sup> ) | 29.0 (18.3–45.8)   | 33.1 (30.3-36.3)                    | 4.6 (0.7-29.5)    |  |
| Potamogeton          | 10 | 9.0 (3.2-25.6)                                                  | 5.6 (2.3-13.3)     | -                                   | 23.8 (18.8-30.1)  |  |
| crispus <sup>a</sup> | 50 | 127.9 (78.5–208.2)                                              | 29.0 (18.3-45.8)   | -                                   | 38.8 (31.0-48.4)  |  |
| Lemna trisulca       | 10 | 21.9 (13.3-35.8)                                                | 9.9 (5.4–18.1)     | 11.2 (6.3–19.7)                     | 1.8 (0.2-15.4)    |  |
| Lenna tristica       | 50 | 122.5 (93.9–159.9)                                              | 69.5 (51.1-94.6)   | 36.1 (27.5-47.5)                    | 64.5 (25.6-162.6) |  |
| Ceratophyllum        | 10 | 62.2 (38.8-99.7)                                                | 1.6 (0.0-82.4)     | 48.1 (0.9-2548.2)                   | 0.4 (0.0-17.6)    |  |
| demersum             | 50 | 240.6 (184.9-313.1)                                             | 92.5 (18.1-473.4)  | 1357.3 (327.5-5.6*10 <sup>3</sup> ) | 12.9 (2.0-82.8)   |  |
| Elodea nuttallii ª   | 10 | 6.1 (1.1-34.0)                                                  | 34.8 (11.0-109.9)  | 79.9 (x-x)                          | 1.8 (1.1-3.0)     |  |
|                      | 50 | 59.4 (25.7–137.1)                                               | 101.9 (63.8-162.9) | 97.7 (x-x)                          | 11.8 (7.4–18.8)   |  |
| Lemna minor          | 10 | 9.1*10 <sup>2</sup> (2.1*10 <sup>2</sup> -3.9*10 <sup>3</sup> ) | 104.8 (93.0-118.2) | 96.7 (x-x)                          | 180.0 (x-x)       |  |
|                      | 50 | 6.4*10 <sup>4</sup> (1.0*10 <sup>2</sup> -4.0*10 <sup>7</sup> ) | 138.9 (60.1-321.4) | 130.4 (x-x)                         | 198.9 (x-x)       |  |
| Elodea canadensis    | 10 | 5.1 (1.9-13.8)                                                  | 2.1 (0.2-23.9)     | 1.8 (0.0-214.9)                     | 1.5 (0.1–29.7)    |  |
|                      | 50 | 197.8 (132.6–295.1)                                             | 176.6 (69.1-451.7) | 44.5 (4.8-413.8)                    | 23.4 (8.5–64.5)   |  |
| Myriophyllum         | 10 | NA                                                              | NA                 | NA                                  | 32.3 (18.7–55.6)  |  |
| spicatum             | 50 | NA                                                              | NA                 | NA                                  | 73.4 (44.9–200.0) |  |

Roessink et al. calculate HC5 values based on the EC50, see below.

HC5 values (µg/L) derived by Roessink et al. (2006a), based on EC50 values

| т. (1 <b>в</b> .) / | 241  | 40.1 | 70.1 |      |
|---------------------|------|------|------|------|
| Taxa                | 24 h | 48 h | 72 h | 96 h |
| macroinvertebrates  | 5    | 2.9  | 1.8  | 1.3  |
| algae PSII          |      |      |      | 1.3  |
| Macrophytes PSII    |      |      |      | 1.9  |
| Macrophytes rel.    |      |      |      | 4.2  |
| growth              |      |      |      |      |

Based on the microcosm data, Roessink et al. (2006a) derived HC5 values too. The HC5 based on peak concentration varied between 0.2  $\mu$ g/L and 0.6  $\mu$ g/L, depending on the data (2, 4 and 8 weeks post application) or the type of sediment; the HC5 based on the 21-TWA varied between 0.1  $\mu$ g/L and 0.2  $\mu$ g/L.

The authors conclude that the organisms in the field study responded significantly more sensitive than invertebrate species in the laboratory.

#### Evaluation of the results

The evaluator recalculated the HC5 for both the EC50 and the EC10 values. For this aim all data were combined, using the 96 h data for the invertebrates and phytoplankton, and the 7 d data from the macrophytes.

The average EC50 is 42.02  $\mu$ g/L, and the average EC10 is 19.23  $\mu$ g/L. The HC5 value for the EC50 values is 2.04  $\mu$ g/L, and the HC5 for EC10 values is 0.62  $\mu$ g/L.

Based on the available data it can be concluded that the EC50 - EC10 ratio is 2-4. However, not all species required for an SSD are available. It is recommended to do the calculations combined with other available laboratory data.

Also with the recalculated data, the conclusion of the authors that the semi field study is more sensitive is still valid.

For the field study the result of the SSD is in line with the overall outcome of the field study as described before.

# Interactions between nutrients and organic micro-pollutants in shallow freshwater model ecosystems. (Roessink, 2008)

The paper describes that the time-to-effect for TPT in the mesocosms is rather long, so that the time point 4 weeks post exposure is a relevant moment for assessing the effects. Also indirect effects and bio-accumulation are discussed. The paper does not present new data on which an endpoint for EQS derivation can be derived.

National Institute for Public Health and the Environment P.O. Box 1 | 3720 BA Bilthoven www.rivm.com