



National Institute  
for Public Health  
and the Environment

Letter report 601782014/2009  
R. van Herwijnen | M. van der Veen

## Environmental risk limits for 1,3 butadiene

RIVM Letter report 601782014/2009

## **Environmental risk limits for 1,3-butadiene**

R. van Herwijnen  
M. van der Veen

Contact:  
R. van Herwijnen  
Expertise Centre for Substances  
[rene.van.herwijnen@rivm.nl](mailto:rene.van.herwijnen@rivm.nl)

This investigation has been performed by order and for the account of Directorate-General for Environmental Protection, Directorate Environmental Safety and Risk Management, within the framework of 'International and National Environmental Quality Standards for Substances in the Netherlands' (INS).

© RIVM 2009

Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication.

## Acknowledgements

The results of the present report have been discussed in the scientific advisory group INS (WK INS). The members of this group are acknowledged for their contribution. Paul Janssen and Marja van de Bovenkamp (both RIVM-SIR) are thanked for their assistance in the human toxicological part.



## Rapport in het kort

### Milieurisicogrenzen voor 1,3-butadieen

Dit rapport geeft milieurisicogrenzen voor 1,3-butadieen in (grond)water, bodem en lucht. Milieurisicogrenzen zijn de technisch-wetenschappelijke advieswaarden voor de uiteindelijke milieukwaliteitsnormen in Nederland. De milieurisicogrenzen voor 1,3-butadieen zijn gebaseerd op de uitkomsten van de EU risicobeoordeling voor 1,3-butadieen (Bestaande Stoffen Verordening 793/93). De afleiding van de milieurisicogrenzen sluit tevens aan bij de richtlijnen uit de Kaderrichtlijn Water. Monitoringsgegevens voor Nederland zijn niet beschikbaar, daarom kan er geen verwachting worden uitgesproken of de afgeleide milieurisicogrenzen in Nederland overschreden zullen worden.

Trefwoorden: milieukwaliteitsnormen; milieurisicogrenzen; 1,3-butadieen; maximaal toelaatbaar risiconiveau; verwaarloosbaar risiconiveau



## Contents

|                   |                                                                                  |           |
|-------------------|----------------------------------------------------------------------------------|-----------|
| <b>Summary</b>    | <b>8</b>                                                                         |           |
| <b>1</b>          | <b>Introduction</b>                                                              | <b>9</b>  |
| 1.1               | Project framework                                                                | 9         |
| 1.2               | Production and use of 1,3-butadiene                                              | 9         |
| <b>2</b>          | <b>Methods</b>                                                                   | <b>11</b> |
| 2.1               | Data collection                                                                  | 11        |
| 2.2               | Methodology for derivation of environmental risk limits                          | 11        |
| <b>3</b>          | <b>Derivation of environmental risk limits for 1,3-butadiene</b>                 | <b>13</b> |
| 3.1               | Substance identification, physico-chemical properties, fate and human toxicology | 13        |
| 3.2               | Trigger values                                                                   | 15        |
| 3.3               | Toxicity data and derivation of ERLs for water                                   | 15        |
| 3.4               | Toxicity data and derivation of ERLs for sediment                                | 18        |
| 3.5               | Toxicity data and derivation of ERLs for soil                                    | 18        |
| 3.6               | Derivation of ERLs for groundwater                                               | 19        |
| 3.7               | Derivation of ERLs for air                                                       | 19        |
| 3.8               | Comparison of derived ERLs with monitoring data                                  | 20        |
| <b>4</b>          | <b>Conclusions</b>                                                               | <b>21</b> |
| <b>References</b> | <b>22</b>                                                                        |           |

# Summary

Environmental risk limits (ERLs) are derived using ecotoxicological, physico-chemical, and human toxicological data. They represent environmental concentrations of a substance offering different levels of protection to man and ecosystems. It should be noted that the ERLs are scientifically derived values. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs) from these ERLs. ERLs should thus be considered as preliminary values that do not have any official status.

This report contains ERLs for 1,3-butadiene in water, groundwater, soil and air. The following ERLs are derived: negligible concentration (NC), maximum permissible concentration (MPC), maximum acceptable concentration for ecosystems (MAC<sub>eco</sub>), and serious risk concentration for ecosystems (SRC<sub>eco</sub>). The risk limits were solely based on data presented in the Risk Assessment Reports (RAR) for this compound, prepared under the European Existing Substances Regulation (793/93/EEC). No risk limits were derived for the sediment compartment, because of the relatively low sediment-water partition coefficient. Because of the physical nature of the substance, its high vapour pressure and flammable nature, it would be very difficult to test meaningfully and no experimental aquatic toxicity data are available. Therefore, QSAR derived aquatic toxicity data have been used in the derivation of the ERLs. Because of this reason, there is a higher uncertainty in the derived values than when experimental aquatic toxicity data are used.

For the derivation of the MPC and MAC<sub>eco</sub> for water, the methodology used is in accordance with the Water Framework Directive. This methodology is based on the Technical Guidance Document on risk assessment for new and existing substances and biocides ([European Commission \(Joint Research Centre\), 2003](#)). For the NC and the SRC<sub>eco</sub>, the guidance developed for the project 'International and National Environmental Quality Standards for Substances in the Netherlands' was used ([Van Vlaardingen and Verbruggen, 2007](#)). An overview of the derived environmental risk limits is given in Table 1.

Monitoring data for 1,3-butadiene in the Dutch environment are not available. Therefore it cannot be judged if the derived ERLs are being exceeded.

Table 1. Derived MPC, NC, MAC<sub>eco</sub>, and SRC<sub>eco</sub> values for 1,3-butadiene.

| ERL                         | unit                               | value | MPC | NC                     | MAC <sub>eco</sub>                 | SRC <sub>eco</sub>                 |
|-----------------------------|------------------------------------|-------|-----|------------------------|------------------------------------|------------------------------------|
| water <sup>a</sup>          | ng.L <sup>-1</sup>                 | 62    |     | 0.62                   | 3.3 x 10 <sup>5</sup> <sup>d</sup> | 3.7 x 10 <sup>6</sup> <sup>d</sup> |
| drinking water <sup>b</sup> | ng.L <sup>-1</sup>                 | 35    |     |                        |                                    |                                    |
| marine                      | ng.L <sup>-1</sup>                 | 62    |     | 0.62                   | 3.3 x 10 <sup>4</sup> <sup>d</sup> | 3.7 x 10 <sup>6</sup> <sup>d</sup> |
| sediment                    | mg.kg <sub>dwt</sub> <sup>-1</sup> | n.d.  |     |                        |                                    |                                    |
| soil <sup>c</sup>           | µg.kg <sub>dwt</sub> <sup>-1</sup> | 0.36  |     | 3.6 x 10 <sup>-3</sup> |                                    | 1.7 x 10 <sup>4</sup> <sup>e</sup> |
| groundwater                 | ng.L <sup>-1</sup>                 | 35    |     | 0.35                   |                                    | 3.7 x 10 <sup>6</sup> <sup>d</sup> |
| air                         | ng.m <sup>-3</sup>                 | 30    |     | 0.30                   |                                    |                                    |

<sup>a</sup> From the MPC<sub>eco</sub>, water, MPC<sub>sp</sub>, water and MPC<sub>hh</sub>, food, water the lowest one is selected as the 'overall' MPC<sub>water</sub>.

<sup>b</sup> The exact way of implementation of the MPC<sub>dw</sub>, water in the Netherlands is at present under discussion. Therefore, the MPC<sub>dw</sub>, water is presented as a separate value in this report.

<sup>c</sup> Expressed on the basis of Dutch standard soil.

<sup>d</sup> Value based on QSARs for toxicity.

<sup>e</sup> Value based on QSARs for toxicity and equilibrium partitioning.

n.d. = not derived.

# 1 Introduction

## 1.1 Project framework

In this report environmental risk limits (ERLs) for surface water (freshwater and marine), soil and groundwater are derived for 1,3-butadiene. The following ERLs are considered:

- Negligible Concentration (NC) – concentration at which effects to ecosystems are expected to be negligible and functional properties of ecosystems must be safeguarded fully. It defines a safety margin which should exclude combination toxicity. The NC is derived by dividing the MPC (see next bullet) by a factor of 100.
- Maximum Permissible Concentration (MPC) – concentration in an environmental compartment at which:
  1. no effect to be rated as negative is to be expected for ecosystems;
  - 2a no effect to be rated as negative is to be expected for humans (for non-carcinogenic substances);
  - 2b for humans no more than a probability of  $10^{-6}$  over the whole life (one additional cancer incident in  $10^6$  persons taking up the substance concerned for 70 years) can be calculated (for carcinogenic substances) (Lepper, 2005).
- Maximum Acceptable Concentration ( $MAC_{eco}$ ) – concentration protecting aquatic ecosystems for effects due to short-term exposure or concentration peaks.
- Serious Risk Concentration ( $SRC_{eco}$ ) – concentration at which serious negative effects in an ecosystem may occur.

It should be noted that ERLs are scientifically derived values based on (eco)toxicological, fate and physico-chemical data. They serve as advisory values for the Dutch Steering Committee for Substances, which is appointed to set the Environmental Quality Standards (EQSs) from these ERLs. ERLs should thus be considered as preliminary values that do not have any official status.

## 1.2 Production and use of 1,3-butadiene

The Risk Assessment Report (RAR) (European Commission, 2002) reports that the most widely used production method for 1,3-butadiene is recovery from a by-product stream during the production of ethylene. The total production capacity reported is between 1.2 and 5.0 million tonnes per year. 1,3-Butadiene is used in closed systems as an intermediate for polymerisation and copolymerisation. The major use is for the production of synthetic rubber, thermoplastic resins and latex. More information can be found in the RAR (European Commission, 2002).



## 2 Methods

### 2.1 Data collection

The final Risk Assessment Report (RAR) of 1,3-butadiene (European Commission, 2002) produced in the framework of Existing Substances Regulation (793/93/EEC) was used as only source of physico-chemical and (eco)toxicity data. Information given in the RARs is checked thoroughly by European Union member states (Technical Committee) and afterwards approved by the Scientific Commission on Health and Environmental Risk (SCHER). Therefore, no additional evaluation of data is performed for the ERL derivation. Only valid data combined in an aggregated data table are presented in the current report. Occasionally, key studies are discussed when relevant for the derivation of a certain ERL.

In the aggregated data table only one effect value per species is presented. When for a species several effect data are available, the geometric mean of multiple values for the same endpoint is calculated where possible. Subsequently, when several endpoints are available for one species, the lowest of these endpoints (per species) is reported in the aggregated data table.

### 2.2 Methodology for derivation of environmental risk limits

The methodology for data selection and ERL derivation is described in Van Vlaardingen and Verbruggen (2007) which is in accordance with Lepper (2005). For the derivation of ERLs for air, no specific guidance is available. However, as much as possible the basic principles underpinning the ERL derivation for the other compartments are followed for the atmospheric ERL derivation (if relevant for a chemical).

#### 2.2.1 Drinking water abstraction

The INS-Guidance includes the MPC for surface waters intended for the abstraction of drinking water ( $MPC_{dw, water}$ ) as one of the MPCs from which the lowest value should be selected as the general  $MPC_{water}$  (see INS-Guidance, Section 3.1.6 and 3.1.7). According to the proposal for the daughter directive Priority Substances, however, the derivation of the AA-EQS (= MPC) should be based on direct exposure, secondary poisoning, and human exposure due to the consumption of fish. Drinking water was not included in the proposal and is thus not guiding for the general  $MPC_{water}$  value. The exact way of implementation of the  $MPC_{dw, water}$  in the Netherlands is at present under discussion within the framework of the “AMvB Kwaliteitseisen en Monitoring Water”. No policy decision has been taken yet, and the  $MPC_{dw, water}$  is therefore presented as a separate value in this report.

The  $MPC_{dw, water}$  is also used to derive the  $MPC_{gw}$ . For the derivation of the  $MPC_{dw, water}$ , a substance specific removal efficiency related to simple water treatment may be needed. Because there is no agreement as yet on how the removal fraction should be calculated, water treatment is not taken into account.

## 2.2.2 **MAC<sub>eco, marine</sub>**

In this report, a MAC<sub>eco</sub> is also derived for the marine environment. The assessment factor for the MAC<sub>eco, marine</sub> value is based on:

- the assessment factor for the MAC<sub>eco, water</sub> value, when acute toxicity data for at least two specific marine taxa are available, or
- using an additional assessment factor of 5, when acute toxicity data for only one specific marine taxon are available (analogous to the derivation of the MPC according to Van Vlaardingen and Verbruggen (2007)), or
- using an additional assessment factor of 10, when no acute toxicity data are available for specific marine taxa.

If freshwater and marine data sets are not combined the MAC<sub>eco, marine</sub> is derived on marine toxicity data using the same additional assessment factors as mentioned above. It has to be noted that this procedure is currently not agreed upon. Therefore, the MAC<sub>eco, marine</sub> value needs to be re-evaluated once an agreed procedure is available.

### 3 Derivation of environmental risk limits for 1,3-butadiene

#### 3.1 Substance identification, physico-chemical properties, fate and human toxicology

##### 3.1.1 Identity

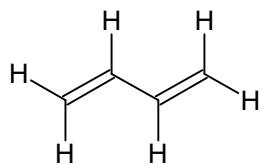



Figure 1. Structural formula of 1,3-butadiene.

Table 2. Identification of 1,3-butadiene.

| Parameter                 | Name or number                                                                                                                                                                                                                                                                    |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Common/trivial/other name | alpha-gamma-butadiene, biethylene, bietileno, bivinile, bivinyl, bivinylerythrene, butadien, butadiene, butadiene-1,3, buta-1,3-diene, diethylene, divinilo, divinyl, eritrene, erythrene, pyrrolylene, trans-butadiene, viniletilene, viniletileno, vinylmethylen, vinylethylene |
| CAS number                | 106-99-0                                                                                                                                                                                                                                                                          |
| EC number                 | 203-450-8                                                                                                                                                                                                                                                                         |
| Molecular formula:        | C <sub>4</sub> H <sub>6</sub>                                                                                                                                                                                                                                                     |
| Smiles                    | C(C=C)=C                                                                                                                                                                                                                                                                          |

##### 3.1.2 Physico-chemical properties

Table 3. Physico-chemical properties of 1,3-butadiene.

| Parameter            | Unit                                    | Value                 | Remark                                          |
|----------------------|-----------------------------------------|-----------------------|-------------------------------------------------|
| Molecular weight     | [g.mol <sup>-1</sup> ]                  | 54.09                 |                                                 |
| Water solubility     | [g.L <sup>-1</sup> ]                    | 0.735                 | at 20 °C                                        |
| log K <sub>ow</sub>  | [-]                                     | 1.99                  | experimental data                               |
| K <sub>OC</sub>      | [L.kg <sup>-1</sup> ]                   | 51.6                  | estimated from K <sub>ow</sub> according to TGD |
| Vapour pressure      | [Pa]                                    | 240 x 10 <sup>3</sup> | at 20 °C                                        |
| Melting point        | [°C]                                    | -108.9                |                                                 |
| Boiling point        | [°C]                                    | -4.4                  |                                                 |
| Henry's law constant | [Pa.m <sup>3</sup> .mol <sup>-1</sup> ] | 7.4 x 10 <sup>3</sup> | at 20 °C, estimation based on solubility        |

n.a. = not applicable.

### 3.1.3 Behaviour in the environment

Table 4. Selected environmental properties of 1,3-butadiene.

| Parameter            | Unit     | Value | Remark                                    | Reference |
|----------------------|----------|-------|-------------------------------------------|-----------|
| Hydrolysis half-life | DT50 [d] |       | Not expected                              | RAR       |
| Photolysis half-life | DT50 [d] |       | Insignificant compared to photooxidation* | RAR       |
| Degradability        |          |       | Insufficient data available               | RAR       |

\*For photooxidation the atmospheric half-life for 1,3-butadiene is 5.8 hours based on atmospheric radical concentrations of  $5 \times 10^5$  molecule.cm<sup>-3</sup>.

### 3.1.4 Bioconcentration and biomagnification

An overview of the bioaccumulation data for 1,3-butadiene is given in Table 5.

Table 5. Overview of bioaccumulation data for 1,3-butadiene.

| Parameter  | Unit                   | Value | Remark                                                | Reference |
|------------|------------------------|-------|-------------------------------------------------------|-----------|
| BCF (fish) | [L.kg <sup>-1</sup> ]  | 9.8   | Based on QSAR                                         | RAR       |
| BMF        | [kg.kg <sup>-1</sup> ] | 1     | default value since the BCF < 2000 L.kg <sup>-1</sup> |           |

### 3.1.5 Human toxicological threshold limits and carcinogenicity

Classification and labelling according to the 25<sup>th</sup> ATP of Directive 67/548/EEC:

Classification: F+, R12, R45, R46

Labelling: F+, T, R45, R46, R12, S53, S45

In the RAR it is concluded that the critical toxic effects of 1,3-butadiene are mutagenicity and carcinogenicity. Based on available evidence the compound should be regarded as a potential genotoxic carcinogen in humans (non-threshold carcinogen), the RAR concludes. In the RAR, however, no quantification of the cancer risk is presented. Health Canada (2000), WHO (2001) and US-EPA (2002) do provide quantitative cancer risk assessments. TC<sub>01</sub>/LEC<sub>01</sub>-values (tumorigenic concentration associated with a 1% increase in the incidence of or mortality due to cancer) were calculated both from available animal studies and from epidemiological data. The value derived from human data was considered the most reliable estimate of cancer risk. WHO (2001) and Health Canada (2000) calculated a TC<sub>01</sub> of 1.7 mg.m<sup>-3</sup> from an epidemiological study showing a relation between exposure to 1,3-butadiene in the styrene-butadiene rubber industry and the development of leukemia. The US EPA used the same study to derive a unit risk of  $3 \times 10^{-5}$  per  $\mu\text{g.m}^{-3}$ , using linear extrapolation from an LEC<sub>01</sub> and an adjustment factor of 2. The latter was applied because animal studies indicated that male-only studies may underestimate the risk to the general population. The unit risk as derived by US EPA (2002) corresponds to an excess lifetime  $1 \times 10^{-6}$  cancer risk level of 0.03  $\mu\text{g/m}^3$ . This value is adopted as the human inhalation limit value.

No oral toxicity studies of 1,3-butadiene are available for the derivation of an oral limit value. In absence of oral data showing otherwise, it must be assumed that 1,3-butadiene will exert genotoxic and carcinogenic effects via this route as well. Quantifying this oral risk is possible using the inhalation estimate. The inhalation limit value of 0.03  $\mu\text{g/m}^3$  can be converted to a daily oral dose of

0.01  $\mu\text{g} \cdot \text{kg}_{\text{bw}}^{-1} \cdot \text{day}^{-1}$  (rounded value, calculated using a daily ventilation volume of 20  $\text{m}^3$  for a 70 kg adult). This value is adopted here as oral limit value.

## 3.2 Trigger values

This section reports on the trigger values for  $\text{ERL}_{\text{water}}$  derivation (as demanded in WFD framework).

**Table 6. 1,3-Butadiene: collected properties for comparison to MPC triggers.**

| Parameter                     | Value      | Unit                                  | Method/Source                               |
|-------------------------------|------------|---------------------------------------|---------------------------------------------|
| Log $K_{\text{p,susp-water}}$ | 0.71       | [-]                                   | $K_{\text{OC}} \times f_{\text{OC,susp}}^1$ |
| BCF                           | 9.8        | [ $\text{L} \cdot \text{kg}^{-1}$ ]   |                                             |
| BMF                           | 1          | [ $\text{kg} \cdot \text{kg}^{-1}$ ]  |                                             |
| Log $K_{\text{ow}}$           | 1.99       | [-]                                   |                                             |
| R-phrases                     | 45, 46, 12 | [-]                                   |                                             |
| A1 value                      | n.a.       | [ $\mu\text{g} \cdot \text{L}^{-1}$ ] |                                             |
| DW standard                   | n.a.       | [ $\mu\text{g} \cdot \text{L}^{-1}$ ] |                                             |

<sup>1</sup>  $f_{\text{OC,susp}} = 0.1 \text{ kg}_{\text{OC}} \cdot \text{kg}_{\text{solid}}^{-1}$  (European Commission (Joint Research Centre), 2003).

- 1,3-butadiene has a  $\log K_{\text{p,susp-water}} < 3$ ; derivation of  $\text{MPC}_{\text{sediment}}$  is not triggered.
- 1,3-butadiene has a  $\log K_{\text{p,susp-water}} < 3$ ; expression of the  $\text{MPC}_{\text{water}}$  as  $\text{MPC}_{\text{susp,water}}$  is not required.
- 1,3-butadiene has a  $\log K_{\text{ow}} < 3$ ; assessment of secondary poisoning is not triggered.
- 1,3-butadiene has an R45 and R46 classification. Therefore, an  $\text{MPC}_{\text{water}}$  for human health via food (fish) consumption ( $\text{MPC}_{\text{hh food,water}}$ ) should be derived.

## 3.3 Toxicity data and derivation of ERLs for water

In the RAR it is reported that no valid aquatic toxicity tests have been carried out using 1,3-butadiene. The lack of experimental aquatic toxicity results for 1,3-butadiene is in line with the physical nature of the substance. Due to its high vapour pressure and flammable nature it would be very difficult to test meaningfully. In the absence of experimental toxicity data, two approaches have been taken in the RAR. Firstly, the toxicity of 1,3-butadiene is estimated using suitable quantitative structure-activity relationships (QSAR); and secondly, toxicity data from structurally similar substances was used to assess the likely toxicity of 1,3-butadiene.

The RAR reports toxicity results for two structurally similar chemicals, isoprene (2-methyl-1,3-butadiene) and 1,3-pentadiene (Figure 2). QSARs from the TGD have been used to calculate chronic and acute data of 1,3-butadiene for algae, *Daphnia* and fish. For comparison the same QSARs have been used to calculate toxicity data for isoprene (2-methyl-1,3-butadiene) and 1,3-pentadiene. The results are given in table 7 and 8.

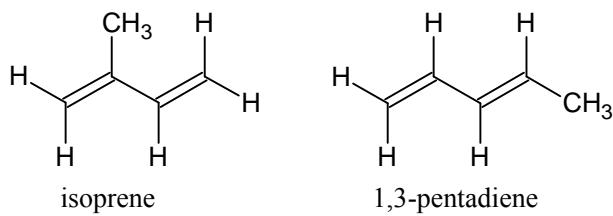



Figure 2 Structural formula of isoprene and 1,3-pentadiene.

Table 7. QSAR derived freshwater toxicity data for 1,3-butadiene as reported in the RAR.

| Chronic<br>Taxonomic group                           | NOEC (mg.L <sup>-1</sup> ) | Acute<br>Taxonomic group   | L(E)C <sub>50</sub> (mg.L <sup>-1</sup> ) |
|------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------|
| <b>Crustacea</b>                                     |                            | <b>Algae</b>               |                                           |
| <i>Daphnia magna</i>                                 | 6.2                        | algae                      | 32.6                                      |
| <b>Pisces</b>                                        |                            | <b>Crustacea</b>           |                                           |
| <i>Danio rerio</i> and<br><i>Pimephales promelas</i> | 4.4                        | <i>Daphnia magna</i>       | 33.3                                      |
|                                                      |                            | <b>Pisces</b>              |                                           |
|                                                      |                            | <i>Pimephales promelas</i> | 44.8                                      |

Table 8. Freshwater toxicity data for chemicals structurally similar to 1,3-butadiene.

| Chronic<br>Taxonomic group | NOEC (mg.L <sup>-1</sup> ) | Acute<br>Taxonomic group       | L(E)C <sub>50</sub> (mg.L <sup>-1</sup> ) |
|----------------------------|----------------------------|--------------------------------|-------------------------------------------|
| <b>1,3-pentadiene</b>      |                            | <b>1,3-pentadiene</b>          |                                           |
| <b>Algae</b>               |                            | <b>Algae</b>                   |                                           |
| algae                      | 40.9                       | algae                          | 174.6                                     |
|                            |                            | algae QSAR                     | 20.1 and 127*                             |
| <b>Crustacea</b>           |                            | <b>Crustacea</b>               |                                           |
|                            |                            | <i>Daphnia</i>                 | 221.5                                     |
|                            |                            | <i>Daphnia QSAR</i>            | 21.3 and 123*                             |
| <b>Fish</b>                |                            | <b>Fish</b>                    |                                           |
|                            |                            | fish                           | 139.9                                     |
|                            |                            | fish QSAR                      | 30.8 and 147                              |
| <b>Isoprene</b>            |                            | <b>Isoprene</b>                |                                           |
| <b>Algae</b>               |                            | <b>Algae</b>                   |                                           |
|                            |                            | <i>Scenedesmus quadricauda</i> | >1000                                     |
|                            |                            | algae QSAR                     | 20.1                                      |
| <b>Crustacea</b>           |                            | <b>Crustacea</b>               |                                           |
|                            |                            | <i>Daphnia magna</i>           | 140                                       |
|                            |                            | <i>daphnia QSAR</i>            | 21.3                                      |
| <b>Fish</b>                |                            | <b>Fish</b>                    |                                           |
|                            |                            | <i>Carassius auratus</i>       | 180                                       |
|                            |                            | <i>Lebistes reticulatus</i>    | 240                                       |
|                            |                            | <i>Lepomis macrochirus</i>     | 42.5                                      |
|                            |                            | <i>Pimephales promelas</i>     | 80.4**                                    |
|                            |                            | fish QSAR                      | 30.8                                      |

\*Values calculated with log K<sub>ow</sub> of 2.3 and 1.5 respectively.

\*\*Geometric mean of 74.8 and 86.5 mg.L<sup>-1</sup>.

### 3.3.1 Treatment of fresh- and saltwater toxicity data

Since there are no data for marine species, marine ERLs will be based on freshwater data.

### 3.3.2 Mesocosm studies

No mesocosm studies are presented in the RAR.

### 3.3.3 Derivation of MPC<sub>water</sub> and MPC<sub>marine</sub>

#### 3.3.3.1 MPC<sub>eco, water</sub> and MPC<sub>eco, marine</sub>

In the RAR it is stated that the structurally similar compounds isoprene and 1,3-pentadiene are slightly less toxic than expected from QSAR predictions. Therefore, in the absence of experimental data for 1,3-butadiene it was proposed to base the PNEC on the acute L(E)C50 QSAR predictions with an assessment factor of 1,000 and the long-term NOEC QSAR predictions with an assessment factor of 100. This approach produced a PNEC<sub>water</sub> of 32.6 µg.L<sup>-1</sup> from the acute QSAR data and 44 µg.L<sup>-1</sup> from the long-term NOEC QSAR data. As a conservative approach, the lower PNEC<sub>water</sub> of 32.6 µg.L<sup>-1</sup> is used in the assessment. This PNEC is taken over as the MPC<sub>eco, water</sub>, which is therefore: 32.6 µg.L<sup>-1</sup>.

The MPC<sub>eco, marine</sub> using the same data is set a factor 10 lower than the MPC<sub>eco, water</sub>. The MPC<sub>eco, marine</sub> is: 3.3 µg.L<sup>-1</sup>.

#### 3.3.3.2 MPC<sub>sp, water</sub> and MPC<sub>sp, marine</sub>

1,3-Butadiene has a log K<sub>ow</sub> < 3, thus assessment of secondary poisoning is not triggered.

#### 3.3.3.3 MPC<sub>hh food, water</sub>

Derivation of MPC<sub>hh food, water</sub> for 1,3-butadiene is triggered because it is a suspected carcinogen and mutagen (Table 6). The derivation is based on the oral limit value of 0.01 µg.kg<sub>bw</sub><sup>-1</sup>.day<sup>-1</sup>. MPC<sub>hh, food</sub> = 0.1 x 0.01 x 70 / 0.115 = 0.61 µg.kg<sub>feed</sub><sup>-1</sup>. The resulting MPC<sub>hh food, water</sub> is then: 0.61 / (9.8 x 1) = 0.062 µg.L<sup>-1</sup>.

#### 3.3.3.4 Selection of the MPC<sub>water</sub> and MPC<sub>marine</sub>

The MPC<sub>water</sub> will be the lowest MPC<sub>water</sub>: the MPC<sub>hh food, water</sub> of 0.062 µg.L<sup>-1</sup>. The MPC<sub>marine</sub> is also determined by the MPC<sub>hh food, water</sub>: 0.062 µg.L<sup>-1</sup>.

### 3.3.4 MPC<sub>dw, water</sub>

No A1 value and DW standard are available for 1,3-butadiene. With the oral limit value of 0.01 µg.kg<sub>bw</sub><sup>-1</sup>.d<sup>-1</sup> an MPC<sub>dw, water</sub>, provisional can be calculated with the following formula: MPC<sub>dw, water, provisional</sub> = 0.1.TL<sub>hh</sub>.BW / Uptake<sub>dw</sub> where TL<sub>hh</sub> is the oral limit value, BW is a body weight of 70 kg, and uptake<sub>dw</sub> is a daily uptake of 2 L. As described in section 2.2 water treatment is currently not taken into account. Therefore the MPC<sub>dw, water</sub> = MPC<sub>dw,water, provisional</sub> and becomes: 0.1 x 0.01 x 70 / 2 = 0.035 µg.L<sup>-1</sup>.

### 3.3.5 Derivation of MAC<sub>eco</sub>

In the RAR the PNEC<sub>water</sub> is based on a QSAR dataset. We will also base the MAC<sub>eco, water</sub> on this same dataset (Table 7). Since for the PNEC<sub>water</sub> the highest assessment factor was applied, we will also apply the highest assessment factor for compounds which have no potential to bioaccumulate. This factor is 100. The MAC<sub>eco, water</sub> will be: 32.6 / 100 = 0.33 mg.L<sup>-1</sup>.

There is no data for additional marine taxonomic groups. Therefore, the  $MAC_{eco, marine}$  is derived with an additional assessment factor of 10 on  $0.33 / 10 = 0.033 \text{ mg.L}^{-1}$ . It has to be noted that this procedure for the  $MAC_{eco, marine}$  is currently not agreed upon. Therefore the  $MAC_{eco, marine}$  needs to be re-evaluated once an agreed procedure is available.

### 3.3.6 Derivation of NC

The  $NC_{water}$  is set a factor 100 lower than the  $MPC_{water}$ :  $0.62 \text{ ng.L}^{-1}$ .  
The  $NC_{marine}$  is set a factor 100 lower than the  $MPC_{marine}$ :  $0.62 \text{ ng.L}^{-1}$ .

### 3.3.7 Derivation of $SRC_{eco, aquatic}$

To calculate an  $SRC_{eco, aquatic}$ , the same QSAR derived dataset as used in the RAR to derive the PNEC has been used (Table 7). The geometric mean of the acute values divided by 10 ( $3.7 \text{ mg.L}^{-1}$ ) is lower than the geometric mean of the chronic values ( $5.2 \text{ mg.L}^{-1}$ ). Therefore the  $SRC_{eco, aquatic}$  is derived from the acute data:  $3.7 \text{ mg.L}^{-1}$ . The  $SRC_{eco, aquatic}$  is valid for the marine and the freshwater environment.

## 3.4 Toxicity data and derivation of ERLs for sediment

The  $\log K_{p, \text{susp-water}}$  of 1,3-butadiene is below the trigger value of 3, therefore, ERLs are not derived for sediment.

## 3.5 Toxicity data and derivation of ERLs for soil

No data is presented in the RAR for soil toxicity.

### 3.5.1 Derivation of $MPC_{soil}$

#### 3.5.1.1 $MPC_{eco, soil}$

The PNEC<sub>soil</sub> derived in the RAR was calculated from the PNEC<sub>water</sub> using equilibrium partitioning. The derived value is  $45.6 \text{ } \mu\text{g} \cdot \text{kg}_{\text{ww}}^{-1}$ . Recalculation to dry weight standard Dutch soil gives:  $151.6 \text{ } \mu\text{g} \cdot \text{kg}_{\text{dwt}}^{-1}$ . This value will be taken over as  $MPC_{eco, soil}$ :  $151.6 \text{ } \mu\text{g} \cdot \text{kg}_{\text{dwt}}^{-1}$  for Dutch standard soil.

#### 3.5.1.2 $MPC_{sp, soil}$

1,3-Butadiene has a  $\log K_{ow} < 3$  and therefore secondary poisoning is not triggered.

#### 3.5.1.3 $MPC_{human, soil}$

For the derivation of the  $MPC_{human, soil}$ , the oral limit value of  $0.01 \text{ } \mu\text{g} \cdot \text{kg}_{\text{bw}}^{-1} \cdot \text{day}^{-1}$  can be used as  $TL_{hh}$  to calculate the  $MPC_{human, soil}$  with the method as described in van Vlaardingen and Verbruggen (2007). Specific human intake routes are allowed to contribute 10% of the human toxicological threshold limit. Four different routes contributing to human exposure have been incorporated: consumption of leafy crops, root crops, milk and meat. Uptake via root crops was determined to be the critical route. The calculated  $MPC_{human, soil}$  is  $0.36 \text{ } \mu\text{g} \cdot \text{kg}_{\text{dwt}}^{-1}$  for Dutch standard soil.

#### 3.5.1.4 Selection of the $MPC_{soil}$

The  $MPC_{soil}$  is set by the  $MPC_{human, soil}$  at:  $0.36 \text{ } \mu\text{g} \cdot \text{kg}_{\text{dwt}}^{-1}$ .

### 3.5.2 Derivation of NC<sub>soil</sub>

The NC<sub>soil</sub> is set a factor 100 lower than the MPC<sub>soil</sub>: 3.6 ng.kg<sub>dwt</sub><sup>-1</sup>.

### 3.5.3 Derivation of SRC<sub>eco, soil</sub>

The SRC<sub>eco, soil</sub> can be calculated from the SRC<sub>eco, water</sub> with equilibrium partitioning: 17 mg.kg<sub>dwt</sub><sup>-1</sup> for Dutch standard soil.

## 3.6 Derivation of ERLs for groundwater

### 3.6.1 Derivation of MPC<sub>gw</sub>

#### 3.6.1.1 MPC<sub>eco, gw</sub>

Since groundwater-specific ecotoxicological ERLs for the groundwater compartment are absent, the surface water MPC<sub>eco, water</sub> is taken as substitute. Thus, MPC<sub>eco, gw</sub> = MPC<sub>eco, water</sub> = 32.6 µg.L<sup>-1</sup>.

#### 3.6.2 MPC<sub>human, gw</sub>

The MPC<sub>human, gw</sub> is set equal to the MPC<sub>dw, water</sub> of 0.035 µg.L<sup>-1</sup>. Therefore the MPC<sub>human, gw</sub> = MPC<sub>dw, water</sub>: 0.035 µg.L<sup>-1</sup>.

#### 3.6.3 Selection of the MPC<sub>gw</sub>

The lowest available MPC is the MPC<sub>human, gw</sub> of 0.035 µg.L<sup>-1</sup>. Thus, the final MPC<sub>gw</sub> = 0.035 µg.L<sup>-1</sup>.

#### 3.6.4 Derivation of NC<sub>gw</sub>

The NC<sub>gw</sub> is set a factor 100 lower than the MPC<sub>gw</sub>. Thus, NC<sub>gw</sub> is 0.35 ng.L<sup>-1</sup>.

#### 3.6.5 Derivation of SRC<sub>eco, gw</sub>

The SRC<sub>eco, gw</sub> is set equal to SRC<sub>eco, aquatic</sub>. Thus, the SRC<sub>eco, gw</sub> = 3.7 mg.L<sup>-1</sup>.

## 3.7 Derivation of ERLs for air

Ecotoxicological data for the air compartment are reported in Table 9.

Table 9. 1,3-Butadiene: selected air data for ERL derivation

| Chronic<br>Taxonomic group     | NOEC (mg.m <sup>-3</sup> ) | Acute<br>Taxonomic group  | L(E)C <sub>50</sub> (g.m <sup>-3</sup> ) |
|--------------------------------|----------------------------|---------------------------|------------------------------------------|
| <b>Plants</b>                  |                            | <b>Plants</b>             |                                          |
| <i>Gossypium hirsutum</i>      | 22.1 (21 days)             | <i>Pisum sativum</i>      | 1.110 x 10 <sup>6</sup> (3 h)*           |
| <i>Vigna sinensis</i>          | 2210 (7 days)              | <i>Phaseolus vulgaris</i> | 2.22 x 10 <sup>4</sup> (4 h)*            |
| <i>Lycopersicum esculentum</i> | 22.1 (21 days)             |                           |                                          |
| <i>Coleus spec.</i>            | 22.1 (21 days)             |                           |                                          |
| <i>Sorghum spec.</i>           | 2210 (7 days)              |                           |                                          |
| <i>Glycine soja</i>            | 2210 (7 days)              |                           |                                          |

| Chronic<br>Taxonomic group | NOEC (mg.m <sup>-3</sup> ) | Acute<br>Taxonomic group | L(E)C <sub>50</sub> (g.m <sup>-3</sup> ) |
|----------------------------|----------------------------|--------------------------|------------------------------------------|
| <b>Mammals</b>             |                            |                          |                                          |
| mice (NOAEL/LOAEL)         | 13.8 (2 year)              |                          |                                          |

\* effect possibly due to traces of ethylene.

### 3.7.1 Derivation of MPC<sub>air</sub>

#### 3.7.1.1 MPC<sub>eco, air</sub>

In the RAR a PNEC<sub>air</sub> for plants is derived of 2.2 mg.m<sup>-3</sup> using an assessment factor of 10 on the NOECs of 22.1 mg.m<sup>-3</sup> for 21 days exposure. This assessment factor was applied since other plant species exposed to 100 times higher concentrations showed no effect. From the mammalian data a PNEC<sub>air</sub> was derived of 1.38 mg.m<sup>-3</sup> using an assessment factor of 10. Both PNECs are similar and, in the RAR, no selection is made for a final PNEC<sub>air</sub>. However the plant PNEC is used in the risk assessment and therefore this one is also selected as the MPC<sub>eco, air</sub>: 2.2 mg.m<sup>-3</sup>.

#### 3.7.1.2 Derivation of MPC<sub>human, air</sub>

The MPC<sub>human, air</sub> will be equal to the TCA as given in section 3.1.5. The MPC<sub>human, air</sub> is: 0.03 µg.m<sup>-3</sup>.

#### 3.7.1.3 Selection of the MPC<sub>air</sub>

The MPC<sub>air</sub> will be the lowest MPC<sub>air</sub>, the MPC<sub>human, air</sub> of: 0.03 µg.m<sup>-3</sup>.

### 3.7.2 Derivation of NC<sub>air</sub>

The MPC<sub>air</sub> divided by 100 is the NC<sub>air</sub>: 0.3 ng.m<sup>-3</sup>.

## 3.8 Comparison of derived ERLs with monitoring data

The RIWA (Dutch Association of River Water companies, [www.riwa.org](http://www.riwa.org)) reports no monitoring data for 1,3-butadiene between 2001 and 2006. Also the Dutch Ministry of Transport, Public Works and Water Management does not present any monitoring data for 1,3-butadiene on their website ([www.waterstat.nl](http://www.waterstat.nl)). According to the RAR only two reports mentioning 1,3-butadiene in surface water are available. The first report mentions a concentration of 2 µg.L<sup>-1</sup> in the San Francisco Bay area in the USA in 1975-76. The second report mentions detection of 1,3-butadiene in 2 out of 2103 samples in the effluent from a production plant in Canada in 1996. The levels in the two samples were 2 µg.L<sup>-1</sup> and 5 µg.L<sup>-1</sup>, these levels would have been further diluted in the receiving water. Comparison to the derived MPC<sub>water</sub> of 0.062 µg.L<sup>-1</sup> shows that these observations would have exceeded the MPC<sub>water</sub> derived in this report. The MAC<sub>eco</sub> and SRC<sub>eco</sub> derived in this report would not have been exceeded.

## 4 Conclusions

In this report, the risk limits Negligible Concentration (NC), Maximum Permissible Concentration (MPC), Maximum Acceptable Concentration for ecosystems (MAC<sub>eco</sub>), and Serious Risk Concentration for ecosystems (SRC<sub>eco</sub>) are derived for 1,3-butadiene in water, groundwater, soil and air. No risk limits were derived for the sediment compartment, because exposure of sediment is considered negligible. It should be noted that because of the physical nature of the substance, the derived ERLs are based on QSAR calculated aquatic toxicity data. Due to its high vapour pressure and flammable nature it would be very difficult to test meaningfully. Because of this reason there is a higher uncertainty in the derived ERLs than when experimentally derived aquatic toxicity data are used. The ERLs that were obtained are summarised in the table below. Monitoring data for 1,3-butadiene in the Dutch environment are not available. Therefore it cannot be judged if the derived ERLs are being exceeded.

Table 10. Derived MPC, NC, MAC<sub>eco</sub>, and SRC<sub>eco</sub> values for 1,3-butadiene.

| ERL                         | unit                               | value |                        |                                    |                                    |
|-----------------------------|------------------------------------|-------|------------------------|------------------------------------|------------------------------------|
|                             |                                    | MPC   | NC                     | MAC <sub>eco</sub>                 | SRC <sub>eco</sub>                 |
| water <sup>a</sup>          | ng.L <sup>-1</sup>                 | 62    | 0.62                   | 3.3 x 10 <sup>5</sup> <sup>d</sup> | 3.7 x 10 <sup>6</sup> <sup>d</sup> |
| drinking water <sup>b</sup> | ng.L <sup>-1</sup>                 | 35    |                        |                                    |                                    |
| marine                      | ng.L <sup>-1</sup>                 | 62    | 0.62                   | 3.3 x 10 <sup>4</sup> <sup>d</sup> | 3.7 x 10 <sup>6</sup> <sup>d</sup> |
| sediment                    | mg.kg <sub>dwt</sub> <sup>-1</sup> | n.d.  |                        |                                    |                                    |
| soil <sup>c</sup>           | µg.kg <sub>dwt</sub> <sup>-1</sup> | 0.36  | 3.6 x 10 <sup>-3</sup> |                                    | 1.7 x 10 <sup>4</sup> <sup>e</sup> |
| groundwater                 | ng.L <sup>-1</sup>                 | 35    | 0.35                   |                                    | 3.7 x 10 <sup>6</sup> <sup>d</sup> |
| air                         | ng.m <sup>-3</sup>                 | 30    | 0.30                   |                                    |                                    |

<sup>a</sup> From the MPC<sub>eco, water</sub>, MPC<sub>sp, water</sub> and MPC<sub>hh, food, water</sub> the lowest one is selected as the 'overall' MPC<sub>water</sub>.

<sup>b</sup> The exact way of implementation of the MPC<sub>dw, water</sub> in the Netherlands is at present under discussion. Therefore, the MPC<sub>dw, water</sub> is presented as a separate value in this report.

<sup>c</sup> Expressed on the basis of Dutch standard soil.

<sup>d</sup> Value based on QSARs for toxicity.

<sup>e</sup> Value based on QSARs for toxicity and equilibrium partitioning.

n.d. = not derived.

## References

European Commission. 2002. 1,3-Butadiene. Risk Assessment Report, Vol. 20. Luxembourg: Office for Official Publications of the European Communities. EUR 20420 EN.

European Commission (Joint Research Centre). 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Ispra, Italy: European Chemicals Bureau, Institute for Health and Consumer Protection. Report no. EUR 20418 EN/2.

Health Canada. 2000. Priority Substances List Assessment Report- 1,3-Butadiene. Quebec, Health Canada. Cat. no. En40-215/52E.

Lepper P. 2005. Manual on the Methodological Framework to Derive Environmental Quality Standards for Priority Substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). 15 September 2005 (unveröffentlicht) ed. Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology.

US-EPA. 2002. Iris-file on 1,3-Butadiene. Carcinogenicity Assessment (II.). Last revised 11/05-2002. <http://www.epa.gov/iris/subst/0139.htm> (Retrieved on 02-10-2008)

Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of the project 'International and National Environmental Quality Standards for Substances in the Netherlands' (INS). Bilthoven, The Netherlands: National Institute for Public Health and the Environment (RIVM) Report no. 601782001.

WHO. 2001. Concise International Chemical Assessment Document 30 1,3-Butadiene: human health aspects. WHO/IPCS Geneva 2001. <http://www.inchem.org/documents/cicads/cicads/cicad30.htm> (Retrieved on 02-10-2008).

**RIVM**

National Institute  
for Public Health  
and the Environment

P.O. Box 1  
3720 BA Bilthoven  
The Netherlands  
[www.rivm.com](http://www.rivm.com)