

Letter report 601716001/2008

L.C. van Leeuwen | J.H. Vos | B.J.W.G. Mensink

Environmental risk limits for lambda-cyhalothrin

RIVM Letter report 601716001/2008

Environmental risk limits for lambda-cyhalothrin

L.C. van Leeuwen J.H. Vos B.J.W.G. Mensink

Contact:

L.C. van Leeuwen, MSc. Expertise Centre for Substances Lonneke.van.Leeuwen@rivm.nl

This investigation has been performed by order and for the account of Directorate-General for Environmental Protection, Directorate for Soil, Water and Rural Area (BWL), within the framework of the project 'Standard setting for other relevant substances within the WFD'.

© RIVM 2008

Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication.

Rapport in het kort

Environmental risk limits for lambda-cyhalothrin

Dit rapport geeft milieurisicogrenzen voor het insecticide lambda-cyhalothrin in water en sediment. Milieurisicogrenzen zijn de technisch-wetenschappelijke advieswaarden voor de uiteindelijke milieukwaliteitsnormen in Nederland. De milieurisicogrenzen zijn afgeleid volgens de methodiek die is voorgeschreven in de Europese Kaderrichtlijn Water. Hierbij is gebruikgemaakt van de beoordeling in het kader van de Europese toelating van gewasbeschermingsmiddelen (Richtlijn 91/414/EEG), aangevuld met gegevens uit de openbare literatuur.

Acknowledgements

Thanks are due to dr. S.J. Maund from Syngenta for providing additional information on a number of experiments.

Contents

1	Introduction	9
1.1	Background and scope of the report	9
1.2	Status of the results	9
2	Methods	10
2.1	Data collection	10
2.2	Data evaluation and selection	10
2.3	Derivation of ERLs	11
2.3.1	Drinking water	11
3	Derivation of environmental risk limits for lambda-cyhalothrin	13
3.1	Substance identification, physico-chemical properties, fate and human toxicology	13
3.1.1	Identity	13
3.1.2	Physico-chemical properties	14
3.1.3	Behaviour in the environment	15
3.1.4 3.1.5	Bioconcentration and biomagnification Human toxicological threshold limits and carcinogenicity	15 15
3.1.3	Trigger values	16
3.3	Toxicity data and derivation of ERLs for water	16
3.3.1	MPC _{eco,water}	16
3.3.2	MPC _{sp, water} and MPC _{sp, marine}	19
3.3.3	MPC _{hh food, water}	19
3.3.4	MPC _{dw, water}	19
3.3.5	Selection of the MPC _{water}	20
3.3.6	MAC _{eco, water}	20
3.3.7	SRC _{eco, water}	22
3.4	Toxicity data and derivation of ERLs for sediment	23
3.4.1	Sediment toxicity data	23
3.4.2	Derivation of MPC _{sediment}	23
3.4.3	Derivation of SRC _{sediment}	23
4	Conclusions	24
Referen	ces	25
Append	ix 1. Detailed aquatic toxicity data	26
Append	ix 2. Description of mesocosm studies	31
Append	ix 3. Detailed bird and mammal toxicity data	38
Append	ix 4. Detailed sediment toxicity data	39
Append	ix 5. References used in the appendices	40

1 Introduction

1.1 Background and scope of the report

In this report, environmental risk limits (ERLs) for surface water and sediment are derived for the pyrethroid insecticide lambda-cyhalothrin. The derivation is performed within the framework of the project 'Standard setting for other relevant substances within the WFD', which is closely related to the project 'International and national environmental quality standards for substances in the Netherlands' (INS). Lambda-cyhalothrin is part of a series of 25 pesticides that appeared to have a high environmental impact in the evaluation of the policy document on sustainable crop protection ('Tussenevaluatie van de nota Duurzame Gewasbescherming'; MNP, 2006) or were selected by the Water Boards ('Unie van Waterschappen'; project 'Schone Bronnen'; http://www.schonebronnen.nl/).

The following ERLs are considered:

- Maximum Permissible Concentration (MPC) the concentration protecting aquatic ecosystems and humans from effects due to long-term exposure
- Maximum Acceptable Concentration (MAC_{eco}) the concentration protecting aquatic ecosystems from effects due to short-term exposure or concentration peaks.
- Serious Risk Concentration (SRC_{eco}) the concentration at which possibly serious ecotoxicological effects are to be expected.

More specific, the following ERLs can be derived depending on the availability of data and characteristics of the compound:

 $MPC_{eco,\,water} \qquad MPC \ for \ freshwater \ based \ on \ ecotoxicological \ data \ (direct \ exposure)$

MPC_{sp. water} MPC for freshwater based on secondary poisoning

 $MPC_{hh\ food,\ water}$ MPC for fresh and marine water based on human consumption of fishery products

MPC_{dw, water} MPC for surface waters intended for the abstraction of drinking water

 $MAC_{eco,\,water} \qquad MAC \ for \ freshwater \ based \ on \ ecotoxicological \ data$

SRC_{eco, water} SRC for freshwater based on ecotoxicological data

MPC_{eco, marine} MPC for marine water based on ecotoxicological data (direct exposure)

MPC_{sp, marine} MPC for marine water based on secondary poisoning

MAC_{eco, marine} MAC for marine water based on ecotoxicological data (direct exposure)

1.2 Status of the results

The results presented in this report have been discussed by the members of the scientific advisory group for the INS-project (WK-INS). It should be noted that the Environmental Risk Limits (ERLs) in this report are scientifically derived values, based on (eco)toxicological, fate and physico-chemical data. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs). ERLs should thus be considered as proposed values that do not have any official status.

2 Methods

The methodology for the derivation of ERLs is described in detail by Van Vlaardingen and Verbruggen (2007), further referred to as the 'INS-Guidance'. This guidance is in accordance with the guidance of the Fraunhofer Institute (FHI; Lepper, 2005).

The process of ERL-derivation contains the following steps: data collection, data evaluation and selection, and derivation of the ERLs on the basis of the selected data.

2.1 Data collection

In accordance with the WFD, data of existing evaluations were used as a starting point. For pesticides, the evaluation report prepared within the framework of EU Directive 91/414/EC (Draft Assessment Report, DAR) was consulted (EC, 1996; further referred to as DAR). An on-line literature search was performed on TOXLINE (literature from 1985 to 2001) and Current contents (literature from 1997 to 2007). In addition to this, all potentially relevant references in the RIVM e-tox base and EPA's ECOTOX database were checked.

2.2 Data evaluation and selection

For substance identification, physico-chemical properties and environmental behaviour, information from the List of Endpoints of the DAR was used. When needed, additional information was included according to the methods as described in Section 2.1 of the INS-Guidance. Information on human toxicological threshold limits and classification was also primarily taken from the DAR.

Ecotoxicity studies (including bird and mammal studies) were screened for relevant endpoints (i.e. those endpoints that have consequences at the population level of the test species). All ecotoxicity and bioaccumulation tests were then thoroughly evaluated with respect to the validity (scientific reliability) of the study. A detailed description of the evaluation procedure is given in the INS-Guidance (see Section 2.2.2 and 2.3.2). In short, the following reliability indices were assigned:

- Ri 1: Reliable without restriction
 - 'Studies or data ... generated according to generally valid and/or internationally accepted testing guidelines (preferably performed according to GLP) or in which the test parameters documented are based on a specific (national) testing guideline ... or in which all parameters described are closely related/comparable to a guideline method.'
- Ri 2: Reliable with restrictions
 - 'Studies or data ... (mostly not performed according to GLP), in which the test parameters documented do not totally comply with the specific testing guideline, but are sufficient to accept the data or in which investigations are described which cannot be subsumed under a testing guideline, but which are nevertheless well documented and scientifically acceptable.'
- Ri 3: Not reliable
 - 'Studies or data ... in which there are interferences between the measuring system and the test substance or in which organisms/test systems were used which are not relevant in relation to the exposure (e.g., unphysiologic pathways of application) or which were carried out or generated according to a method which is not acceptable, the documentation of which is not sufficient for an assessment and which is not convincing for an expert judgment.'

- Ri 4: Not assignable 'Studies or data ... which do not give sufficient experimental details and which are only listed in short abstracts or secondary literature (books, reviews, etc.).'

All available studies were summarised in data-tables, that are included as Annexes to this report. These tables contain information on species characteristics, test conditions and endpoints. Explanatory notes are included with respect to the assignment of the reliability indices.

With respect to the DAR, it was chosen not to re-evaluate the underlying studies. In principle, the endpoints that were accepted in the DAR were also accepted for ERL-derivation with Ri 2, except in cases where the reported information was too poor to decide on the reliability or when there was reasonable doubt on the validity of the tests. This applies especially to DARs prepared in the early 1990s, which do not always meet the current standards of evaluation and reporting.

In some cases, the characteristics of a compound (i.e. fast hydrolysis, strong sorption, low water solubility) put special demands on the way toxicity tests are performed. This implies that in some cases endpoints were not considered reliable, although the test was performed and documented according to accepted guidelines. If specific choices were made for assigning reliability indices, these are outlined in Section 3.3 of this report.

Endpoints with Ri 1 or 2 are accepted as valid, but this does not automatically mean that the endpoint is selected for the derivation of ERLs. The validity scores are assigned on the basis of scientific reliability, but valid endpoints may not be relevant for the purpose of ERL-derivation (e.g. due to inappropriate exposure times or test conditions that are not relevant for the Dutch situation). Endpoints from tests with formulated products were not selected if the results (expressed on the basis of the active substance) differed by more than a factor of 3 from the results obtained with the active substance itself.

After data collection and validation, toxicity data were combined into an aggregated data table with one effect value per species according to Section 2.2.6 of the INS-Guidance. When for a species several effect data were available, the geometric mean of multiple values for the same endpoint was calculated where possible. Subsequently, when several endpoints were available for one species, the lowest of these endpoints (per species) is reported in the aggregated data table.

2.3 Derivation of ERLs

For a detailed description of the procedure for derivation of the ERLs, reference is made to the INS-Guidance. With respect to the selection of the final MPC_{water}, some additional comments should be made:

2.3.1 Drinking water

The INS-Guidance includes the MPC for surface waters intended for the abstraction of drinking water (MPC $_{dw, water}$) as one of the MPCs from which the lowest value should be selected as the general MPC $_{water}$ (see INS-Guidance, Section 3.1.6 and 3.1.7). According to the proposal for the daughter directive Priority Substances, however, the derivation of the AA-EQS (= MPC) should be based on direct exposure, secondary poisoning, and human exposure due to the consumption of fish. Drinking water was not included in the proposal and is thus not guiding for the general MPC value. The exact way of implementation of the MPC $_{dw, water}$ in the Netherlands is at present under discussion within the framework of the "AMvB Kwaliteitseisen en Monitoring Water". No policy decision has been taken yet, and the MPC $_{dw, water}$ is therefore presented as a separate value in this report. The MPC $_{water}$, is thus derived considering the individual MPCs based on direct exposure (MPC $_{eco, water}$), secondary poisoning

 $(MPC_{sp, \, water})$ or human consumption of fishery products $(MPC_{hh \, food, \, water})$; derivation of the latter two is dependent on the characteristics of the compound.

Related to this, is the inclusion of water treatment for the derivation of the MPC $_{dw, water}$. According to the INS-Guidance (see Section 3.1.7), a substance specific removal efficiency related to simple water treatment should be derived in case the MPC $_{dw, water}$ is lower than the other MPCs. For pesticides, there is no agreement as yet on how the removal fraction should be calculated, and water treatment is therefore not taken into account. In case no A1 value is set in Directive 75/440/EEC, the MPC $_{dw, water}$ is set to the general Drinking Water Standard of 0.1 μ g/L for organic pesticides as specified in Directive 98/83/EC.

12

3 Derivation of environmental risk limits for lambdacyhalothrin

3.1 Substance identification, physico-chemical properties, fate and human toxicology

3.1.1 Identity

Lambda-cyhalothrin is a 1:1 mixture of

(S)- α -cyano-3-phenoxybenzyl (Z)-(1R,3R)-3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethylcyclopropanecarboxylate

and

(R)- α -cyano-3-phenoxybenzyl (Z)-(1S,3S)-3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethylcyclopropanecarboxylate

(S)
$$(Z)$$
- $(1R)$ -cis-

(R) (Z)-(1S)-cis-

Figure 1. Structural formula of lambda-cyhalothrin.

Table 1. Identification of lambda-cyhalothrin.

Parameter	Name or number	Source
Common name	Lambda-cyhalothrin	EC, 1996
Chemical name	1:1 mixture of	EC, 1996
	(S) - α -cyano-3-phenoxybenzyl (Z) - $(1R,3R)$ -3- $(2$ -	
	chloro-3,3,3-trifluoroprop-1-enyl)-2,2-	
	dimethylcyclopropanecarboxylate and	
	(R) - α -cyano-3-phenoxybenzyl (Z) - $(1S,3S)$ -3- $(2$ -	
	chloro-3,3,3-trifluoroprop-1-enyl)-2,2-	
	dimethylcyclopropanecarboxylate	
CAS number	91465-08-6	EC, 1996
EC number	Not allocated	EC, 1996
SMILES code	Cl\C(=C/[C@H]3[C@@H](C(=O)OC(C#N)c2ccc	EC, 1996
	c(Oc1ccccc1)c2)C3(C)C)C(F)(F)F	
Use class	Insecticide	EC, 1996
Mode of action	Pyrethroid: interaction with pre-synaptic sodium	Tomlin, 2002
	channels.	
Authorised in NL	Yes	Ctgb website
Annex 1 listing	Yes	Ctgb website

3.1.2 Physico-chemical properties

Table 2. Physico-chemical properties of lambda-cyhalothrin.

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	449.9		EC, 1996
Water solubility	[mg/L]	0.004	20°C, pH 5	EC, 1996
-		0.005	20°C, pH 6.5	
		0.004	20°C, pH 9.2	
pK_a	[-]	>9	No dissociation at environmentally relevant pH values	Tomlin, 2002
$\log K_{\mathrm{OW}}$	[-]	7	20°C	EC, 1996
$\log K_{ m OC}$	[-]	5.20	Mean of 4.58, 4.68, 5.30 and 5.54	EC, 1996
Vapour pressure	[Pa]	$2x10^{-7}$	20°C, extrapolated	EC, 1996
Melting point	[°C]	49.2	, 1	EC, 1996
Boiling point	[°C]	-	No measurable boiling point (decomposes)	EC, 1996
Henry's law constant	[Pa.m ³ /mol]	0.02	20°C	EC, 1996

n.a. = not applicable.

3.1.3 Behaviour in the environment

Table 3. Selected environmental properties of lambda-cyhalothrin.

Parameter	Unit	Value	Remark	Reference
Hydrolysis half-life	DT50 [d]	Stable at environmentally relevant pH values	No significant hydrolysis at pH 5.2 and 6.9. At pH 9.0, 43-45% of substance stays intact for 7 days.	EC, 1996
Photolysis half-life	DT50 [d]	13 days 4.1 hours	Water Air	EC, 1996
Readily biodegradable		Not tested		EC, 1996
Relevant metabolites		(<u>Z</u>)-3-(2-chloro-3,3,3- trifluoro-propenyl) 2, 2- dimethylcyclopropane- carboxylic acid; 3-phenoxybenzoic acid	> 10%	EC, 1996

3.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for lambda-cyhalothrin is given in Table 4.

Table 4. Overview of bioaccumulation data for lambda-cyhalothrin.

Parameter	Unit	Value	Remark	Reference
BCF (fish)	[L/kg]	1600-	Formulation: Karate,	EC, 1996
		2240	geomean 1893 L/kg	
BMF_1	[kg/kg]	10	Default value	Van Vlaardingen and Verbruggen, 2007
BMF_2	[kg/kg]	10	Default value	Van Vlaardingen and Verbruggen, 2007

3.1.5 Human toxicological threshold limits and carcinogenicity

The following human toxicological R phrases are assigned: R21, R25, R26. The R26 risk phrase is based on an acute inhalatory toxicity study in rats with a LC_{50} of 0.06 mg/L (EC, 2003).

3.2 Trigger values

This section reports on the trigger values for ERLwater derivation (as demanded in WFD framework).

Table 5. Lambda-cyhalothrin: collected properties for comparison to MPC triggers.

Parameter	Value	Unit	Method/Source	Derived at section
$\text{Log } K_{p,\text{susp-water}}$	4.20	[-]	$K_{\rm OC} \times f_{\rm OC,susp}^{1}$	K _{OC} : 3.1.2
BCF	2240	[L/kg]		3.1.4
BMF_1	10	[kg/kg]		3.1.4
BMF_2	10	[kg/kg]		3.1.4
$\text{Log } K_{\text{OW}}$	7	[-]		3.1.2
R-phrases	R21, 25, 26, 50/53	[-]		3.1.5
A1 value	1.0	[µg/L]	Total pesticides	
DW Standard	0.1	[µg/L]	General value for o	organic pesticides

 $¹ f_{OC,susp} = 0.1 \text{ kg}_{OC}/\text{kg}_{solid} (EC, 2003).$

- o Lambda-cyhalothrin has a log $K_{p, susp-water} > 3$; derivation of MPC_{sediment} is triggered.
- o Lambda-cyhalothrin has a log $K_{p, \text{ susp-water}} > 3$; expression of the MPC_{water} as MPC_{susp, water} is required.
- o Lambda-cyhalothrin has a BCF > 100 L/kg; assessment of secondary poisoning is triggered.
- O Lambda-cyhalothrin triggers the route for human health via food (fish) consumption (BCF \geq 100 in combination with risk phrase R21 and R25): MPC_{hh food, water} should be derived.
- For lambda-cyhalothrin, no specific A1 value or Drinking Water Standard is available from Council Directives 75/440, EEC and 98/83/EC, respectively. Therefore, the general Drinking Water Standard for organic pesticides applies.

3.3 Toxicity data and derivation of ERLs for water

3.3.1 MPC_{eco,water}

An overview of the selected freshwater toxicity data for lambda-cyhalothrin is given in Table 6. Selected data for chronic marine toxicity is given in Table 7. Detailed toxicity data for lambda-cyhalothrin are tabulated in Appendix 1.

Table 6. Lambda-cyhalothrin: selected freshwater toxicity data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (μg/L)
Algae	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Algae	, , , , , , , , , , , , , , , , , , ,
Pseudokirchneriella	> solubility	Pseudokirchneriella	> solubility
subcapitata		subcapitata	
<u>Crustacea</u>		<u>Crustacea</u>	
Daphnia magna	0.002^{b}	Asellus aquaticus	0.0248^{c}
		Cyclops sp.	0.3
		Daphnia galeata	0.117
		Daphnia magna	0.39
		Gammarus pulex	0.0242^{d}
		Hyalella azteca	0.0023
		Ostracoda	3.3
		Proasellus coxalis	0.0177^{e}
		Simocephalus vetulus	0.957
		<u>Insecta</u>	
		Caenis horaria	0.0136
		Chaoborus obscupires	0.0028
		Cloeon dipterum	$0.0248^{\rm f}$
		Corixa sp.	0.03
		Erythromma viridulum	0.493
		Ischnura elegans	0.13
		Macropelopia sp.	0.0643
		Notonecta glauca	0.0148
		Sialis lutaria	0.028
		<u>Arachnida</u>	
		Hydrocarina	0.047
		Pisces	
		Cyprinus carpio	0.50
		Danio rerio	1.23 ^g
		Gasterosteus aculeatus	0.49
		Ictalurus punctatus	0.16
		Lepomis macrochirus	0.21
		Leucistus idus	0.08
		Onchorhynchus mykiss	0.24
		Oryzias latipes	1.60
		Pimephales promelas	0.70

^a For detailed information see Appendix 1. Bold values are used for ERL derivation.

^b Most relevant exposure duration (21 days), parameter reproduction for *Daphnia magna*.

^c Most sensitive end point (immobilisation) and most relevant test duration for *Asellus aquaticus*.

^d Most relevant exposure duration for *Gammarus pulex*.

^e Most sensitive end point (immobilisation) and most relevant test duration for *Proasellus coxalis*.

f Most sensitive end point (immobilisation) and most relevant test duration for *Cloeon dipterum*.

^g Geometric mean of 0.78 and 1.94 μg/L, parameter mortality for *Danio rerio*.

Table 7. Lambda-cyhalothrin: selected marine toxicity data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/L)	Taxonomic group	L(E)C50 (μg/L)
<u>Pisces</u>			
Cyprinodon variegatus	0.25		

^a For detailed information see Appendix 1.

3.3.1.1 Treatment of fresh- and saltwater toxicity data

ERLs for freshwater and marine waters should be derived separately. For pesticides, data can only be combined if it is possible to determine with high probability that marine organisms are not more sensitive than freshwater organisms (Lepper, 2005). Since the dataset of lambda-cyhalothrin only contains one marine value for fish, combining the datasets for freshwater- and other surface waters is not possible.

3.3.1.2 Mesocosm and field studies

Various mesocosm and field studies were performed with lambda-cyhalothrin; a short summary of the results of these studies is given below. An extensive evaluation of the studies is included in Appendix 2.

- In the studies of Farmer et al. (1995) and Kedwards et al. (1999) a 7 day NOEC value for macroinvertebrates of <0.002 µg/L was found. The studies were attributed a validity of 1.
- The studies of Heckmann and Friberg (2005) and Heckmann et al. (2005) showed NOEC values between <0.305 and 0.42 μg/L for *Gammarus* densities, depending on the time post-exposure. Further, a 14 day NOEC of 0.35 μg/L for oligochaeta and *Elmis aenea* densities and a NOEC for *Gammarus pulex* mortality of 0.05 μg/L were found. These studies were attributed a validity of 1.
- The study of Lauridsen and Friberg (2005) showed a NOEC for drift of *Gammarus* of <0.01 μg/L and was attributed a validity of 2.
- The studies of Leistra et al. (2003), Roessink et al. (2005) and van Wijngaarden et al. (2006) showed 7 day NOEC values for macroinvertebrates and *Chaoborus obscuripes* of <0.01μg/L and were attributed a validity of 1.
- The studies of Hill et al. (1988 and 1994) were attributed a validity of 3.

Since all mesocosm studies use single exposure, the results of these studies are used for the derivation of the MAC $_{eco,\,water}$. The studies which are considered valid have NOEC values ranging from < 0.02 to $0.42~\mu g/L$.

When lambda-cyhalothrin is monitored, it should be taken into account that the physico-chemical properties of lambda-cyhalothrin (low water solubility, high log Kow) will result in strong sorption to sediment and suspended matter and a non-homogenous distribution of the substance in the aqueous phase. This causes difficulties for the determination of the lambda-cyhalothrin concentration in the water phase in a field (or cosm) situation (e.g. the concentration of lambda-cyhalothrin in a sample taken 4 cm below the water surface can differ significantly from the concentration in a sample taken at a depth of 80 cm). Therefore, the most conservative NOEC value (< $0.002~\mu g/L$) derived from the cosm studies is used in the derivation of the MAC.

3.3.1.3 Derivation of MPC_{eco, water}

Acute toxicity data are available for crustaceans, insects, arachnids and fish. Algae were tested, but no valid endpoint could be determined since effects, if present, were only observed at concentrations that

rivm

were well above water solubility (> 300 μ g/L). It is considered justified to treat the data as if the base set is complete and the use of chronic toxicity data can therefore be allowed.

A chronic NOEC for *Daphnia magna* is available (0.002 µg/L), in addition, chronic tests with Pseudokirchneriella subcapitata show that no effects occur below the water solubility. Based on the availability of two chronic values, an assessment factor of 50 could be used. However, the most sensitive species, Hyallella azteca, shows an EC₅₀ value of 0.0023 µg/L). Assuming a acute to chronic ratio of 10, the NOEC for this species might potentially be lower than the lowest NOEC value (Daphnia magna, 0.002 µg/L). In addition, the data show that D. magna is over a factor of 100 less sensitive than H. azteca and Chaoborus obscupires in acute tests. Therefore, an assessment factor of 50 is considered to be insufficient for the protection of the most sensitive species, resulting in the use of an

Because the base-set for marine water is incomplete; no MPC_{eco. marine} can be derived.

assessment factor of 100. This results in a MPC $_{eco,water}$ of 0.002 /100 = 0.00002 $\mu g/L$.

3.3.2 MPC_{sp, water} and MPC_{sp, marine}

Since the BCF of lambda-cyhalothrin is ≥ 100 L/kg (BCF fish is 1660-2240, Ctgb), secondary poisoning should be assessed. The lowest MPC_{oral} is 0.33 mg/kg_{food} for rats (Table 8). Subsequently, the MPC_{sp,water} can be calculated using a BCF of 2240 and a BMF of 10 (section 3.1.4) and becomes $0.33/(2240 \times 10) = 0.015 \mu g/L$

Species	Exposure time	Criterion	Effect	Assessment	MPCoral
			concentration	factor	(mg/kg_{food})
			(mg/kg_{diet})		
Mouse	2 years	NOAEL	20	30	0.67
Rat	90 days	NOEL	50	90	0.56
Rat	90 days	NOAEL	50	90	0.56
Rat	2 years	NOAEL	10	30	0.33
Rat	Three generations	NOEL	30	30	1

Table 8. Lambda-cyhalothrin: bird and mammal toxicity data.

1 year

Because toxicity data for marine predators are generally not available, the MPCoral, min as derived above is used as a representative for the marine environment also. To account for the longer food chains in the marine environment, an additional biomagnification step is introduced (BMF₂). This factor is the same as given in Table 4. The MPC_{sp, marine} is $0.33 / (2240 \times 10 \times 10) = 0.0015 \, \mu g/L$.

NOEL

0.5

3.3.3 MPC_{hh food, water}

Dog

Since lambda-cyhalothrin has a BCF > 100 L/kg and the R-phrases R21 and R25, derivation of MPC_{hh} food, water for lambda-cyhalothrin is triggered (Table 5). The MPC_{hh food, water} is calculated according to Section 3.1.5 of Vlaardingen en Verbruggen (2007), using the ADI (0.005 mg/kg.bw), a body weight of 70 kg and a daily fish consumption of 115 g. The MPC_{hh food} = $0.005 \times 0.1 \times 70/0.115 = 0.304 \text{ mg/kg}$. The MPC_{hh food, water} = MPC_{hh food} / (BCF x BMF₁) = 0.304 / (2240 x 10) = 0.014 x 10-3 mg/L = 0.014μg/L.

The MPC_{hh food, water} is 0.014 μg/L for both the freshwater and marine environment.

3.3.4 MPC_{dw, water}

The Drinking Water Standard is 0.1 μ g/L. Thus the MPC_{dw, water} value is also 0.1 μ g/L.

0.67

3.3.5 Selection of the MPC_{water}

The lowest value of the routes included (see Chapter 2.3.1) is the MPC $_{eco, water}$. Therefore, the MPC $_{water}$ is 0.00002 µg/L.

3.3.5.1 MPC_{susp, water}

Because the $K_{p, \text{ susp-water}} \ge 3$, the MPC_{water} should be recalculated to MPC_{susp, water} using the following formula:

MPC_{susp, water} = MPC_{water, total} / (C_{susp, Dutch standard} × 10^{-6} + ($1/K_{p, susp-water, Dutch standard}$)), with MPC_{water, total} being the above derived MPC_{water} in mg/L and C_{susp, Dutch standard} is 30 mg/L.

For this calculation, $K_{p,susp-water,Dutch\ standard}$ is calculated as K_{OC} x $f_{OC,susp,Dutch\ standard}$. This is not the same as the European standard $f_{OC,susp}$ which is used in the table with trigger values. With a log K_{OC} of 5.2 (K_{oc} 158489 L/kg) an $f_{OC,susp,Dutch\ standard}$ of 0.1176, the $K_{p,susp-water,Dutch\ standard}$ is calculated to be 18645 L.

The MPC_{susp, water} is $0.00002 \times 10^{-3} / (30 \times 10^{-6} + (1 / 18645)) = 2.4 \times 10^{-4} \text{ mg/kg}_{dw} = 0.24 \, \mu\text{g/kg}_{dw}$.

3.3.6 MAC_{eco, water}

Since the BCF of lambda-cyhalothrin is > 100 L/kg, the mode of action is known and the most sensitive species (insects) are included in the dataset, the MAC_{eco, water} is derived using an assessment factor of 100 on the lowest LC₅₀ value of 0.0023 μ g/L for *Hyalella azteca*. The MAC_{eco,water} derived using this assessment factor is 0.0023/100 = 0.000023 μ g/L.

For comparison, the $MAC_{eco, water}$ is also derived applying Species Sensitivity Distribution (SSD) to the chronic data. This is allowed when at least 10 values (preferably 15) are available for different species covering at least eight taxonomic groups. The taxonomic groups to be covered and their representatives in the present dataset are as follows:

- Fish: represented by *Ictalurus punctatus* (familiy Ictaluridae)
- A second family in the phylum Chordata: represented by Oncorhynchus mykiss (family Salmonidae)
- Crustacea: represented by Gammarus pulex and Daphnia magna
- Insects: represented by Chironomus riparius
- A family in another phylum than Arthropoda or Chordata: -
- A family in any order of insect or any phylum no already represented: represented by *Hydrocarina*
- Algae: represented by Scenedesmus subspicatus
- Macrophyta: -

The present dataset neither includes macrophytes nor a phylum "other than arthropoda or chordata". However, lambda-cyhalothrin was shown not to have a direct effect on macrophytes (mesocosm studies of Roessink et al., 2005 and Van Wijngaarden et al., 2006, Appendix 3) and molluscs (LOEC value of $> 8.9 \ \mu g/L$ for *Bithynia tentaculata*, Appendix 1) in concentrations below its water solubility. Additionally, a large amount of data is available for the potentially most sensitive taxonomic groups. Therefore, a SSD may be performed (Figure 1).

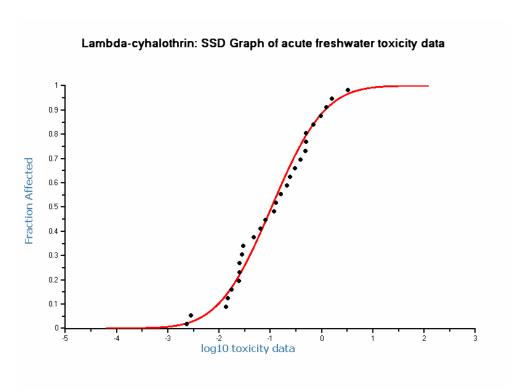


Figure 1. SSD curve based on acute freshwater toxicity data of lambda-cyhalothrin.

The SSD was performed on the complete acute freshwater toxicity dataset of lambda-cyhalothrin (Table 6) and showed a HC₅ value of 0.0047 μ g/L, with a 90% confidence interval of 0.0016 - 0.0104 μ g/L. The distribution of toxicity data is normal and meets all statistic significance standards tested (Anderson-Darling test, Kolmogorov-Smirnov test, Cramer van Mises test). This HC₅ value exceeds the L(E)C₅₀ values for *Hyalella azteca* (0.0023 μ g/L) and *Chaoborus obspicurus* (0.0028 μ g/L).

When the MAC_{eco, water} is based on a SSD curve, usually a default assessment factor of 10 is applied in order to extrapolate from the short-term $L(E)C_{50}$ level to the short-term no-effect level. For the HC_5 value of 0.0047 μ g/L, this would result in a MAC_{eco, water} of 0.00047 μ g/L.

For lambda-cyhalothrin however, acute EC_{10} values are available for 11 species of arthropoda (Schroer et al., 2004; Table 9). Since EC_{10} values can be considered to represent the no-effect level, an additional SSD was performed on these data in order to validate the assessment factor used on the HC_5 of the acute EC_{50} -values.

Table 9. Lambda-cyhalothrin: Acute EC₁₀ data.

Acute	
Taxonomic group	EC10 (μg/L)
Crustacea	
Asellus aquaticus	0.0097^{b}
Daphnia galeata	0.0440 ^a
Gammarus pulex	0.0131 ^b
Proasellus coxalis	0.0130^{a}
Simocephalus vetulus	0.334^{a}
<u>Insecta</u>	
Caenis horaria	0.0036^{b}
Chaoborus obscupires	0.0006^{a}
Cloeon dipterum	0.0072^{a}
Erythromma viridulum	0.377^{a}
Macropelopia sp.	0.125^{a}
Notonecta glauca	0.0072^{a}

^a Exposure time 48 hours.

The SSD curve on the EC $_{10}$ values showed a HC $_5$ value of 0.00065 $\mu g/L$, with a confidence interval of 0.00008 - 0.0022 $\mu g/L$. The distribution of data is normal, though not all statistical significance standards tested are met on all levels of significance.

The EC_{10} -HC₅ value of 0.00065 μ g/L is only a factor of 1.39 higher than the EC_{50} -HC₅ value with an assessment factor of 10(0.00047 μ g/L). This is a small difference. Furthermore the SSD curve based on the EC_{10} -values does not fully meet the assumptions of a normal distribution. In view of this, an assessment factor of 10 on the EC_{50} -HC₅ is considered valid.

Both the MAC_{eco, water} derived using assessment factors (0.000023 $\mu g/L$) and the MAC_{eco, water} derived using a SSD curve (0.00047 $\mu g/L$) are in accordance with the conclusion of the mesocosm studies of Farmer et al. (1995) and Kedwards et al. (1999) which showed a NOEC value of < 0.002 $\mu g/L$.

Though the EC $_{50}$ -HC $_{5}$ value of the SSD (0.0047 µg/L) only differs by a factor of two from the lowest NOEC (0.0023 µg/L), the assessment factors of 10 and 100 , respectively, cause a factor of 20 difference between the two MAC values. In this case, the lower assessment factor on the EC $_{50}$ -HC $_{5}$ value is justified based on the large dataset for the most sensitive taxonomic groups. Therefore, the MAC $_{eco,\ water}$ is 0.00047 µg/L.

3.3.7 SRC_{eco, water}

For lambda-cyhalothrin one NOEC for *Daphnia magna* (0.002 μ g/L) is available. For the derivation of the SRC_{eco, water}, this value is compared with the geometric mean of the LC₅₀ values. This geometric mean is 0.106 μ g/L, which is more than 10 times higher than the NOEC. Therefore, an assessment factor of 1 is applied on the NOEC, resulting in a SRC_{eco, water} of 0.002 μ g/L.

^b Exposure time 96 hours

3.4 Toxicity data and derivation of ERLs for sediment

Since the $\log K_{\rm p, \, susp-water}$ of lambda-cyhalothrin is above the trigger value of 3, ERLs for sediment should be derived.

3.4.1 Sediment toxicity data

An overview of the selected freshwater sediment toxicity data for lambda-cyhalothrin is given in Table 10. Detailed toxicity data for lambda-cyhalothrin are tabulated in Appendix 4.

Table 10. Lambda-cyhalothrin: selected freshwater sediment data for ERL derivation.

Chronic ^a		Acute ^a	
Taxonomic group	NOEC/EC10 (µg/kg)	Taxonomic group	$L(E)C50 (\mu g/kg)$
Crustacea			
Hyalella azteca	2.3 ^b		
Insecta			
Chironomus riparius	105 ^c		

^a For detailed information see Appendix 4. Bold values are used for ERL-derivation.

3.4.2 Derivation of MPC_{sediment}

Two chronic NOECs for sediment organisms are available (Table 10). The endpoint for *Chironomus riparius* cannot be normalised to Dutch standard sediment. However, since the organic matter content in the test should have been > 228 % to result in a normalised NOEC that is lower than 2.3 μ g/kg_{dw}, it is considered justified to assume that *Hyalella azteca* is most sensitive. Therefore an assessment factor of 50 can be used. This results in a MPC_{sediment} of 2.3/50 = 0.046 μ g/kg_{dw}.

3.4.3 Derivation of SRC_{sediment}

Two chronic NOEC values are available for lambda-cyhalothrin. Therefore, the $SRC_{sediment}$ is based on the geometric mean of these NOECs, the $SRC_{sediment} = 15.5 \,\mu g/\,kg_{dw}$.

b most sensitive endpoint (EC₁₀); normalised to Dutch standard sediment

c not normalised

4 Conclusions

In this report, the risk limits Maximum Permissible Concentration (MPC), Maximum Acceptable Concentration for ecosystems (MAC_{eco}), and Serious Risk Concentration for ecosystems (SRC_{eco}) are derived for lambda-cyhalothrin in water and sediment. Not enough data were available to derive ERLs for the marine compartment.

The ERLs that were obtained are summarised in the table below. The MPC value that was set for this compound until now, is also presented in this table for comparison reasons. It should be noted that this is an indicative MPC ('ad-hoc MTR'), derived using a different methodology and based on limited data.

Table 10. Derived MPC, MACeco, and SRC values for lambda-cyhalothrin.

ERL	Unit	MPC	MACeco	SRC
Water, old ^a	μg/L	2.9×10^{-4}		
Water ^b	μg/L	2.0×10^{-5}	4.7×10^{-4}	2.0×10^{-3}
Water, suspended matter	mg/kg_{dw}	0.24		
Drinking water ^b	μg/L	0.1^{c}	-	-
Marine	μg/L	n.d. ^d	n.d. ^d	-
Sediment	$\mu g/kg_{dw}$	0.046	-	15.5

indicative MPC ('ad-hoc MTR'), source: Helpdesk Water http://www.helpdeskwater.nl/emissiebeheer/normen_voor_het/zoeksysteem_normen/

The MPC_{dw, water} is reported as a separate value from the other MPC_{water} values (MPC_{eco, water}, MPC_{sp, water} or MPC_{hh food, water}). From these other MPC _{water} values (thus excluding the MPC_{dw, water}) the lowest one is selected as the 'overall' MPC_{water}.

provisional value pending the decision on implementation of the MPC_{dw. water} (see Section 2.3.1)

d n.d. = not derived due to lack of data

References

- EC. 1996. Draft Assessment Report for Lambda-cyhalothrin.
- EC. 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Ispra, Italy: European Chemicals Bureau, Institute for Health and Consumer Protection. Report no. EUR 20418 EN/2.
- Farmer D, Hill IR Maund SJ. 1995. A comparison of the fate and effects of two pyrethroid insecticides (lambda-Cyhalothrin and Cypermethrin) in pond mesocosms. Ecotoxicology 4, 219-244.
- Heckmann LH, Friberg N, Ravn HW. 2005. Relationship between biochemical biomarkers and precopulatory behaviour and mortality in Gammarus pulex following pulse-exposure to lambdacyhalothrin. Pest Manag Sci 61, 631-635.
- Heckmann LH, Friberg N. 2005. Macroinvertebrate community response to pulse exposure with the insecticide lambda-cyhalothrin using in-stream mesocosms. Environ Toxicol Chem 24, 582-590.
- Hill IR, Hadfield ST, Kennedy JH, Ekoniak P. 1988. Assessment of the impact of PP321 on aquatic ecosystems using tenth-acre experimental ponds. Brighton Crop Prot. Conf.--Pests Dis. 309-318.
- Hill IR, Runnalls JK, Kennedy JH, Ekoniak, P. 1994. Effects of lambda-cyhalothrin on aquatic organisms in large-scale mesocosms. Hill IR: Freshwater Field Tests Hazard Assess. Chem., [Proc. Eur. Workshop Freshwater Field Tests].
- Hill IR, Shaw JL, Maund SJ. 1994. Review of aquatic field tests with pyrethroid insecticides. Hill IR: Freshwater Field Tests Hazard Assess. Chem., [Proc. Eur. Workshop Freshwater Field Tests].
- Kedwards TJ, Maund SJ, Chapman PF. 1999. Community level analysis of ecotoxicological field studies: II. Replicated-design studies. Environ Toxicol Chem 18, 158-166.
- Lauridsen RB, Friberg N. 2005. Stream macroinvertebrate drift response to pulsed exposure of the synthetic pyrethroid lambda-cyhalothrin. Environ Toxicol 20, 513-521.
- Leistra M, Zweers AJ, Warinton JS, Crum SJH, Hand LH, Beltman WHJ, Maund SJ. 2004. Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density. Pest Manag Sci 60, 75-84.
- Lepper P. 2005. Manual on the Methodological Framework to Derive Environmental Quality Standards for Priority Substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). 15 September 2005 (unveröffentlicht) ed. Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology.
- MNP. 2006. Tussenevaluatie van de nota Duurzame gewasbescherming. Bilthoven, The Netherlands: Milieu- en Natuurplanbureau. MNP-publicatienummer: 500126001.
- Roessink I, Arts GHP, Belgers JDM, Bransen F, Maund SJ, Brock TCM. 2005. Effects of lambdacyhalothrin in two ditch microcosm systems of different trophic status. Environ Toxicol Chem 24, 1684-1696.
- Tomlin CDS. 2002. e-Pesticide Manual 2002-2003 (Twelfth edition) Version 2.2. British Crop Protection Council.
- Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of the project 'International and National Environmental Quality Standards for Substances in the Netherlands' (INS). Bilthoven, The Netherlands: National Institute for Public Health and the Environment (RIVM). Report no. 601501031. 117 pp.
- Van Wijngaarden RPA, Brock TCM, Van den Brink PJ, Gylstra R, Maund SJ. 2006. Ecological effects of spring and late summer applications of lambda-cyhalothrin on freshwater microcosms. Arch Environ Contam Toxicol 50, 220-239.

Appendix 1. Detailed aquatic toxicity data

Table A1.1. Acute toxicity of lambda-cyhalothrin to freshwater organisms.

Species	Species	Α	Tes	Test	Purity	Test	pН	Т	Hardness	Exp	Criterion	Test	Value	Ri	Notes	Reference
	properties		type	compound	[%]	water		[°C]	CaCO ₃	time		endpoint	[ua/l]			
Algae					[%]			[0]	[mg/L]				[µg/L]			
Pseudokirchneriella subcapitata										96h	EC50	growth	> 1000	4		Maund et al., 1998
Pseudokirchneriella subcapitata		Υ	S	a.s.	96.5		7.2-8.0	24		96h	EC50	growth rate	> 300	2	23	DAR, Thompson and Williams, 1985
Pseudokirchneriella subcapitata		Ý	S	a.s.	96.5		7.2-8.0	24		96h	EC50	biomass	> 300	2		DAR, Thompson and Williams, 1985
Pseudokirchneriella subcapitata		Ň	Š	product	5.2		6.8-10.4	24		96h	EC50	growth rate	1600	3	23	DAR; Smyth et al, 1989
Pseudokirchneriella subcapitata		N	Š	product	5.2		6.8-10.4	24		96h	EC50	biomass	1400	3	23	DAR; Smyth et al, 1989
Crustacea																
Asellus aquaticus		Υ	S	a.s.	≥ 88		7.4-8.8	19.5±1.4	179	48h	LC50	mortality	0.026	2	1,2,3	Maund et al., 1998; Hamer et al., 1998
Asellus aquaticus	(sub) adult 8.8 mm	Υ	S	Karate	50 g/L	nw	7.0-7.3	20		48h	EC50	immobilisation	0.0248	2		Schroer et al., 2004
Asellus aquaticus	(sub) adult 8,8 mm	Υ	S	Karate	50 g/L	nw	7.0-7.3	20		96h	EC50	immobilisation	0.0248	2		Schroer et al., 2004
Asellus aquaticus	(sub) adult 8,8 mm	Υ	S	Karate	50 g/L	nw	7.0-7.3	20		48h	LC50	mortality	0.14	2	4	Schroer et al., 2004
Asellus aquaticus	(sub) adult 8,8 mm	Υ	S	Karate	50 g/L	nw	7.0-7.3	20		96h	LC50	mortality	0.0752	2	4	Schroer et al., 2004
Ceriodaphnia dubia	neonates (≤ 24 h old)	Υ	S		13.1	rw		25±1		48h	LC50	mortality	0.30	3	1,5,6,7	Mokry and Hoagland, 1990
Cyclops sp.	,	Υ	S	a.s.	≥ 88		7.4-8.8	19,5±1,4	179	48h	EC50	mortality	0.3	2	1,2,3,12	Maund et al., 1998; Hamer et al., 1998
Daphnia galeata	(sub) adult 0,7 mm	Υ	S	Karate	50 g/L	nw	7.3-8.0	20		48h	EC50	immobilisation	0.117	2	4	Schroer et al., 2004
Daphnia galeata	(sub) adult 0,7 mm	Υ	S	Karate	50 g/L	nw	7.3-8.0	20		48h	LC50	mortality	0.397	2	4	Schroer et al., 2004
Daphnia magna	4th instar juveniles	Υ	S	a.s.	99	am	8.3	20		48h	EC50	immobilisation	0.39	2	8,9	Barata et al., 2006
Daphnia magna	4th instar juveniles	Υ	S	a.s.	99	am	8.3	20		24h	EC50	feeding	0.10	3	5,9	Barata et al., 2006
Daphnia magna			S							48h	EC50	immobilisation	0.36	3		DAR; Farelly et al, 1984
Daphnia magna	first instars	Ν	S	product	5.5		7.8-8.4	20±1.0		48 h		immobilisation	0.09	3	22	DAR, Farelly et al. 1985
Daphnia magna	first instars	Ν	S	product	12.9		7.8-8.4	20±1.0		48 h		immobilisation	0.09	3	22	DAR, Farelly et al. 1985
Daphnia magna	neonates (≤ 24 h old)	Υ	S		13.1	rw		25±1		48h	LC50	mortality	1.04	3	1,5,6,7	Mokry and Hoagland, 1990
Daphnia sp.										48h	EC50		0.36	4	10	Advisory Committee on Pesticides, 1993
Daphnia sp.				product						48h	EC50		0.09	4	10	Advisory Committee on Pesticides, 1993
Gammarus pulex	(sub) adult 11,6 mm	Υ	-	Karate	50 g/L	nw	6.1-7.3	20		48h	EC50	locomotion	0.0236	3	4	Schroer et al., 2004
Gammarus pulex	(sub) adult 11,6 mm	Υ		Karate	50 g/L	nw	6.1-7.3	20		96h	EC50	locomotion	0.0242	3		Schroer et al., 2004
Gammarus pulex	(sub) adult 11,6 mm	Υ		Karate	50 g/L	nw	6.1-7.3	20		48h	LC50	mortality	0.0314		4	Schroer et al., 2004
Gammarus pulex	(sub) adult 11,6 mm	Υ	S	Karate	50 g/L	nw	6.1-7.3	20		96h	LC50	mortality	0.0242	2	4	Schroer et al., 2004
Gammarus pulex	neonates		_							96h	EC50	immobilisation	0.016	4		DAR; List of end points
Gammarus pulex L.		Υ		a.s.	≥ 88		7.4-8.8	19,5±1,4	179	48h	EC50	mortality	0.014	2	1,2,3	Maund et al., 1998; Hamer et al., 1998
Hyalella azteca		Υ	S	a.s.	≥ 88		7.4-8.8	19,5±1,4	179	48h	EC50	mortality	0.0023	2	1,2,3	Maund et al., 1998; Hamer et al., 1998
Hyalella azteca	1-2 weeks old	Υ	S	Karate Zeon	22.80	nw			80-100	48h	EC50	immobilisation	0.0038	2	11	Smith and Lizotte 2007
Macrobrachium nippoensis	90 d, 5.0 g, 4.5 cm		R	Kung Fu 25EW	>99	rw	7.1	16±2	120-140	96h	LC50	mortality	0.04	3	1,13,14	Wang et al., 2007
Ostracoda		Υ	S	a.s.	≥ 88		7.4-8.8	19,5±1,4	179	48h	EC50	mortality	3.3		1,2,3	Maund et al., 1998; Hamer et al., 1998
Proasellus coxalis	(sub) adult 4,6 mm	Υ	S	Karate	50 g/L	nw	7.1-7.4	20		48h	EC50	immobilisation	0.0177	2		Schroer et al., 2004
Proasellus coxalis	(sub) adult 4,6 mm	Υ	S	Karate	50 g/L	nw	7.1-7.4	20		96h	EC50	immobilisation	0.0274	2		Schroer et al., 2004
Proasellus coxalis	(sub) adult 4,6 mm	Υ	S	Karate	50 g/L	nw	7.1-7.4	20		48h	LC50	mortality	0.0788	2		Schroer et al., 2004
Proasellus coxalis	(sub) adult 4,6 mm	Υ	S	Karate	50 g/L	nw	7.1-7.4	20		96h	LC50	mortality	0.0446		4	Schroer et al., 2004
Simocephalus vetulus	(sub) adult 1,7 mm	Y	S	Karate	50 g/L	nw	7.2-8.0	20		48h	EC50	immobilisation	0.957		4	Schroer et al., 2004
Simocephalus vetulus	(sub) adult 1,7 mm	Υ	S	Karate	50 g/L	nw	7.2-8.0	20		48h	LC50	mortality	1.34	2	4	Schroer et al., 2004

Arachnida

Species	Species	Α	Tes	Test	Purity	Test	рН	T	Hardness	Exp	Criterion	Test	Value	Ri	Notes	Reference
	properties		t type	compound	[%]	water		[°C]	CaCO₃ [mg/L]	time		endpoint	[µg/L]			
Hydrocarina		Υ	S	a.s.	≥ 88		7.4-8.8	19,5±1,4	179	48h	EC50	mortality	0.047	2	1,2,3,12	Maund <i>et al.</i> , 1998
Insecta																
Aedes aegypti	late third- and early fourth-instar	N	S	product	tg	tw		27±2		24h	LC50	mortality	0.35	3	15,16,17	Canyon and Hii, 1999
Aedes aegypti	late third- and early fourth-instar	N	S	product	tg	tw		27±2		24h	LC50	mortality	1.00	3	15,16,17	Canyon and Hii, 1999
Caenis horaria	larvae 4,6 mm	Υ	S	Karate	50 g/L	nw	6.9-7.5	22		48h	EC50	immobilisation	0.0179	2	4	Schroer et al., 2004
Caenis horaria	larvae 4,6 mm	Υ	S	Karate	50 g/L	nw	6.9-7.5	22		96h	EC50	immobilisation	0.0136	2	4	Schroer et al., 2004
Caenis horaria	larvae 4.6 mm	Ý	Š	Karate	50 g/L	nw	6.9-7.5	22		48h	LC50	mortality	0.257	2		Schroer et al., 2004
Caenis horaria	larvae 4,6 mm	Ý	S	Karate	50 g/L	nw	6.9-7.5	22		96h	LC50	mortality	0.0346		4	Schroer et al., 2004
Chaoborus obscuripes	larvae, instar 3-4	Ý		Karate	50 g/L	nw	7.1-8.0	20		48h	EC50	immobilisation	0.0028	2	-	Schroer et al., 2004
		Ϋ́					7.1-8.0 7.1-8.0	20		96h	EC50	immobilisation	0.0028		4	Schroer <i>et al.</i> , 2004 Schroer <i>et al.</i> , 2004
Chaoborus obscuripes	larvae, instar 3-4			Karate	50 g/L	nw										· ·
Chaoborus obscuripes	larvae, instar 3-4	Y		Karate	50 g/L	nw	7.1-8.0	20		48h	LC50	mortality	> 0,0274		4	Schroer et al., 2004
Chaoborus obscuripes	larvae, instar 3-4	Υ		Karate	50 g/L	nw	7.1-8.0	20		96h	LC50	mortality	0.0757	_	4	Schroer et al., 2004
Chaoborus sp.	insecta	Υ	S	a.s.	≥ 88		7.4-8.8	19,5±1,4	179	48h	EC50	mortality	0.0028	4	1,2,3,12	Maund et al., 1998; Hamer et al., 1998
Cloeon dipterum	nymph, insecta	Υ	S	a.s.	≥ 88		7.4-8.8	19,5±1,4	179	48h	EC50	mortality	0.038		1,2,3	Maund et al., 1998; Hamer et al., 1998
Cloeon dipterum	larvae 4,1 mm	Υ	S	Karate	50 g/L	nw	6.5-7.8	20		48h	EC50	immobilisation	0.0248	2	4	Schroer et al., 2004
Cloeon dipterum	larvae 4,1 mm	Υ	S	Karate	50 g/L	nw	6.5-7.8	20		96h	EC50	immobilisation	0.0883	2	4	Schroer et al., 2004
Cloeon dipterum	larvae 4,1 mm	Υ	S	Karate	50 g/L	nw	6.5-7.8	20		48h	LC50	mortality	0.122	2	4	Schroer et al., 2004
Cloeon dipterum	larvae 4,1 mm	Υ	S	Karate	50 g/L	nw	6.5-7.8	20		96h	LC50	mortality	0.105	2	4	Schroer et al., 2004
Corixa sp.	adult, insecta	Υ	S	a.s.	≥ 88		7.4-8.8	19,5±1,4	179	48h	EC50	mortality	0.03	2	1,2,3	Maund et al., 1998; Hamer et al., 1998
Erythromma viridulum	larvae 17,3 mm	Υ	S	Karate	50 g/L	nw	7.1-7.7	22		48h	EC50	immobilisation	0.689	2	4	Schroer et al., 2004
Erythromma viridulum	larvae 17.3 mm	Υ	S	Karate	50 g/L	nw	7.1-7.7	22		96h	EC50	immobilisation	0.493	2	4	Schroer et al., 2004
Ervthromma viridulum	larvae 17.3 mm	Ý	Š	Karate	50 g/L	nw	7.1-7.7	22		48h	LC50	mortality	1.583	2	4	Schroer et al., 2004
Erythromma viridulum	larvae 17.3 mm	Ý	Š	Karate	50 g/L	nw	7.1-7.7	22		96h	LC50	mortality	0.493	2	4	Schroer et al., 2004
Ischnura elegans	nymph, insecta	Ý	Š	a.s.	≥ 88		7.4-8.8	19,5±1,4	179	48h	EC50	mortality	0.13		1,2,3	Maund <i>et al.</i> , 1998; Hamer <i>et al.</i> , 1998
Macropelopia sp.	larvae 7.6 mm	Ý	Š	Karate	50 g/L	nw	7.4-7.8	20		48h	EC50	immobilisation	0.244	2	4	Schroer et al 2004
Macropelopia sp.	larvae 7,6 mm	Ý	Š	Karate	50 g/L	nw	7.4-7.8	20		96h	EC50	immobilisation	0.0643		4	Schroer et al., 2004
Macropelopia sp.	larvae 7,6 mm	Ÿ		Karate	50 g/L	nw	7.4-7.8	20		48h	LC50	mortality	1.019		4	Schroer et al., 2004
Macropelopia sp.	larvae 7,6 mm	Ý	S	Karate	50 g/L	nw	7. 4 -7.8	20		96h	LC50	mortality	0.698		4	Schroer et al., 2004
Notonecta glauca	adult 14,4 mm	Ϋ́	S	Karate	50 g/L	nw	6.7-7.9	20		48h	EC50	immobilisation	0.036		4	Schroer <i>et al.</i> , 2004 Schroer <i>et al.</i> , 2004
<u> </u>	adult 14,4 mm	Ϋ́	S	Karate	50 g/L	nw	6.7-7.9	20		96h	EC50	immobilisation	0.0146		4	Schroer <i>et al.</i> , 2004 Schroer <i>et al.</i> , 2004
Notonecta glauca	•	Ϋ́	S				6.7-7.9	20		48h	LC50		0.0104		4	Schroer <i>et al.</i> , 2004
Notonecta glauca	adult 14,4 mm	Ϋ́		Karate	50 g/L	nw	6.7-7.9 6.7-7.9	20		96h	LC50 LC50	mortality	0.0226			
Notonecta glauca	adult 14,4 mm		-	Karate	50 g/L	nw						mortality		_	4	Schroer et al., 2004
Sialis lutaria	larvae 17,8 mm	Y	S	Karate	50 g/L	nw	6.6-7.8	20		48h	EC50	immobilisation	0.0515		•	Schroer et al., 2004
Sialis lutaria	larvae 17,8 mm	Y	S	Karate	50 g/L	nw	6.6-7.8	20		96h	EC50	immobilisation	0.028		4	Schroer et al., 2004
Sialis lutaria	larvae 17,8 mm			Karate	50 g/L	nw	6.6-7.8	20		48h	LC50	mortality	> 2,179	2	4	Schroer et al., 2004
Sialis lutaria	larvae 17,8 mm	Y	S	Karate	50 g/L	nw	6.6-7.8	20		96h	LC50	mortality	> 2,179	2	4	Schroer et al., 2004
Sigara striata	adult 7,8 mm	Υ	S	Karate	50 g/L	nw	6.8-7.7	20		48h	EC50	immobilisation	0.0182		4,24	Schroer et al., 2004
Sigara striata	adult 7,8 mm	Υ	S	Karate	50 g/L	nw	6.8-7.7	20		48h	LC50	mortality	0.0492	3	4,24	Schroer et al., 2004
Mollusca	0.7	.,	_	W	FC "		7070	00			1050		. 0 0	_	4	0.1
Bithynia tentaculata Pisces	9.7 mm	Y	S	Karate	50 g/L	nw	7.0-7.9	20			LOEC	avoidance	> 8.9	2	4	Schroer et al., 2004
Cyprinus carpio				product						96h	LC50	mortality	9.0	4	10	Advisory Committee on Pesticides, 199
Cyprinus carpio	juvenile	Υ		product	50 g/L		7.4-7.8	22-23	73	96h	LC50	mortality	0.50	2		DAR; Hill 1985
Danio rerio	0,70g; 36mm	Υ	F	a.s.	87.7	dtw	7.01-7.43	24,9-25,3	42.3-46.7	96h	LC50	mortality	0.78	1	18,19	Maund et al., 1998; Kent, SJ and Shillabeer, N, 1997

RIVM Letter report 601716001 27

Species	Species	Α	Tes	Test	Purity	Test	рН	Т	Hardness	Ехр	Criterion	Test	Value	Ri	Notes	Reference
	properties		type	compound	[%]	wateı		[°C]	CaCO₃ [mg/L]	time		endpoint	[µg/L]			
Danio rerio	30-45 d old, 0.38 g, 3.5 cm	N	R	Kung Fu 25EW	>99	rw	7.1	25±2	120-140	96h	LC50	mortality	1.94	3	1,13,14,20	Wang et al., 2007
Gambusia affinis	25-30 mm	N	S		5	tw					LC50	mortality	2.20	3	21	Mittal et al., 1991
Gasterosteus aculeatus L.	0,41g; 34mm	Υ	F	a.s.	87.7	dtw	7.03-7.31	12.1-12.4	46.0-47.3	96h	LC50	mortality	0.49	1	18,19	Maund et al., 1998; Long, KWJ and Shillabeer, N, 1997
Ictalurus punctatus Raf.	1,57g; 48mm	Υ	F	a.s.	87.7	dtw	7.24-7.70	16.8-17.0	43.0-47.7	96h	LC50	mortality	0.16	1	18,19	Maund <i>et al.</i> , 1998; Long, KWJ and Shillabeer, N, 1997
Lepomis macrochirus										96h	LC50		0.21	4*	10	Advisory Committee on Pesticides, 1993
Lepomis macrochirus	juvenile	Υ	FT	a.s.	98		7.4-8.6	22±1	68	96h	LC50	mortality	0.21	2		DAR; Hill 1984
Lepomis macrochirus										96h	LC50	mortality	0.40	4		Maund et al., 1998
Leucistus idus	2,15g; 53 mm	Υ	F	a.s.	87.7	dtw	7.04-7.39	12,0-12,3	43.3-46.3	96h	LC50	mortality	0.08	1	18,19	Maund <i>et al.</i> , 1998; Kent, SJ and Shillabeer, N, 1997
Oncorhynchus mykiss										96h	LC50		0.24	4*	10	Advisory Committee on Pesticides, 1993
Oncorhynchus mykiss				product						96h	LC50		16.6	3	10,23	Advisory Committee on Pesticides, 1993
Oncorhynchus mykiss	juvenile	Υ	FT	product	50 g/L		7.5-8.0	16	68	96h	LC50	mortality	0.93	4	22	DAR; Hill, 1985
Oncorhynchus mykiss	juvenile	Υ	FT	a.s.	98		7.0-7.9	12±1	72.4	96h	LC50	mortality	0.24	2		DAR; Hill, 1984
Oryzias latipes	0,22g; 25mm	Υ	F	a.s.	87.7	dtw	7.63-7.83	25.1-25.6	40.0-48.7	96h	LC50	mortality	1.60	2	18,19	Maund <i>et al.</i> , 1998; Kent, SJ and Shillabeer, N, 1997
Pimephales promelas Raf.	0,37g; 28mm	Υ	F	a.s.	87.7	dtw	7.32-7.60	24.4-24.9	39.3-44.6	96h	LC50	mortality	0.70	2	18,19	Maund et al., 1998
Poecilia reticulata										96h	LC50	mortality	0.08	4		Maund et al., 1998

Notes

- 1 Test result based on nominal concentrations.
- 2 0.5 ml acetone per L, did not affect toxicity or oxygen concentration
- 3 Analysis at test start and termination
- 4 Analysis 1h after application, value calculated using a log concentration logit effect regression model.
- Test organisms were fed during the test period.
- After analysis it was found out the recovery ranged from 6.5 to 72.0 % across all concentrations for five tested pyrethroids; not possible to recalculate the values of LC50 using actual concentrations.
- 7 Results are reported in active ingredient.
- 8 According to OECD guidelines
- Acetone was added to test and control samples in concentration < 0.05 %. No mortality occurred in control and solvent treatments.
- 10 Purity is not clear; it is also not clear if results are reported in mg/L formulation or mg/L active ingredient.
- 11 Measured immobilisation, value is geomean (std. 0.0047)
- 12 Species unclear
- 13 Water hardness recalculated from the value of 6.8 8.0°HG.
- 14 Solutions were renewed every 24 h.
- 15 A technical grade product was used but throughout the paper only the name of the a.i. is mentioned
- 16 Denatured ethanol was added to the control beakers in high concentration (0.4 %); but trials with any control mortalities were repeated.
- 17 Trials were carried out according to WHO methodology and standards (WHO/VBC/81.807).
- 18 Vehicle: dimethylformamide, US EPA guideline, GLP, analysis at 0, 48 and 96h, mean measured levels 35-75% of nominal
- 19 Mean measured values were used
- 20 3 of 7 used test concentrations above solubility limits.
- 21 Exposure time unknown; probably < 1 week.
- 22 Formulation unknown.
- 23 Value exceeds solubility limit of lambda-cyhalothrin.
- 24 Mortality in controls >20%

Table A1.2. Chronic toxicity of lambda-cyhalothrin to freshwater organisms.

Species	Species properties	Α	Test type	Test compound	Purity	Test water	рН	T	Hardness CaCO ₃	Exp. time	Criterion	Test endpoint	Value	Ri	Notes	Reference
				-	[%]			[°C]	[mg/L]			·	[µg/L]			
Algae																
Pseudokirchneriella subcapitata		Ν	S	Karate	50 g/L		6.8-10.4	24		96h	NOEC	growth rate	460	3	8	DAR; Smyth et al 1989
Crustacea																
Dapnia magna	<8h neonate	Υ	R	a.s.	98.6	am	8.3	20		12d	EC10	reproduction	0.025	2	1	Barrata et al., 2002
Dapnia magna		Υ		a.s.	> 96		8.1-8.2	19.5-23	165-175	21d	NOEC	reproduction	0.002	2	2	Maund et al., 1998
Insecta																
Aedes aegypti	early 4th instar larvae	Ν		a.s.	90.99	dw		27±2		14 d	NOEC	larval mortality	0.04	3	3,4,5,6	Shaalan et al., 2005.
Aedes aegypti	early 4th instar larvae	Ν		a.s.	90.99	dw		27±2		14 d	NOEC	pupal mortality	<0.04	3	3,4,5,6	Shaalan et al., 2005.
Aedes aegypti	early 4th instar larvae	Ν		a.s.	90.99	dw		27±2		14 d	NOEC	larval	<0.04	3	3,4,5,6,7	Shaalan et al., 2005.
												development				
Aedes aegypti	early 4th instar larvae	Ν		a.s.	90.99	dw		27±2		14 d	NOEC	pupal	<0.04	3	3,4,5,6,7	Shaalan et al., 2005.
												development				
Aedes aegypti	early 4th instar larvae	Ν		a.s.	90.99	dw		27±2		14 d	NOEC	total development	<0.04	3	3,4,5,6,7	Shaalan et al., 2005.
Aedes aegypti	early 4th instar larvae	Ν		a.s.	90.99	dw		27±2		14 d	NOEC	adult mortality	0.04	3	3,4,5,6	Shaalan et al., 2005.
Aedes aegypti	early 4th instar larvae	Ν		a.s.	90.99	dw		27±2		14 d	NOEC	adult emergence	<0.04	3	3,4,5,6	Shaalan et al., 2005.
Aedes aegypti	early 4th instar larvae	Ν		a.s.	90.99	dw		27±2		14 d	NOEC	malformations	0.15	3	3,4,5,6	Shaalan et al., 2005.

- Value is geomean derived from graph (std. 0,015), shortened OECD test
- Value based on mean measured concentrations
- Followed World Health Organization. 1996.

- Insecticide was diluted in ethanol. Used amount: 10 ml/l. Control with ethanol (10 ml/l =1%). Exposure time until the emergence of the adults or death of the last larva or pupa. In control: 13.2 days. Not clear if it was static or renewal test, if static → concentration of lambda-cyhalothrin surely decreased over exposure time.
- Development period decreased with increasing concentrations
- Concentration expressed in µg a.i./L; concentration exceeds solubility of lambda-cyhalothrin >100x.

Table A1.3. Chronic toxicity of lambda-cyhalothrin to marine organisms.

Species	Species properties	Α		Purity	Test water	pН	Т	Salinity	Exp. time	Criterion	Test endpoint	Value	Ri	Notes	Reference
			·	[%]			[°C]	[‰]			·	[µg/L]			
Pisces															
Cyprinodon variegatus Lac.	embryo					8.2-8.3	24-26	24-27	28d	NOEC	early life stage	0.25	2		DAR; List of end points; Maund et al., 1998

Appendix 2. Description of mesocosm studies

Farmer et al., 1995 & Kedwards et al., 1999

Species	Test	System	Formulation	Analyzed	Exposure	Experimental	Criterion	Test endpoint	Value	Notes	Ri	Reference
Population Community	Method	properties			regime	time			[µg/l]			
Phytoplankton,	outdoor	Ponds,	not	Υ	Four	19 w	7-d	single	<	Water residues	1	Farmer et
perifphyton,	mesocosms	25 m³	reported		applications of		NOEC	macroinvertebrate	0.002	were "slightly		al., 1995 &
macrophytes,					0.17 g as/ha			species,		above" the LOD of		Kedwards et
zooplankton,					with two			macroinvertebrate		2 ng/l 1 h after		al., 1999
macroinvertebrates					weeks			community on artificial		application in the		
					intervals			substrates		single application		

Evaluation of the scientific reliability of the field study and of the suitability for ERL-derivation

- 1. Does the test system represent a realistic freshwater community? Yes. Mesocosms were 25 m³ ponds, containing algae, zooplankton, macroinvertebrates, macrophytes and no fish.
- 2. Is the description of the experimental set-up adequate and unambiguous? Yes. Two controls and treatments in duplicate.
- 3. Is the exposure regime adequately described? Is the exposure regime adequate to derive a MAC or an AA value? Lambda-cyhalothrin was applied at 0.17 g as/ha. One hour after application, in the lowest treatment measured water column residues were only slightly above the LOD of 2 ng/l and were below the LOD after 24 hours. Therefore, the application regime is adequate to derive a MAC-value. Residues in the surface hydrosoil increased during the application period, peaking at 7 µg/kg after the third application. Concentration in the hydrosoil were not described enough in detail to base an eventual chronic NOEC for sediment organisms on.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes.
- 5. Is it possible to evaluate the observed effects statistically? No, but statistics were carried out satisfactorily.

This result in an overall assessment of the study reliability -> Ri 1.

Evaluation of the results of the study

Only effects after the first application are evaluated here.

No adverse effects on algal abundance or productivity were detected or on community metabolism. Also, no apparent effect of treatment on phytoplankton community structure were reported. However, in one figure, a significant reduction of phytoplankton gross productivity is appointed in the 0.17 g as/ha treatment, one week after the first application.

No significant effects on macrophyte and zooplankton communities were detected.

One hour after spraying, abnormally behaving Notonectidae and Gyrrinidae were observed. Abundances of *Gammarus* sp. were decreased after the first application. Additionally, significantly fewer chironomids were present in surface substrates. The application had no adverse effects on Turbellaria, Gastropoda and Annelida.

PRC analyses of macroinvertebrate communities did not result in significant deviations of treatment from the control.

RIVM Letter report 601716001 31

The application of 0.17 g as/ha, resulting in an initial concentration of 0.002 μ g/l, can be appointed as the LOEC of the present study. Consequently, the actual NOEC is < 0.002 μ g/l.

Heckmann and Friberg, 2005 & Heckmann et al., 2005

Species Population Community	Test Method	System properties	Formulation	Analyzed	Exposure regime	Experimental time	Criterion*	Test endpoint	Value [µg/l]	Notes	Ri	Reference
macroinvertebrates	outdoor mesocosms	In-stream cosms, 5.8 m length, 0.15 m width	Karate®	Y	Pulse of 30 seconds	30 sec	0-2 d post exposure NOEC	Total drift and certain macroinvertebrate densities	< 0.05	Acute effect on drift, chronic	1	Heckmann and Friberg, 2005 & Heckmann et al., 2005
						30 sec	2-d post- exposure NOEC	Gammarus densities	< 0.35	lower densities compared to the control	1	Heckmann and Friberg, 2005 & Heckmann et al., 2005
						30 sec	7-d post- exposure NOEC	Gammarus densities	0.42	lower densities compared to the control	1	Heckmann and Friberg, 2005 & Heckmann et al., 2005
						30 sec	14-d post- exposure NOEC	Oligochaeta and Elmis aenea densities	0.35	increase in densities	1	Heckmann and Friberg, 2005 & Heckmann et al., 2005
Gammarus pulex drifting in the in- streams	indoor aquaria	1 I aquaria	Karate®	Y	static	30 sec	24-h post- exposure LC ₅₀ NOEC	mortality <i>G. pulex</i> mortality <i>G. pulex</i>	5.69 0.05		1	Heckmann and Friberg, 2005

Evaluation of the scientific reliability of the field study and of the suitability for ERL-derivation

- 1. Does the test system represent a realistic freshwater community? Yes. Channels positioned in a natural stream, two weeks of colonization.
- 2. Is the description of the experimental set-up adequate and unambiguous? Yes.
- 3. Is the exposure regime adequately described? Is the exposure regime adequate to derive a MAC or an AA value? Lambda-cyhalothrin was applied at a single 30-minutes pulse of 0.05, 0.35, 0.42, 1.97, 4.21 and 16.7 µg/l, four replicates for control and each treatment. The exposure regime is adequate for MAC-derivation.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes.
- 5. Is it possible to evaluate the observed effects statistically? No, but statistics were described and performed sufficiently.

This result in an overall assessment of the study reliability -> Ri 1.

Hill et al., 1988 & Hill et al., 1994

Species	Test Method	System	Formulation	Analyzed	Exposure regime	Experimental time	Criterion*	Test endpoint	Value	Notes	Ri	Reference
Population Community		properties							[µg/l]		_	
Phytoplankton, periphyton, zooplankton, macrophytes, macroinvertebrates, fish	Outdoor macrocosms	Ponds, 15 * 30 m, 450 m ³	Karate [™] , 13.8% as	Y	twelve sprayings with weekly intervals plus six run-offs with two weeks intervals	Until 22 w after first application = 10 w after last application	7-d NOEC	Crustacea, Tanypodinae	0.001	NOEC is the middle treatment	3	Hill et al., 1988 & Hill et al., 1994
					weeks intervals		14-d NOEC	Densities Baetidae and Caenidae	< 0.001	NOEC is the low treatment. Lowest treatment < LOD of 1 ng/l	3	Hill et al., 1988 & Hill et al., 1994

Evaluation of the scientific reliability of the field study and of the suitability for ERL-derivation

- 1. Does the test system represent a realistic freshwater community? Colonization by water from natural ponds. Additional macroinvertebrates collected from natural ponds, macrophytes were planted. Acclimatisation for approximately half a year. However, twenty-five bluegill sunfish (*Lepomis macrochirus*) were stocked in each mesocosm. At test termination, numbers of young fish ranged from 14,000 fish to 22,000 fish per pond, corresponding to weights of 7 to 14 kg, respectively. Moreover, at test termination numbers varied enormously and were not treated related, i.e. numbers ranged from zero to 12,000 per mesocosm, the latter corresponding to 37 kg. The authors reported signs of overcrowding in controls and treatment cosms. Extreme large numbers of young fish were harvested from all mesocosms. Juvenile fish had condition factors below the optimum value.
- 2. Is the description of the experimental set-up adequate and unambiguous? No, sampling scheme is unsatisfactorily. Macroinvertebrates were only sampled once each two weeks and not after every application.
- 3. Is the exposure regime adequately described? Is the exposure regime adequate to derive a MAC or an AA value? Only the two highest application treatments were chemically analysed. Resides in the medium rate pond showed concentrations near the limit of determination. Therefore, actual concentrations in the lowest treatment are believed to be below the LOD of 1 ng/l. The 7-d NOEC of the present study is at the level of the lowest treatment. Thus, the acute NOEC of the present study will be below the LOD of 1 ng/l. The study is adequately for MAC-derivation. It is unclear from the chemically analysis what the chronic exposure regime is, due to the low sampling frequency.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes.
- 5. Is it possible to evaluate the observed effects statistically? No, but the described statistics are considered to be sufficient.

This result in an overall assessment of the study reliability \rightarrow Ri 3.

Lauridsen and Friberg, 2005

Species Population Community	Test Method	System properties	Formulation	Analyzed	Exposure regime	Experimental time	Criterion*	Test endpoint	Value [µg/l]	Notes	Ri	Reference
Baetis rhodani, Leuctra fuscal digitata, Gammarus pulex	outdoor streams	0.1 m wide, 10 m long, flow rate 2.2 l.min ⁻¹	Karate®, 2.5% EC	Y	60 min pulse	60 min	0 – 3 h NOEC	Drift of Gammarus	< 0.01 µg/l	NOEC was < lowest treatment of 0.001 µg/l. This treatment was dosed below the LOD of 0.01 µg.l 1	2	Lauridsen and Nikolai, 2005

Evaluation of the scientific reliability of the field study and of the suitability for ERL-derivation

- 1. Does the test system represent a realistic freshwater community? No. Artificial streams of 10 m divided in subsections of 2.5 m. The streams were supplied with gravel collected from a stream. Approximately a day before treatment 20 *Baetis*, 20 *Gammarus* and 15 *Leuctra* were placed at the upstream of each subsection. Thus, no effort is done to approximate a natural situation.
- 2. Is the description of the experimental set-up adequate and unambiguous? Yes.
- 3. Is the exposure regime adequately described? Is the exposure regime adequate to derive a MAC or an AA value? The channels were dosed to obtain 60-minutes pulses of 0.001, 0.01, 0.1 and 1.0 µg/l. One channel per control and treatment. The channels were divided in four subsections which were considered to be the replicates. Statistically these subsections are not independent (pseudoreplicates). The study is suitable to determine a MAC value.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes.
- 5. Is it possible to evaluate the observed effects statistically? No, but the described statistics are considered to be sufficient.

This result in an overall assessment of the study reliability -> Ri 2. However, the underlying study is not a cosm or field study but a multi-species study.

Leistra et al., 2003; Roessink et al., 2005; van Wijngaarden et al., 2006

Species Population Community	Test Method	System properties	Formulation	Analyzed	Exposure regime	Experimental time	Criterion*	Test endpoint	Value [µg/l]	Ri	Reference
phytoplankton, periphyton, zooplankton, macroinvertebrates, macrophytes	enclosures in outdoor experimental ditches, started in May	0.5 m³, mesotrophic, macrophytes dominated	Karate with ZEON Technology™ (100 g/l as capsule suspension)	Y (only in highest treatment of 250 ng/l)	three applications with one-week intervals	6 w	7-d NOEC	Macroinvertebrate community (PRC)	0.01	1	Roessink et al., 2005; Leistra et al., 2003; van Wijngaarden et al., 2006
phytoplankton, periphyton, zooplankton, macroinvertebrates	enclosures in outdoor experimental ditches, started in May	0.5 m ³ , eutrophic, phytoplankton dominated	Karate with ZEON Technology™ (100 g/l as capsule suspension)	Y (only in highest treatment of 250 ng/l)	three applications with one-week intervals	6 w	7-d NOEC	macroinvertebrates community (PRC), Chaoborus obscuripes	< 0.01	1	Roessink et al., 2005 & Leistra et al., 2003
phytoplankton, periphyton, zooplankton, macroinvertebrates, macrophytes	enclosures in outdoor experimental ditches, started in August	0.5 m ³ , mesotrophic, macrophytes dominated	Karate with ZEON Technology™ (100 g/l as capsule suspension)	Y (only in highest treatment of 250 ng/l)	three applications with one-week intervals	6 w	7-d NOEC	Chaoborus obscuripes	< 0.01	1	van Wijngaarden et al., 2006 & Leistra et al., 2003

a one day after application, 24-40% of nominal. After 3 days 1.8-6.5% (according to Leistra et al., 2003)

Evaluation of the scientific reliability of the field study and of the suitability for ERL-derivation

- 1. Does the test system represent a realistic freshwater community? Experiments in mesotrophic, macrophyte-dominated and in eutrophic, phytoplankton-dominated enclosures of 0.5 m³ (relatively small). No fish.
- 2. Is the description of the experimental set-up adequate and unambiguous? Yes. Three times application with one-week interval at 10, 25, 50, 100 and 250 ng/l. Control and treatments in duplicate.
- 3. Is the exposure regime adequately described? Is the exposure regime adequate to derive a MAC or an AA value? Only the highest treatment was chemically analysed. Lambda-cyhalothrin dissipated quickly from the water column. One hour after application, actual values in the highest treatment were 109% ± 81% of nominal. Therefore, it was considered to be appropriate to use the nominal initial values. One day after application, 24-40% of nominal was found in the water column. After 3 days, only 1.8-6.5% of nominal was recovered from the water column in both the macrophyte-dominated and the phytoplankton-dominated enclosures. None of the lambda-cyhalothrin applied to the water column was recovered from sediment samples (LOD 0.001 µg/g ww). The study setup is suitable to derive a MAC value on basis of nominal concentrations.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes.
- 5. Is it possible to evaluate the observed effects statistically? No. However, extensive statistics were applied to the data and statistical analyses were reported satisfactorily.

This result in an overall assessment of the study reliability -> Ri 1.

Evaluation of the results of the study

RIVM Letter report 601716001 35

Tabel 1 Summary of effects observed in the enclosures treated with lambda-cyahothrin as reported in Roessink et al., 2005 and in Van Wijngaarden et al., 2006. Numbers in the table follow the effect classes as described by Brock et al. (2000). 1 = no effect; 2 = slight effects; 3 = clear short-term effects, full recovery observed (within 4 to 8 weeks); 4 = clear effects, no full recovery observed at the end of the experiment. \downarrow = increased endpoint; \uparrow = increased endpoint; \uparrow = decreased and increased endpoint. PRC – principle response curves of either macroinvertebrates or zooplankton.

	treatment levels				
	10 ng/l	25 ng/l	50 ng/l	100 ng/l	250 ng/l
Phytoplankton dominated	/ spring				
macrocrustaceans	a -	- ^a	- ^a	_ a	- ^a
insects	2↓	3↓	3↓	3↓	3↓
other macroinvertebrates	1	1	1	2↑	2↑
PRC macroinvertebrates	2	3	3	3	3
microcrustaceans	2-3↑	4↑	4↑	4↑	4↑↓
rotifers	2↑	3↑	3↑	3↑	3↑
PRC zooplankton	2	2	2	2	2
phytoplankton	1	1	1	1	2↑ ^b
chlorophyll a					
macrophyte biomass	-	-	-	-	-
macrophyte dominated / sp	pring				
macrocrustaceans	1	2↓	2↓	4↓	4↓
insects (excl.	1-2↓	3↓	3↓	3↓	3↓
Chaoborus)					
C. obscuripes	2↓	3↓	3↓	3↓	3↓
other macroinvertebrates	1	1	1	1	2↓↑
PRC macroinvertebrates	2	2 2↓	3	3	4
microcrustaceans	1	2↓	2↓	2↓	4↓
rotifers	2↑↓	2↑↓	2↓↑	2↓↑	2↓;3↑
PRC zooplankton	1	1	2	2	2
phytoplankton	1	1	1	1	1
chlorophyll a					
macrophyte biomass	1	1	1	1	1
macrophyte dominated / su	<u>ımmer</u>				
macrocrustaceans	1	2↓	3↓	4↓	4↓
insects (excl.	1-2↓	1-2↓	4↓	4↓	4↓
Chaoborus)					
C. obscuripes	3↓	3↓	3↓	3↓	4↓
other macroinvertebrates	1	1	1	1	2↑

	treatment levels				
	10 ng/l	25 ng/l	50 ng/l	100 ng/l	250 ng/l
PRC macroinvertebrates	1	2	2	4	4
microcrustaceans	1	1	1	2↓	3↓
rotifers	2↑	2↑	2↑	2↑	2↑
PRC zooplankton	1	1	1	1	1
phytoplankton	1	1	1	1	1
chlorophyll a					
macrophyte biomass	1	1	1	1	1

^a low abundance of free-living population.

Further discussion

For the spring mesotrophic, macrophytes dominated enclosures, the NOEC was appointed to lay below the lowest treatment of 10 ng/l on basis of effects on macroinvertebrate community analysis (PRC-analysis). For the spring eutrophic, phytoplankton dominated enclosures, the NOEC was considered to be the lowest treatment of 10 ng/l on basis of effects on macroinvertebrate community analysis and effects on *Chaoborus obscuripes*. The late summer, macrophytes dominated enclosures showed a NOEC below the 10 ng/l treatment on basis of effects on *Chaoborus obscuripes*.

Lambda-cyhalothrin dissipated quickly from the water column. Actual concentration was only determined in the 250 ng/l treatment. More than 70% of the substance had disappeared after one day (average concentration in the macrophyte dominated ditch 62 ng/l and in the phytoplankton dominated ditch 77.5 ng/l). After 3 days actual concentration had decreased to 16.3 and 8.0 ng/l and after 7 days to 5 and 3 ng/l in the macrophytes and phytoplankton dominated enclosures, respectively. Therefore, it can be expected that concentrations in the 10 ng/l treatment declined to 3 ng/l or less within one day and to concentrations below 0.2 ng/l 3 days after first application. The acute NOECs can be based on nominal values.

RIVM Letter report 601716001 37

b trend of an increase

Appendix 3. Detailed bird and mammal toxicity data

Species	Species properties	Purity	Application route	Exp time.	Criterion	Test endpoint	Effect Conc.	Effect Conc.	Ri	Notes	Reference
		[%]					[mg/kg _{bw} .d]	[mg/kg _{diet}]			
dog	beagle	96.5	oral	1 y	NOEL	clinical effects	0.5		2	2,3	DAR, Stonard 1991
dog	beagle		diet	52w	NOAEL	clinical effects	0.5		4*	4	PMRA 2003
mouse	· ·		diet	2y	NOAEL	clinical effects	2	20	2		PMRA 2003
rat	wistar, 21d old, 20/s/d	96.5	diet	90 d	NOEL	body weight, food consumption		50	2	1,3	DAR, Hart 1985
rat	wistar		diet	90d	NOAEL	bw gain, food consumption		50	2		PMRA 2003
rat			diet		NOAEL	neurotoxicity			2		PMRA 2003
rat	wistar		diet	2y	NOAEL	clinical effects	2.5	10	2		PMRA 2003
rat				,	NOAEL	neurotoxicity	4.6/5.2		2		PMRA 2003
mallard duck	8 day old,	96.5	diet	5d	LC50	mortality		>5300	2	5	DAR, Roberts and Fairley 1985
mallard duck	20 weeks old		diet	20 weeks	NOEC	reproductive parameters		>30	2	6,7	DAR, Beavers et al. 1989

Notes

- 1 NOEL of 10 ppm based on elevated hepatic amino-N-demethylase activity and liver weight at 50 ppm
- 2 Neurological effects comprising ataxia, muscle tremors and convulsions were seen in the high dose group, one dog had to be killed in week 46 due pyrethroid toxicity.

to adverse clinical effects consistent with

- 3 No statements concerning GLP, but studies are subjected to Quality Assurance inspections and seem to be of good quality
- 4 Exposure via capsules
- 5 EPA 71-2
- 6 EPA 71-4
- reproductive parameters recorded: eggs laid, cracked and set, viable embryos, live three-week embryos, hatchlings, body weight of hatchlings, 14-day old survivors, body weight of 14-day old survivors, egg shell thickness

Appendix 4. Detailed sediment toxicity data

Species	Species properties (age, sex)	Sediment type	Α	Test compound	Purity [%]	pН	o.m. [%]	Clay [%]	T [°C]	Exp time	Criterion	Test endpoint	Result test sediment [ug.kg _{dw} -1]	Result std. sediment [µg.kg _{dw} -1]	Ri	Notes	Reference
Crustacea																	
Hyalella azteca	6-12 d old	American River, CA	Υ				1.87	31.7	23	10 d	LOEC	growth	2.60	14	2	1,2,3	Amweg et al., 2005
Hyalella azteca	6-12 d old	Del Puerto Creek, CA	Υ				2.38	43.1	23	10 d	LOEC	growth	2.00	8.4	2	1,2,3	Amweg et al., 2005
Hyalella azteca	6-12 d old	American River, CA	Υ				2.38	43.1	23	10 d	NOEC	biomass	1.10	4.6	2	1,2,3,4	Amweg et al., 2005
Hyalella azteca	6-12 d old	American River, CA	Υ				2.38	43.1	23	10 d	EC10	biomass	0.54	2.3	2	1,2,3,4,5	Amweg et al., 2005
Hyalella azteca	6-12 d old	Del Puerto Creek, CA	Υ				1.87	31.7	23	10 d	NOEC	biomass	1.50	8.0	2	1,2,3,4	Amweg et al., 2005
Insecta																	•
Chironomus riparius	larva										EC50		2.4		3	6	Maund et al., 1998
Chironomus riparius	first instar		Υ	a.s.						28d	NOEC	emergence	105.00		2	7	Maund et al 1998

Notes

- 1 Pesticide was dissolved in an acetone carrier and spiked into sediment using <200 µl acetone/kg wet sediment (0.02%). Solvent control survival averaged 95 %.
- 2 Performed using standard U.S. EPA protocols: U.S. Environmental Protection Agency. 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd ed. EPA/600/R-99/064. Office of Research and Development, Washington, DC.
- 3 Test result based on nominal concentrations, measured concentrations were > 80 % of nominal (average 106%).
- 4 Result recalculated from μg/g o.c.
- 5 Determined with log-logistic relationship from presented figure
- 6 Test substance was added to the water.
- 7 Organic matter content unknown, uncorrected endpoint 105 μg/kg_{dw} is used as supportive information.

RIVM Letter report 601716001 39

Appendix 5. References used in the appendices

- Adamczyk JJ Jr, Leonard BR, Graves JB.1999. Toxicity of selected insecticides to fall armyworms (Lepidoptera: Noctuidae) in laboratory bioassay studies. Fla.Entomol. 82(2), 230-236.
- Advisory Committee on Pesticides. 1993. Evaluation on Lambda-cyhalothrin use as a public hygiene insecticide.
- Amin AM, Hemingway J. 1989. Preliminary investigation of the mechanisms of DDT and pyrethroid resistance in Culex quinquefasciatus Say (Diptera: Culicidae) from Saudi Arabia. Bulletin of entomological Research 79 (3), 361-366.
- Amweg EL, Weston DP, Ureda NM. 2005. Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environmental Toxicology and Chemistry 24(4), 966-972.
- Anadon A, Martinez M, Martinez MA, Diaz MJ, Martinez Larranaga MR. 2006. Toxicokinetics of lambda-cyhalothrin in rats. Toxicology Letters 165, 47-56.
- Ashauer R, Boxall A, Brown C. 2006. Predicting effects on aquatic organisms from fluctuating or pulsed exposure to pesticides. Environmental Toxicology and Chemistry 25(7), 1899-1912.
- Barata C, Baird DJ, Nogueira AJA, Soares AMVM, Riva MC. 2006. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquatic Toxicology 78, 1-14.
- Barata C, Baird DJ, Soares AMVM. 2002. Determining genetic variability in the distribution of sensitivities to toxic stress among and within field populations of Daphnia magna. Environmental Science & Technology 36, 3045-3049.
- Bouallam S, Maarouf A, Bouzidi A, Badri A. 1998. Efficiency of chemical and biological treatments on Culicidae larvae: lethal effect of temephos and consumption rate by Gambusia affinis. Annales de Limnologie International Journal of Limnology 34, 99-105.
- Bouldin JL, Farris JL, Moore MT, Smith S, Stephens WW, Cooper CM. 2005. Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms. Environmental Technology 20, 487-498.
- Bouldin JL, Milam CD, Farris JL, Moore MT, Smith S, Cooper CM. 2004. Evaluating toxicity of Asana XL (R) (esfenvalerate) amendments in agricultural ditch mesocosms. Chemosphere 56, 677-683.
- Canyon DV, Hii JLK. 1999. Insecticide susceptibility status of Aedes aegypti (Diptera: Culicidae) from Townsville. Australasian Journal of Ecotoxicology 38(1), 40-43.
- Cooper JF, Wynn NR, Deuse JPL, Coste CM, Zheng SQ, Schiffers BC. 1997. Impact of insecticides on wild fauna: a proposed toxicity index. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 62(2b), 599-606.
- CTB. Lambda-cyhalothrin.
- DAR lambda-cyhalothrin, 1996
- EC. Review report for the active substance lambda-cyhalothrin. http://europa.eu.int/comm/food/plant/protection/evaluation/existactive/list1-24_en.pdf.
- Farmer D, Hill IR Maund SJ. 1995. A comparison of the fate and effects of two pyrethroid insecticides
- (lambda-Cyhalothrin and Cypermethrin) in pond mesocosms. Ecotoxicology 4(4), 219-244. Forster B, Garcia M, Francimari O, Rombke J. 2006. Effects of carbendazim and lambda-cyhalothrin on soil invertebrates and leaf litter decomposition in semi-field and field tests under tropical
- conditions (Amazonia, Brazil). European Journal of Soil Biology 42(1), S171-S179. Foster RE, Buhler WG. 1995. Control of Insects on Collards. Insecticide & Acaricide Tests, Entomol.Soc.of Am., Lanham.
- Frampton GK, Jansch S, Scott-Fordsmand JJ, Rombke, J, Van den Brink PJ. 2006. Effects of pesticides on soil invertebrates in laboratory studies: A review and analysis using species sensitivity distributions. Environmental Toxicology and Chemistry 25(9), 2480-2489.

- Hamer MJ, Goggin UM, Muller K, Maund SJ. 1999. Bioavailability of lambda-cyhalothrin to Chironomus riparius in sediment-water and water-only systems. Aquat. Ecosyst. Health Manage. 2(4), 403-412.
- Hamer MJ, Hill IR, Rondon L, Caguan, A. 1994. The Effects of Lambda-Cyhalothrin in Aquatic Field Studies. Boca Raton, FL, Lewis Publishers.
- Hand, LH, Kuet SF, Lane MCG, Maund SJ, Warinton JS, Hill IR. 2001. Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments. Environmental Toxicology and Chemistry 20(8), 1740-1745.
- Heckmann LH, Friberg N. 2005. Macroinvertebrate community response to pulse exposure with the insecticide lambda-cyhalothrin using in-stream mesocosms. Environmental Toxicology and Chemistry 24(3), 582-590.
- Heckmann LH, Friberg N, Ravn HW. 2005. Relationship between biochemical biomarkers and precopulatory behaviour and mortality in Gammarus pulex following pulse-exposure to lambdacyhalothrin. Pest Management Science 61(7), 631-635.
- Hill IR, Hadfield ST, Kennedy JH, Ekoniak P. 1988. Assessment of the impact of PP321 on aquatic ecosystems using tenth-acre experimental ponds. Brighton Crop Prot. Conf.-Pests Dis. 309-318.
- Hill IR, Runnalls JK, Kennedy JH, Ekoniak P. 1990a. Lambda-cyhalothrin: A mesocosm study of its effects on aquatic organisms. Graney, R. L, Kennedy, J H, and Rodgers, J H Jr. SETAC Special Publications Series: Aquatic mesocosm studies in ecological risk assessment: Symposium on Utilization of Simulated Field Studies in Aquatic Ecological Risk Assessment at the 11th Annual Meeting of the Society of Environmental Toxicology and Chemistry. 94a. R: Boca Raton, Florida, USA, C Press/Lewis Publishers Inc.
- Hill IR, Runnalls JK, Kennedy JH, Ekoniak P. 1994b. Effects of lambda-cyhalothrin on aquatic organisms in large-scale mesocosms. Hill, Ian R. Freshwater Field Tests Hazard Assess. Chem., [Proc. Eur. Workshop Freshwater Field Tests].
- Hill IR, Shaw JL, Maund, SJ. 1994c. Review of aquatic field tests with pyrethroid insecticides. Hill, Ian R. Freshwater Field Tests Hazard Assess. Chem., [Proc. Eur. Workshop Freshwater Field Tests].
- Jansch S, Frampton GK, Rombke J, Van den Brink PJ, Scott-Fordsmand JJ. 2006. Effects of pesticides on soil invertebrates in model ecosystem and field studies: A review and comparison with laboratory toxicity data. Environmental Toxicology and Chemistry 25(9), 2490-2501.
- Jansson RK, Halliday WR, Argentine JA. 1997. Evaluation of miniature and high-volume bioassays for screening insecticides. Journal of Economic Entomology 90(6), 1500-1507.
- Kedwards TJ, Maund SJ, Chapman PF. 1999. Community level analysis of ecotoxicological field studies: II. Replicated-design studies. Environmental Toxicology and Chemistry 18(2), 158-166.
- Kent SJ, Shillabeer N. 1997a. Lambda-cyhalothrin: acute toxicity to golden orfe (Leucistus idus).
- Kent SJ, Shillabeer N. 197b. Lambda-cyhalothrin: Acute toxicity to the Japanese rice fish (Oryzias latipes).
- Kent SJ, Shillabeer N. 1997c. Lambda-cyhalothrin: Acute toxicity to the zebrafish (Danio rerio).
- Kroes R, Galli C, Munro I, Schilter B, Tran LA, Walker R, Wurtzen G. 2000. Threshold of toxicological concern for chemical substances present in the diet: A practical tool for assessing the need for toxicity testing. Food and Chemical Toxicology 38(2-3), 255-312. 2000.
- Lahr J. 1998. An ecological assessment of the hazard of eight insecticides used in Desert Locust control, to invertebrates in temporary ponds in the Sahel. Aquatic Ecology 32(2), 153-162.
- Lauridsen RB, Friberg N. 2005. Stream macroinvertebrate drift response to pulsed exposure of the synthetic pyrethroid lambda-cyhalothrin. Environmental Toxicology 20(5), 513-521.
- Lawler SP, Dritz DA, Christiansen JA, Cornel AJ. 2007. Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects. Pest Management Science 63(3), 234-240.
- Leistra M, Zweers AJ, Warinton JS, Crum SJH, Hand LH, Beltman WHJ, Maund SJ. 2004. Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density. Pest Management Science 60, 75-84.

- Liu WP, Gan JJ, Lee S, Kabashima JN. 2004. Phase distribution of synthetic pyrethroids in runoff and stream water. Environmental Toxicology and Chemistry 23(1), 7-11.
- Long KJW Shillabeer N. 1997a. Lambda-cyhalothrin: Acute toxicity to the three-spined stickleback (Gasterosteus aculeatus).
- Long KWJ, Shillabeer N. 1997b. Lambda-cyhalothrin: Acute toxicity to channel fish (Ictalurus punctatus).
- Maund SJ, Hamer MJ, Warinton JS, Kedwards TJ. 1998. Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: Considerations for higher-tier aquatic risk assessment. Pesticide Science 54, 408-417.
- Maycock DS, Prenner MM, Kheir R, Morris S, Callaghan A, Whitehouse P, Morrit, D, Crane M. 2003. Incorporation of in situ and biomarker assays in higher-tier assessment of the aquatic toxicity of insecticides. Water Research 37, 4180-4190.
- Milam CD, Bouldin JL, Farris JL, Schulz R, Moore MT, Bennett ER, Cooper CM, Smith, S. 2004. Evaluating acute toxicity of methyl parathion application in constructed wetland mesocosms. Environmental Technology 19(5), 471-479.
- Mittal PK, Adak T, Sharma VP. 1991. Acute toxicity of certain organochlorine, organophosphorus, synthetic pyrethroid and microbial insecticides to the mosquito fish Gambusia affinis (Baird and Girard). Indian Journal of Malariology 28(3), 167-170.
- Mohsen ZH, Ouda NA Zaiya HH. 1989. Predatory efficiency and tolerance of Gambusia affinis to Mosquito Larvicides. Journal of Biological Sciences Research 20(3), 528-536.
- Mokry LE, Hoagland KD. 1990. Acute toxicities of five synthetic pyrethroid insecticides to Daphnia magna and Ceriodaphnia dubia. Environmental Toxicology and Chemistry 9(8), 1045-1051.
- Moore MT, Bennett, ER, Cooper CM, Smith S, Shields FD, Milam CD, Farris JL. 2001. Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agriculture Ecosystems and-Environment 87, 309-314.
- Moore MT, Lizotte RE, Cooper CM, Smith S, Knight SS. 2004. Survival and growth of Hyalella azteca exposed to three Mississippi Oxbow lake Sediments. Bulletin of Environmental Contamination and Toxicology 72(4), 777-783.
- Naravaneni R, Jamil K. 2005. Evaluation of cytogenetic effects of lambda-cyhalothrin on human lymphocytes. Journal of Biochemical and Molecular Toxicology 19(5), 304-310.
- Office of Pesticide Programs. 2000a. Environmental Effects Database (EEDB). Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.
- Office of Pesticide Programs. 2000b. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.
- Ratnasooriya WD, Ratnayake SSK, Jayatunga YNA. 2003. Effects of Icon (R), a pyrethroid insecticide on early pregnancy of rats. Human & Experimental Toxicology 22(10), 523-533.
- Roessink I, Arts GHP, Belgers JDM, Bransen F, Maund SJ, Brock TCM. 2005. Effects of lambdacyhalothrin in two ditch microcosm systems of different trophic status. Environmental Toxicology and Chemistry 24(7), 1684-1696.
- Roth M, Richards RH, Sommerville C. 1992. Preliminary Studies on the Efficacy of Two Pyrethroid Compounds, Resmethrin and Lambdacyhalothrin, for the Treatment of Sea Lice (Lepeophtheirus salmonis) Infestations of Atlantic Salmon (Saimo salar). In: First European Crustacean Conf. Aquat.Sci.Fish.Abstr. 24(6, Pt.1)
- Rowland S, Cartwright B, Roberts BW. 1994. Control of Pests on Tomatoes, Summer 1993. Insecticide & Acaricide Tests, Entomol.Soc.of Am., Lanham, MD 19:150
- Schroer AFW, Belgers JDM, Brock TCM, Matser AM, Maund SJ, Van den Brink PJ. 2004. Comparison of laboratory single species and field population-level effects of the pyrethroid insecticide lambda-cyhalothrin on freshwater invertebrates. Archives of Environmental Contamination and Toxicology 46, 324-335.

- Shaalan EAS, Canyon DV, Younes MWF, Abdel Wahab H, Mansour AH. 2005. Effects of sub-lethal concentrations of synthetic insecticides and Callitris glaucophylla extracts on the development of Aedes aegypti. Journal of Vector Ecology 30, 295-298.
- Shakoori AR, Majeed S, Iftikhar A. 1991. Effect of synthetic pyrethroids on the growth of Bacillus thuringiensis kurstaki (strain HD1) and its toxicity to dipterous fly, Zaprionis indiana. Pakistan Journal of Zoology 23(3), 239-249.
- Smith Jr S and Lizotte R E. 2007. Influence of selected water quality characteristics on the toxicity of lambda-cyhalothrin and gamma-cyhalothrin to Hyalella azteca. Bulletin of Environmental Contamination and Toxicology 79 (5), 548-551.
- Solomon KR, Giddings JM, Maund SJ. 2001. Probabilistic risk assessment of cotton pyrethroids: I. Distributional analyses of laboratory aquatic toxicity data. Environmental Toxicology and Chemistry 20(3), 652-659.
- Stangroom SJ, Lester JN, Collins CD. 2000. Abiotic behaviour of organic micropollutants in soils and the aquatic environment. A review: I. Partitioning. Environmental Technology. 21(8), 845-863.
- Su NY, Ban PM, Scheffrahn RH. 1999. Longevity and efficacy of pyrethroid and organophosphate termiticides in field degradation studies using miniature slabs. Journal of Economic Entomology 92(4), 890-898.
- Sulaiman S, Omar AK, Omar BS. 1994. Field Evaluation of lambda-Cyhalothrin and Cyfluthrin Against the Dengue Vectors in an Endemic Area in Malaysia. In: Sci.Papers and Sci.and Procedural Notes Presented at the 1993 Joint Annu.Meet.of the Am.Mosq.Control Assoc.and the Florida Mosq.Control Assoc. 26-29.
- Van Wijngaarden RPA, Brock TCM, Van den Brink PJ. 2005. Threshold levels for effects of insecticides in freshwater ecosystems: A review. Ecotoxicology 14, 355-380.
- Van Wijngaarden RPA, Brock TCM, Van den Brink PJ, Gylstra R, Maund SJ. 2006. Ecological effects of spring and late summer applications of lambda-cyhalothrin on freshwater microcosms. Archives of Environmental Contamination and Toxicology 50 (2), 220-239. 2006.
- Van Wijngaarden RPA, Cuppen JGM, Arts GHP, Crum SJH, Van den Hoorn MW, Van den Brink PJ, Brock TCM. 2004. Aquatic risk assessment of a realistic exposure to pesticides used in bulb crops: A microcosm study. Environmental Toxicology and Chemistry 23, 1479-1498.
- Versteeg DJ, Stalmans M, Dyer SD, Janssen C. 1997. Ceriodaphnia and Daphnia: A comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere 34(4), 869-892.
- Wang W, Cai DJ, Shan ZJ, Chen WL, Poletika N, Gao XW. 2007. Comparison of the acute toxicity for gamma-cyhalothrin and lambda-cyhalothrin to zebra fish and shrimp. Regulatory Toxicology and Pharmacology 47, 184-188.
- Wendt RL, Van den Brink PJ, Crum SJH, Woin P. 2004. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community. Ecotoxicology and Environmental Safety 57, 383-398.
- Whalen J, Spellman M. Control of Lepidopterous Larvae on Spring Cabbage 1992. 115-116. 93. Insecticide & Acaricide Tests, Entomol.Soc.of Am., Lanham, MD 18.
- WHO. 1990. working group. Cyhalothrin. Environmental Health Criteria.
- Zhou JL, Rowland S, Mantoura RFC. 1995. Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Water Research 29(4), 1023-1031.

RIVM

National Institute for Public Health and the Environment

P.O. Box 1 3720 BA Bilthoven The Netherlands www.rivm.com