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SUMMARY

In this report a two stage carcinogenesis model is used to describe the development of lung
tumours in rats exposed to radon and uranium ore dust. A tumour is taken to develop in two
mutations steps, one from a normal cell to an intermediate cell, and one from an intermediate
cell to a tumourous cell. The rates of these steps are influenced by radon and uranium dust
exposure levels. Furthermore, the intermediate cell population experiences a net growth
whose rate is also dependent on the radon and uranium concentrations. The relationship
between mutation rate and the concentrations is investigated, and several biologically realistic
possibilities are explored. The difficulties of incorporating the link between tumour incidence
and death of the animal are considered. Tumours can be considered as incidental, fatal, or
sometimes incidental and sometimes fatal. The effect of using these different interpretations
is explored. Finally, a comparison between a much used approximation to this model, and the
exact solution is made.

For the tumour development in the rats examined, it was found that the normal-intermediate
mutation rate is dose rate dependent, and that the intermediate-malignant mutation rate is
dose rate independent. Further, it was found that the intermediate cell growth rate increases
with increasing radon concentrations. Finally, it was found that different sets of parameters
values are able to describe the data equally well, but give different predictions of tumour
incidence for radiation exposure patterns different to those found in the data.
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SAMENVATTING

In dit rapport wordt een twee-staps carcinogenese model beschouwd om de ontwikkeling van
longtumoren veroorzaakt door radon en uraniumertsstof te beschrijven. Een tumor wordt
verondersteld via twee mutaties te ontstaan, één van een normale cel naar een intermediaire
cel, en één van een intermediaire cel naar een kwaadaardige cel. De snelheid van de stappen
is afhankelijk van de mate van blootstelling aan radon en uraniumstof. Ook wordt er
verondersteld dat een intermediaire cel zichzelf vermenigvuldigt naar twee intermediaire
cellen met een snelheid die afhankelijk is van de radon en uranium concentraties. Een aantal
verschillende biologisch realistische mogelijkheden van deze afhankelijkheden wordt
beschouwd. Ook wordt de link tussen de aanwezigheid van tumoren en het overlijden van een
dier onderzocht. Tumoren kunnen als incidenteel, als fataal, of soms als incidenteel en soms
als fataal worden behandeld. De invloed van deze mogelijke keuzes is hier onderzocht.
Tenslotte wordt er een vergelijking gemaakt tussen een veelgebruikte benadering en de exacte
oplossing van dit model.

Voor de tumorontwikkeling in de onderzochte ratten blijkt dat de snelheid van de
intermediaire-malignant mutatie onafhankelijk van de radonconcentratie is. Ook blijkt dat de
groei van de intermediaire cellen groter wordt bij grotere radonconcentraties. Tenslotte is
gevonden dat verschillende waarden van de modelparameters de data even goed kunnen
beschrijven, maar verschillende risicoschattingen geven in andere dan de onderzochte
stralingsomstandigheden.
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1 INTRODUCTION

The estimation of human cancer risks at low and chronic radiation exposures is, due to lack of
better data, done on the basis of high exposure data. It is, a priori, unclear how one should
include factors such as the exposure rate, age at exposure, and total exposure dosage in the
risk analysis. Also, it is not clear how one should use the data to give risk estimates for low
exposures. Sophisticated statistical analyses have been carried out in attempts to describe the
epidemiological data, and to make risk estimates from the fits obtained. (See, for example
Gilbert et al.''l where such an analysis is done using the data we use in this paper.) In this
paper we use a model based approach. The tumour incidence can be described in terms of
parameters with natural biological interpretations. In such a scheme, the effects of different
exposure patterns can be introduced in a natural way. The model describes the time and dose
dependence of tumour incidence - something that otherwise must be found by statistical
means. Finally, the model gives predictions which can be experimentally tested.

The model we use is a two-mutation carcinogenesis model which has previously been used to
describe various tumour data, including the rat data used in this paper.[2’3]

The theoretical predictions of the model have been thoroughly investigated, as done, for
example in Moolgavkar et al.™} and in Moolgavkar and Liibeck”™. The model describes
qualitative aspects of tumour development well - for example, the age dependent radiation
sensitivity, and the age dependence of tumour incidence. The actual model parameter values

obtained depend on the method used to fit the data, and the interpretation of the data.

In this analysis, we use data obtained from an experiment on rats, conducted at the Pacific
Northwest Laboratory (PNL). The experimental procedure is documented in Cross'®. The
study involved Wistar rats that were exposed to varying radon dosages (between 20 and
10000 WLM), administered at different dosage rates (from 0.7 to 80 WLM/d), starting at
around 90 days of age. Rats exposed to radon were also exposed to uranium ore dust, of
which the concentrations are also known. For each rat, we know the administered radon and
ore dust dosage pattern, the age at death, if there was a tumour present at death, and whether
this was judged as being the cause of death. Rats, contrary to humans, can live for an
extended period with a lung tumour. This raises the question as to how to handle the different
sorts (or possibly stages) of lung tumours (incidental and fatal).

The purpose of this report is four-fold.

1. Firstly, it gives a mathematical description of the model, and in doing so, raises several
points which are important to understand on a theoretical level.

2. It clarifies mathematically the approximation of this model made in many papers, and
discusses the validity of this approximation using parameter values found in this paper.

3. It investigates several different definitions of the “tumour incidence” and looks at the
influence this has on the chosen optimal model and parameters.
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4. Tt explores several different parameterisations of the model to get a feel for which aspects
are important in risk determination.

This paper is meant to be a summarising link between the literature and the work carried out
at RIVM.

The paper is arranged as follows. In Section 2 the Two-Mutation-Model is described
mathematically, and expressions are obtained for the quantities of interest. All cumbersome
calculations are relegated to the appendix. In Section 3 different dependencies of the mutation
and growth rates on radon exposure levels are given, together with their biological
interpretations. Section 4 is devoted to describing the ways that the model is fitted to the data.
In doing this, it is discussed how one should handle information concerning the fatality of
tumours found at the death of the animal. Once one has found the model parameters that
optimally describe the data, one would like to have an absolute measure as to how good this
optimal fit actually is. This is discussed in Section 5. Section 6, titled ‘Results’ is divided into
several subsections. Subsections 6.1 to 6.4 are devoted to analysing the optimal fits obtained.
Subsection 6.5 discusses the problem of the uniqueness of the fits, and the possible effects
this could have on risk estimates made for low radon exposure levels. Subsection 6.6
compares tumour incidence predictions using an approximation made in many papers
(mentioned above) and those using the exact solution. The final section of the paper is titled
‘Conclusions’ and summarises the results of the paper.
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2 THE TWO MUTATION MODEL

We consider a model where a normal cell can become a tumourous cell via an intermediate
stage. The transformation thus occurs in two stages, and we call the model a two-stage
carcinogenesis model.

We consider a pool of normal susceptible cells, called stem cells. We assume that at time #
there are S(t) such cells, where S is a deterministic function of . The stem cells generate
intermediate cells according to a non-homogeneous Poisson process with rate p,(#)S(¢). An
intermediate cell may die (with rate v(#)), may divide and become two intermediate cells
(with rate g(?)), or may turn into a malignant cell and an intermediate cell (with rate p, (?)). A
malignant cell is not directly detectable - but must first multiply itself into a detectable
tumour. We assume that a malignant cell becomes a detectable tumour after a certain time /.
In this paper we take #,,,to be a deterministic value. This means then that if we are interested
in the presence of a tumour at time ¢+, , we must look at the probability of a malignant cell
at time ¢. This is represented pictorially in Figure 1.

The state of the system is then described by the random variables (1(1), M(1)). I (1) is the
number of intermediate cells at time #, and M{?) is the number of malignant cells at time £. As
we can determine the number of tumours at time #+#,,, by determining the number of
malignant cells at time ¢, we focus our attention on the distribution of the number of
malignant cells M(%).

We denote by P,_,(t) the probability that there are i intermediate and m malignant cells at
time ¢. That is

P, (t)=P,:=P((t)=1i, M(t)=m).

im*

deterministic I

death

Figure 1 Different stages in the development of a tumour from a stem cell.
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The time dependence of these probabilities is governed by the Kolmogorov forward equation:

OP
_a;ﬂ — _i(g([) +V(f) + Hz(t))R,m
=S (OF,
+ (l - 1)8Pi—1,m (1)

+ S(t)u](t)])i—l,rtl
+ (l + 1)VP1‘+l,m

+ i, b,

im-1°
This is a balance equation - the first two terms —i(e(¢)+v(#)+ w, (NP, —S(Ow,(H)F,, are
the rates at which the state (i, m) is left, and the other terms are the rates at which the state

(i,m) is entered. Henceforth we will sometimes neglect to explicitly write dependencies on ¢.
The probability that there are i intermediate cells at time ¢, F(?), is clearly

P(t)=P:=P(t)=10)= z P, (1) and the probability that there are m malignant cells at time

t, P"(t),is
P"(t)=P" = P(M(t)=m)= Z P.().

Then, from (1) we see

O e +v D= SR+ (DB + S B+ DVE + ik B, and

aP m 3
ot

Z {—1(8 +V+ HZ )I)ijn - SMlPi,m + (l - l)SE—l,nx + Sull)i—l,m + (l + 1)VPi+l,m + l“ 2Pi,m—1 } (2)

=, E(I| M = m)P" + w,E(I| M = m-1)P"".

We are interested in the fraction of animals that have (at least) one malignant cell at time ¢.

We are thus interested in quantity P(M(¢)>0)=1- P°(¢). Equation (2) is not too

complicated for the case where m=0, and we can easily write down the differential equation
. 0

governing the development of P(7).

oP°

ot v
We call w,E(J| M(t)=0) the hazard, h(), at time t. We can solve this equation for P° to get

= —w,E(I) M(t)=0)P°.

P(t)= exp{— ’J'p.z(s)E(I\ M(s)= 0)(s)ds} = exp{— ]h(s)ds}.

The hazard function has a simple intuitive meaning. Given that there are no malignant cells at
time ¢, it is the rate at which the first one develops. This is an important quantity to be able to
obtain from the model as it can be used to estimate the risk of tumour to the (up to that point)
unaffected population. The function / -P°(y), called the incidence, is the fraction of the
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population with (at least) one malignant cell at time ¢. If the tumours are fatal, this can be
difficult to interpret. We will come back to this point later.

To actually calculate the model incidence or hazard, the differential equations in (1) must be
solved. This is possible, but rather cumbersome. Often, a certain approximation is done (see,
for example Venema and Leenhouts!”, or Leenhouts and Chadwicklg]) which simplifies the
calculations greatly. It is, however, not always clear if this approximation is a good one'™.
The stochastic behaviour of the system can be removed by only calculating the expected
number of intermediate and expected number of malignant cells as a function of time. It 1s

easy to calculate EI(z) and EM(t) numerically from differential equations derived from (2).
dEI .OP,

— =) i—Lt=S(), +(e —V)EL,
i = (Dpy +(e V)
g’é]\izzméP =u,El

dt — Ot

From the second differential equation we see that EM(¢) = J;pz(s)EI (s)ds . If we make the

assumption that EI(¢)~ E(I] M(¢)=0), we now see that we can approximate Po(t) by

P°(1) ~ exp(—EM(t)). This approximation is valid in conditions when there are not many
malignant cells. In these cases, the unconditional expected number of intermediate cells will
not differ much from that given that there are no malignant cells present. Note that this
approximation is equivalent to assuming that the number of malignant cells has a Poisson
distribution.

In this paper we do not use this approximation, but, rather, use the exact solution obtained
from much cumbersome calculation. We relegate the description of this calculation to the
appendix as it is not needed in subsequent discussions in this paper.
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3 MODEL PARAMETERISATION

We assume that the rates pi;, 1, € and v are all functions of radon (and possibly ore dust)
dosage, which, in turn, is a function of time. We choose the functions p;(d), p,(d), €(d) and
v(d) from biological considerations (d is the radon dose rate). We propose five models and
use the data to investigate the validity of each model.

General Assumptions

There are several assumptions that we make for all the models considered. We assume that
the number of stem cells, S(#), is a deterministic function of time - in this paper we take S(?) to
be constant, equal to 5x/ 0° B! Leenhouts and Chadwick® and Venema and Leenhouts'"! take
S(t) to increase linearly from zero until a maximum value is reached (at adulthood). From this
time on, they take S(z) to be constant. Other time dependencies are also possible.

The mutations taking a stem cell to an intermediate cell, and taking an intermediate celltoa
malignant cell are taken to be caused by DNA double strand breaks. The rate of a double

strand break in a cell induced by radiation dose rate d is, in general ca..d + B.d*, where o is
the rate that a single ionising particle produces a double strand break, and J is the rate per
dose rate squared that two independent particles induce a double strand break. In our model,
we take p=0. Radon produces a.-radiation for which B is small. Also, taking p non-zero
would lead to overparameterisation. We therefore consider models with p(d)=g,(1+a ).
When there is no radiation, , takes on its ‘background’ value. We call g, the spontaneous
mutation rate.

Model 1
p=q(1+o,.d)

H, =4,

&8 =g-v=g,(l+a,d)
Y = const =0,

€

Following Liibeck et al.B], in model 1, instead of fitting e and v, 8:=¢ —v, and 6:=v /€ are
fit. Note that & is assumed to increase with increasing dose, and that 6 is dose independent.
The estimated values of  are near /, which gives the idea of homeostatic control in the
intermediate cell population. The fact that & increases with increasing dose can be explained
by noting that an increase in radon dosage brings about an increase in intermediate cell killing
(v). To keep v /€ constant, an increase in the intermediate cell multiplication must follow.
Such a form for the & dependency seems biologically unlikely, as one would expect radiation
to cause a decrease in cell population, especially at high dose levels. In the optimal fits
obtained, p; is small, and o is large translating to a rapid increase in & for low radon doses,
and a flattening off for higher doses. Such a 8 dependency can be plausibly explained in terms
of the ore dust concentrations, which we discuss in section 6.1. Also, following Liibeck et al.,
1L, is taken to be dose independent. They report that this assumption does not degrade the
quality of the fit. We will discuss this point further in section 6.
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Model 2

u =g (l+o,.d)

By, =q(1+0,.d)

di=e—-v=gq,

v/e = const=0.

In model 2 we assume that ¢ and v are independent of radiation dose. There is no evident
reason why radiation should promote cell division, thus the € dose independence. For non-
excessive radiation dosages, it is also believable that the intermediate cell death rate is
reasonably independent of dose rate. We do not set o, to be zero in this fit.

Model 3
H=q(1+o,.d)

H, =4

e =s,(1+y,.d)e™
v = const.

In model 3, we assume that v is constant, and that ¢ increases with increasing radon dose to a
maximum point, beyond which it then decreases to zero. At high radon dosages, it is likely
that a cell is severely damaged, and that the cell multiplication is thus inhibited. As in model

1, we take a,=0.

Model 4a

K =q(1+a,.d)

Hy =4,

e-v =q(l+a,.d)

v/e = const=6.

Model 4b

Hy =g (l+o,.d.u)

H, =4,

e-v =q,(1+a,.d.u)

v/e = const=6.

In model 4, we try to introduce the ore dust concentration (# above) into the mutation rate
formulae. Two models are considered that are the same except that the mutation rates in the
first are only dependent on the radon dose rate, and those in the second are dependent on the
product of the radon dose rate and the ore dust concentration. The mutation rates thus have a
multiplicative dependence of the radon and ore dust concentration instead of a linear
dependence as investigated by Liibeck et al..’) The first model, is, in fact, the same as model
1, with p;=1.
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In comparing these similar models, it is easy to judge if introducing the ore dust
concentration in this way improves the fit.

In all models #;,, is a parameter which can also be varied in an attempt to describe the data
better.
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4 MAXIMUM LIKELTHOOD METHOD OF DETERMINING
PARAMETER VALUES

For each rat we know the exposure profile, time of death, whether or not a tumour was
present at death, and if it was deemed fatal. We find the parameter values that optimally
describe the data by calculating the likelihood of seeing what we see. Suppose rat i dies at
time ¢, with a tumour. We assign a likelihood that this occurs L,, given the model. If there are

n rats, we then say that the likelihood of seeing what we see is L= H:;l L, . Clearly, as we

want to find the most likely parameter values given the data, we would like to make L as
large as possible. That is, we want to find the parameters that maximise the likelihood. In
practice, we consider the loglikelihood =-log(L), and thus find the parameters that minimise
the loglikelihood.

The way we assign L; depends on our interpretation of malignant cell incidence P(1). Recall
that our model describes the state of a rat (the ‘system’) by the random variable vector

(I(1), M(1)), - the number of intermediate cells, and the number of malignant cells at time ¢.
The state of the system develops for all time, and the numbers of intermediate and malignant
cells increase indefinitely. The incidence P(t-#;,,) is the probability that there is at least one
tumour at time ¢. The hazard h(t-1,,5) is the instantaneous rate at which the first tumour
develops, given that the animal has no tumours at time ¢. In reality, the rats die, possibly
resulting from the presence of a tumour. We are interested in the time that a rat develops its
first tumour. After a rat dies, its further tumour development is censored. If the rat dies
without a tumour, then it cannot be said when the rat would have developed its first tumour.
This makes the practical interpretation of P(z) difficult. If the times of death are independent
of the presence or absence of a tumour, (the tumours are incidental), then P(#-1;,,) is the
fraction of the remaining animals that have a tumour at time ¢. If the times of death are
affected by the presence of a tumour, then the group of remaining animals at time # may have
a different tumour distribution than would otherwise be the case. The other extreme of the
above independence is to assume that all tumours are instantly fatal. Animals may, however,
still die from other causes. In this case, the hazard, 4(?), has a more intuitive meaning than
P(1). 1f all the tumours are assumed to be instantly fatal, it gives the instantaneous rate at
which a rat will die due to a tumour, given that it has survived up to now (translated in time
by #,,). In reality, some tumours may cause instant death, and others may remain harmless for
some (possibly indefinite) time. This reality is difficult to model.

Likelihood 1

One possibility of assigning a likelihood to an animal death at time ¢, is to assume that all
tumours are incidental, and therefore that death of the animal is independent of the presence
of tumours. Then, given an animal dies at time ¢, with a tumour, we can only say that the
tumour first materialised before time #-t,,,. This has probability (or likelihood) P(t;-1;,,). The
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probability that no tumour is present is then / -P(tity,g)-

I P(t,~1,,)  if tumor present,
()= 1- P(t,— t,) otherwise.

Likelihood 2
Another possibility is only consider the tumours that were deemed fatal, and to assume that
they all are immediately fatal. If an animal dies at time /; with a tumour, then the first
malignant cell must have first materialised af time £, This has probability (likelihood)
P(tityg+A)-P(t 1), (Al is the smallest time interval we consider - in our analysis it is one
day.) The probability of not having a tumour at #; is / -P(t-t},5), and so this is the likelihood
given to the event that the animal dies at time #; without a tumour.
{P(f, — L + A1) = P(t,~1,,,) if tumor present,

L(t)= .

o 1= P(t, - t,,) otherwise.

Likelihood 3

In an attempt to use all the information available in the data, Liibeck et al.P!

constructed
another loglikelihood.

P(t, —t,,,) if incidental tumor present

1

L(t,)=4P(t,—t,, +At)~P(t,~1,,) if fatal tumor present

lag
=P, —1,,) otherwise.

Tumours may either be incidental or fatal. If an incidental tumour is present at death, the first
malignant cell may have first appeared at any time before -#;,,. A fatal tumour first appeared
at the time of death. The probability of no tumour present at ¢, is again /-P(#-1,;). In this case
the interpretation of P(z) becomes very unclear. Fatal and non-fatal tumours are described
together, without distinction, by the same P(#). Knowing the value of P(?) says nothing of the
fraction of animals with fatal, or non-fatal tumours.

The parameter set that maximises the appropriate likelihood is found using a global fit - Very
Fast Simulated Reannealing (VFSR)“O], followed by two local fits - amoeba and powell.
These routines search within a given ‘allowable’ region of the parameter space for the
parameter set that maximises the likelihood.
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5 JUDGING THE GOODNESS OF FIT

Maximising the likelihood finds the parameter values that best describe the data. It gives no
indication as to how good a fit this best fit is. To do this, we need to compare model predicted
results with the experimental data. This can be done for the first two forms of the likelihood,
but not for the third.

The first case is when all the tumours are taken to be incidental. For each dose group, the
expected number of tumours and the observed number of tumours can be compared. Given
the times of the death of the animals, t,, f,,...,1;, one can calculate the model expected number

of tumours in the sample. This is simply z; P(t; - t,,). As there are many (37) dose

groups, it is advantageous to express the agreement of these two sets of figures in one
number. To do this we calculate the x2 value between the model and observed number of
tumours in each dose group. This is calculated according to the following formula:

obs, —mod,)’
oy obsmmod)
iarops MaX(0bs; ,1).# groups

group, and mod, is the model predicted number of tumours for that dose group. A value of xz
of around ! tells us that the model and observed values are in good agreement.

. Here obs; is the observed number of tumours in a dose

The second case is when only the fatal tumours are considered. In this case an empirical P(2)
can be built up for each dose group from the empirical hazard. Recall that the hazard is the
rate that the first tumour develops given that there are none up to that point. When an animal
dies with a fatal tumour, we can say that the first malignant cell materialised #,,, days earlier.
The times of death of the animals in the dose group are ordered #, <t, <...<t, and for each ¢,
the hazard h(t,-,,,) and the survival (I-P(i1,,)) can be calculated from what has already been
calculated. If the ith animal dies with a tumour, then, the hazard at time #,-£,,, can be estimated
by h(t-t,,g)=1/(k-i+1) where k-i+1 is the number of animals still alive at #,. This is then the
empirical probability that a tumour first develops at time #,-,,, given that none has developed
before this time. The survival function is then

1= P(t; =, )= (A= h(t, =, )A— P(t,_, —1,,,)) . In words this means that the probability that
an animal has no malignant cells after just after time ¢-1,,, is the probability that it had none
just before this time, multiplied by the probability that it develops none at this time. If the ith
animal dies without a tumour, then the survival function keeps the same value :

1-P(t,-t,,) =1=P(t,_, —t,,). The empirical function P(#) can then be plotted against the
model P(t) for the optimal parameter values found. The ‘goodness of fit’ is a good indication
as to how well the model describes the data.

It is not possible to construct an empirical P(?) from the data in the case when all tumours are
considered to be incidental. When an animal dies with a tumour, it is not possible to pinpoint
precisely when the tumour first appeared. On the other hand, when all tumours are considered
to be fatal, it is also not possible to construct a model expectation of the number of tumours
given the times of the deaths. This is made impossible by the dependence of the times of
deaths on the presence or absence of tumours. Nothing is known about the model distribution
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of the times of death not due to tumours. It is not clear how to construct any way of checking
the ‘goodness of fit’ for the optimal solution obtained by maximising the third likelihood.
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6 RESULTS

6.1 Only Incidental Tumours

First we compare the optimal parameter values found by maximising likelihood 1. (This
assumes that all tumours are incidental.) The dose rate dependence used in Liibeck’s paper
(model 1) comes up with the lowest loglikelihood, and thus the highest likelihood. The
different loglikelihoods are shown in Table 1.

Bl

Model Loglikelihood

model 1 354.5
model 2 366.7
model 3 370
model 4a 371
model 4b 405.5

Table 1: The loglikelihoods for the different optimal model solutions, loglikelihood 1.

As mentioned earlier, all parameters result from first a global fit, and then a local fit being
carried out. The model 3 fit is an exception to this. The global fit was unable to find a good
solution, and so a local fit was carried out around a solution that was considered good. In
Table 2 are the expected number of tumours occurring in each dose group according to
models 1 and 2, and the actual numbers found. Comparing these two values gives a good
indication of the goodness of the fit.
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Total WLM]#days exp|# in group [observed # |Expected # Expected # |
1 Model 1 (mhfit136) |Model 2 (mhfit137)

0 0 32 0 0.2 0.2

0 0 32 0 0.16 0.18

0 0 32 1 0.24 0.23

0 0 32 0 0.26 0.25

0 0 63 0 0.4 04

0 0 95 2 0.79 0.74

0 0 140 1 1.31 12

0 0 128 0 0.95 0.92

20 2 246 2 3.4 3.54

40 5 445 9 8.15 8.82

80 10 382 15 9.2 11.28
80.1 114 383 8 11.52 10.91
160 20 191 6 7.91 9.64
315.5 11 31 1 1.32 2.1
319.8 19 30 2 1.83 2.8
320 43 95 2 6.39 7.91
320.3 43 127 8 10.66 11.83
321 458 128 19 20.15 8.54
321.6 4 151 12 7.93 12.25
325.5 13 32 5 1.9 3.09
638 87 96 6 14.18 14.85
638.9 8 88 5 7.15 11.9
641 86 64 18 10.97 10.26
642 58 32 7 3.6 4.54
642.3 35 95 13 9.2 13.31
644 112 32 5 2.73 3.2
1280 172 32 17 12.24 9.72
1280.1 17 56 11 9.41 12.83
2559 113 62 21 23.56 24.45
2560 355 32 22 20.33 11.74
2580 218 32 15 16.69 13.07
2601.3 35 56 16 17.11 23.56
5080 147 32 21 18.51 17.17
5114.9 71 56 23 28.21 33.18
5120 701 32 25 23.01 16.98
5130 147 96 47 45.28 41.63
10254.5 138 64 38 43.68 42.01

Table 2: Expected number of tumours in different dose groups as predicted by optimal model
1 and model 2 solutions (likelihood 1), and the observed number of tumours in each of these

groups.

The XZ values for the two models above are 1.23 and 2.27 respectively. The equivalent values
for the fits for models 3, 4a and 4b are 2.59, 2.26 and 3.68 respectively. From this, we
conclude that the model 1 fit is significantly superior to the other fits.

The expected and actual values for all the different models are also given in Figures 2 to 5:
the model predictions are plotted against the empirical values. On each graph, a different fit is
plotted together with the model 1 fit. If the model were to agree perfectly with the data, such
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a plot should give a straight line with slope 1
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F igure 2: The expected number of tumours (using model 1 and model 2) and the observed a
number of tumours in each dose group. A perfect model would give points that lie on the
straight line.
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Figure 3: The expected number of tumours (using model 1 and model 3) and the observed

number of tumours in each dose group. A perfect model would give points that lie on the

straight line.
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Figure 4: The expect‘eg’whumber of tumours (using model 1 and model 4a) and the observed

number of tumours in each dose group. A perfect model would give points that lie on the

straight line.
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Figure 5: The expected number of tumours (using model 1 and model 4b) and the observed
number of tumours in each dose group. A perfect model would give points that lie on the

straight line.

Note that the data was divided into different dose groups for the model 4a and 4b calculations
compared to the model 1-3 calculations. The data was divided into groups that had the same
radon and ore dust dosage profile.

In Table 3 are the optimal parameters obtained from the different models.

Model 1 |Model2 |Mode!3 [Model 4a [Model 4b
Loglikelihood 354.5 366.7 370 371 405.5
g1 [1/d] 1.70E-07| 5.93E-09| 2.54E-07| 2.70E-07| 2.71E-07
g3 [1/d] 3.25E-03| 2.44E-02 4.44E-06| 6.75E-03
s3 [1/d] 7.62E-03
p3 [ 1] 9.15E-02
3 [ ] 4.24E-03
ol [d/WLM] | 7.98E+00| 1.37E+01} 2.03E+01| 1.56E+01| 5.74E-01
o2 [d/WLM] 8.97E+00
o3 [d/WLM] | 9.44E+05 7.24E-03| 4.13E-07
v3 [d/WLM] 7.20E-04
tlag [d] 1.14E+02| 1.99E+00| 1.61E+02| 1.54E+02| 1.44E+02
6 [] 9.97E-01] 9.92E-01 9.72E-01] 9.99E-01
v [1/d] 7.86E-03

Table 3: Optimal parameters found for the different models, using loglikelihood 1.

The Liibeck fit (model 1) has the lowest loglikelihood of all the fits, and thus can be
considered to be the best. From the above graphs, and XZ values, we can conclude that the

model 1 fit is indeed a good fit. Note that in this fit, p; is small and o is large. This means

that the intermediate cell overall growth rate 8 is a particular value when there is no radon
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exposure, and much higher when there is any radon exposure. After this initial jump, the
overall growth rate is a slowly increasing function of the dose rate. Liibeck noted that rats
were exposed to uranium dust only when they were also exposed to radon, and the uranium
dust concentration was mostly fairly constant. He then argues that the initial sharp increase in
this multiplication rate is due to the uranium dust, and then the further increase is due to the
increases in radon concentration. Liibeck has also fitted a model where the ore dust presence
gives a fixed increase in the self multiplication rate, and, on top of this, the multiplication rate
increases linearly with radon dose. This model gave similar results to the model 1.

It is important to determine the rate determining steps in the process. A comparison of the
relative sizes of o; and o, is important in determining the effect of chronic radon exposure
on tumour incidence. During short exposures at the start of the animals life, due to the small
number of intermediate cells present, a much increased second mutation rate (during radon
exposure) does not have a large effect on the total tumour incidence. For radon exposures
later in life, after the number of intermediate cells has had time to grow, o, plays a much
more important rdle. As we wish to make predictions about chronic low radon exposures, it is
important to compare the values of o; and a.,. Liibeck found that for his model, o, was much
smaller than o, and could be set to zero without decreasing the goodness of fit. In model 1,
o, 1s set to 0, as in Liibeck’s model. An additional run was carried out where o, was also
allowed to vary. It was indeed found that o, was much smaller than o; (o0,=1. 18E+01, o,
=4.68E-04). The loglikelihood of this fit (354.9) was comparable to the run where o, was set
to 0. Another run was carried out with a; set to be equal to a.,. The resulting loglikelihood
was 363.9. This is substantially higher than that found in the model 1 optimal fit. From this
we can conclude that, for model 1, the model with the best fit, o, is much smaller than o;.

If the self multiplication of the intermediate cells is taken to be radiation independent (model
2), and a,, is fitted, it is found that the optimal fit has comparable values of a; and a,. A fit of
similar quality was found, however, with o.; much larger than o,. (This is discussed further in
section 6.5.) In this model, the background intermediate cell self multiplication rate is much
higher than in the model 1 fit, but the background first and second mutation rates (g; and g-)
are much smaller. The fit here is of inferior quality to that from model 1, as seen in the above
graphs, and from the higher loglikelihood. It appears from this that the intermediate cell
kinetics is dose dependent.

In model 3 a different dose rate dependence is used for the intermediate cell kinetics. The
intermediate cell death rate is assumed to be dose independent. The self multiplication rate is
assumed to increase linearly with the radon dose, but, reaches a maximum, and decreases to
zero for extremely high dose rates. This dose dependence gives an inferior fit to model 1, and
a slightly inferior fit to model 2.

Models 4a and 4b are studied to consider a particular uranium ore dust concentration
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dependence. This resulted in a far inferior fit, and so we do not discuss the optimal parameter
values further. Models 4a and 4b were run in order to directly compare fits with and without
the uranium dust incorporated. As seen from the resulting optimal loglikelihoods, a superior
fit is obtained if the rates do not depend on the uranium dust concentration (at least not in this

way).

6.2 Only Fatal Tumours

Next we compare the models where the optimal parameters are found by maximising
likelihood 2. This is where we only consider the tumours that were deemed fatal by the
pathologist. Incidental tumours are thus ignored. Although many animals died with a tumour,
relatively few of these tumours were deemed to be the cause of death. Again, the dose rate
dependence used in Libeck’s"! paper (model 1) comes up with the lowest loglikelihood, and
thus the highest likelihood.

model loglikelihood

model 1 583.2
model 2 606.4
model 3 598.4

Table 4: The loglikelihoods for the different optimal model solutions, loglikelihood 2.

Recall that if only fatal tumours are considered, empirical incidence curves can be
constructed for the different dose groups, and can be directly compared with the model
incidence (P(?)) curves. To give an idea of the goodness of the different optimal fits, these
curves were plotted against each other for several ‘typical’ dose groups. (See Figures 6 to 10.)
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In Table 5 are the optimal parameters of the corresponding to the different models.



Report no..610065006

page 27 of 44

Model 1 |Model2 [Model 3
Loglikelihood 538.2 606.4 598.4
g1 [1/d] 3.66E-08| 1.64E-08| 6.98E-08
g3 [1/d] 9.87E-03| 7.59E-03
s3 [1/d] 7.81E-03
p3 [ 1 2.48E-01
3 [ 1 9.31E-03
al [d/WLM] | 1.20E+00] 1.31E+02 2.81E+00
o2 [d/WLM] 3.27E-02
a3 [d/WLM] | 4.65E+00
y3 [d/WLM] 6.22E-02
tlag [d] 1.51E+02| 1.59E+02| 1.54E+02
6 [1] 9.49E-01| 9.98E-01
v [1/d] 7.01E-06

Table 5: The optimal model 1, model 2 and model 3 parameters obtained using loglikelihood

2.

Here, again we find that the Liibeck model (model 1) gives the best loglikelihood. The
Litbeck model has a higher value for &-v than for the other models, which is further enhanced
for higher dose rates. It seems that the fit is better if € increases with increasing dose rate, as

in model 1. Also, it seems that o, can be taken to be much smaller than o, but, it is

imaginable that there may be parameter sets with o; and a., of similar magnitude, which give

similar fits. (See section 6.5.)
The optimal fit from model 3 is better than that in model 2, but still inferior to model 1 -

Liibeck’s model. This again tells us that it seems that, in order to describe the data well, we

must assume that there is a dose dependence in €. In model 3, € reaches its maximum value at
a dose rate of 91.33 WLM/d, (which is higher than most doses considered) and is linear for
low doses. The ‘step function’ behaviour of € in model 1 seems to describe the data better.

In general, the fits seem to be quite good. In the graphs with low dose rate profiles, it is

important to note that the scale is quite small. In these graphs, large differences between the

observed and model incidence are actually quite small. One should also notice that, as there

are so few animals that die from a lung tumour, the data is rather difficult to fit. The empirical

incidence curves are step functions. This is clearly a negative aspect of calculation with this

likelihood.

6.3 Both Incidental and Fatal Tumours

Finally, we compare the models obtained by optimising the third form of the likelihood. This

is the likelihood used in Liibeck’s paper. As explained earlier, it is impossible to attach some

sort of idea of the ‘absolute’ goodness of the fit. We can only compare the values of the

loglikelihoods, and say which of the different optimal fits is the best. As for the two above

forms of the likelihood, model 1 seems to give the best optimal fit. We also include the

results obtained when Liibeck’s optimal parameters were used. These are, of course, similar
to the parameters found as the optimal parameters of model 1. A local fit around Liibeck’s
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optimal parameters returned the same Liibeck parameter values. The model 1 optimal

parameters are slightly different.

model loglikelihood

Libeck 757.6
model 1 755.4
model 2 774.9
model 3 761

In Table 6 are the parameter values found from these optimal fits.

Report n0..610065006

Libeck [Model1 |Model2 |Model3
Loglikelihood 757.6 755.4 774.9 760
g1 [1/d] 1.24E-07] 1.03E-07| 1.21E-07| 1.25E-07
g3 [1/d] 5.54E-03| 5.33E-03| 4.32E-03
s3 [1/d] 8.41E-03
p3 [ 1] 1.05E-01| 7.38E-02
3 [ ] 2.52E-02
al [d/WLM] [ 1.09E+01| 1.53E+01| 2.56E+01{ 1.16E+01
o2 [d/WLM] 3.83E-09
o3 [d/WLM] | 5.87E+02| 1.30E+04
¥3 [d/WLM] 1.26E-01
tlag [d] 1.84E+02| 1.82E+02| 1.84E+02| 1.79E+02
0 [] 9.93E-01| 9.93E-01| 5.80E-02
v [1/d] 3.40E-03

Table 6: The optimal model 1, model 2 and model 3 parameters obtained using loglikelihood
3.

As for the previous optimal fits, it appears that the best fits are obtained when the self
multiplication rate & increases with increasing radon dose rate, the best dependence being
given in model 1. For this loglikelihood, it seems that o, is always smaller than o). To check
this, an additional run was carried out where o, was also allowed to vary. It was indeed found
that o, was much smaller than o; (o, =1.11E+01, o,=1.58E-05). The loglikelihood of this
fit (755.3) was the same as in the run where o, was set to 0. Another run was carried out with
a; set to be equal to o, The resulting loglikelihood was 800.0. This is substantially higher
than that found in the model 1 optimal fit. From this we can conclude that, for model 1, (the
model with the best fit), o, is much smaller than ;.

6.4 Comparison of These Different Approaches

As mentioned above, the interpretation of the incidence P(?) is different for the calculations
with the different loglikelihoods. It is still informative to plot the incidences together on the
same graph for different radon exposure profiles. We do this for model 1 fits. The fit with
likelihood 2 only considers tumours that were considered fatal, where the fits with likelihood
1 and likelihood 3 use all the tumours discovered - incidental and fatal. Consequently, the
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incidences found using likelihoods 1 and 3 are higher than those using likelihgcgz;iriki
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Figure 1 TO;timal incidence curves for model 1, generated b;naximgng likelihoods 1, 2
and 3. Total dose 500 WLM, rate 0.5 WLM/d, starting day 1.

o s
1.00E+00 | ‘
9.00E-01 | 74 - [ Y A PP Ll MR
J‘ ’ ’
8.00E-01 | B
r
r
7.00E-01 { . _ -
.5 _ "/
6.00E-01 | 2 - . .
3 . e // liketihd 1
& 5.00E-01 . Rd e, — — —likelihd 2
'E I » /

g K /"/ ..... likelihd 3
= 4.00E-01 | - ] oo R
. 7

13

3.00E-01 | 2 /

l' /l

W
2.00E-01 '/ ’

L)
J
1.00E-01 {__ ,/ ’I i
~74° L~
0.00E+00 | I AN St \
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time (days)
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6.5 Different Optimal Fits

As already mentioned, the parameter space is such that there are completely different sets of
parameter values that give comparable fits. The following two parameter sets for model 2

give comparable values for likelihood 1.

set 1 set2
logliklihd 366.7 369.7
q1 [d-1] 5.92E-09| 2.10E-07
al [d/WLM] | 1.37E+01| 1.67E+01
o2 [d/WLM] | 8.97E+00| 5.35E-06
g [d-1] 3.24E+00| 2.12E+01
v [d-1] 3.21E+00| 2.12E+01
tlag [d] 1.99E+00] 1.45E+02

Table 7: Parameter values for two different, but comparable fits for likelihood 1, model 2.

We can examine the quality of fit for these two parameter sets by comparing the expected
number of tumours with the observed in each dose group in the graph below. These fits only
differ greatly in the dose group where the rats were irradiated with 7.3 WLM/d for 701 days.
(The group with empirical value 25.)
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Figure 14: Model vs empirical number of tumours. Fit with low o2 and with high o2.

The incidence curves generated from the two different parameter sets agree for low level
chronic radon dosages, but differ on moderate level chronic dosages and also for high level
dosages. The model incidence for these two parameter sets are compared for three radon dose
profiles in Figures 15, 16 and 17.
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Due to the differences in the incidence curves generated from the two sets of parameters, we
conclude that much care should be taken in using such models to estimate tumour risk. Two
models that describe the data equally well may have different behaviours for the dosage
profiles not covered by the data.
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6.6 Exact vs Approximate Solution

As discussed in the introduction, in this paper we calculate P(#) according to the exact
solution given in the appendix. This is different to the approximate calculation of P(?) used in
Venema and Leenhouts'”), and Leenhouts and Chadwick!®!. In this section we will compare
the exact and approximate solutions. Recall that the approximation uses

EI(t)~ E(I| M(t) = 0) to estimate the hazard, and thus the incidence. In time, the probability
of having no malignant cells decreases, and the approximation becomes less valid. For times
with high malignant tumour incidence, the approximation gives an entirely inaccurate value
for the hazard.

The two-stage carcinogenesis model is a stochastic model, where, at any given time, the
number of intermediate and malignant cells in an animal is taken from a particular
distribution. It is easiest to consider the distribution as being represented by a large group of
animals with the same radon exposure profile. In calculating E/(?), the number of
intermediate cells is averaged over all the animals. In calculating E(J| M(#)=0), the number
of intermediate cells is only averaged over the animals with no malignant cells. When an
animal with no malignant cells develops its first, it is removed from the population from
which E(I| M(t)=0) is calculated. The rate of appearance of a malignant cell is highest
amongst animals with many intermediate cells, and so, the animals removed from the
population from which E(I| M(r) = 0) is calculated are generally animals with many
intermediate cells. In this way EI(¢)> E(I| M(t)=0) always and the difference increases
with time. As EI(t) increases for all time, the approximate hazard also increases (eventually,
very sharply) for all time. The conditional expectation E(J| M(¢)=0)and thus the exact
hazard approaches an asymptotic value”. This can be understood intuitively as follows.
There are two factors that affect E(I] M(t)=0). Animals with many intermediate cells that
develop a tumour are removed from the population used in calculating £(I| M(#) = 0), thus
decreasing its value. The remaining animals develop more intermediate tumours from
promotion of stem cells and self multiplication of intermediate cells. In time these two factors
balance each other and the hazard remains constant.

The exact and approximate incidence functions are similar for early times, but often diverge
for later times. Sometimes the disagreement only occurs after 1200 days, by which time all
the rats are dead. The time and incidence value at which this occurs depends greatly on the
parameter values and the radiation profile. Before plotting the curves, it is difficult to make a
judgement on how long the approximate solution will remain valid. Moolgavkar et al.”! find
that the approximate and exact solutions agree for tumor incidences up to 60%. For our
parameter values, we find that they disagree much earlier. On the whole, disagreement is
strongest when the animal experiences chronic exposure. In Figures 18 to 25 are graphs
comparing the exact and approximate curves for different radon exposure patterns - no
exposure, chronic low exposure, medium exposure and high exposure. The parameter values
used are from the optimal fit using likelihood 3 and model 1.
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Figure 18: Approximate and exact incidence curves for optimal model I parameters,
likelihood 3. No radon dose.
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Figure 22: Approximate and exact incidence curves for optimal model 1 parameters,

likelihood 3. Total dose 500 WLM, rate 5.0 WLM/d, starting day 1.
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F igur;e 23: Approximate and exact hazard curves for optimal model 1 parameters, likelihood
3. Total dose 500 WLM, rate 5.0 WLM/d, starting day 1.
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7 CONCLUSIONS

In this report, the two stage model for carcinogenesis is used in studying lung tumour
development in rats due to radon and uranium ore dust exposure. Several aspects of this

model are considered in this report.

Y

2)

3)

4)

Different biologically motivated dose-mutation and growth rate dependencies are
examined, which describe the cellular effect of radon and uranium dust on the two
stage carcinogenesis process. Fitting the model parameters to the data leads to a good
description of the experimental results. A few general facts can be extracted from the

results.

o The second mutation rate seems to be independent of the exposure rate. The
parameter o, is near zero, and is much smaller than a;.

. The intermediate cell self multiplication rate, and death rate seem to be dose
dependent, and both increase with increasing dose.

. The best intermediate cell kinetics seems to be described by model 1, where

the self multiplication rate, €, and the intermediate cell death rate, v, are kept in
the same ratio, and the overall intermediate cell growth rate 3=¢-v hasa
particular value for zero dosage rate, a higher value for non-zero small dosage
rates, and increases slowly from this value for increasing dosage rates.
The tumour incidence has several different interpretations depending on how one
incorporates the fatality of tumours into the model. These different interpretations
result in different ‘optimal’ fits, and, thus, different tumour incidence predictions for
other dose profiles not covered by the data. For all different interpretations, a
particular model (model 1) was found to describe the data best.
The model has many parameters, and can exhibit many different behaviours for
different parameter sets. The data can conceivably be equally well described by very
different parameter sets, which give different incidence predictions for dosage profiles
not covered by the data. We have found one example of when two different parameter
sets give fits of similar quality as discussed in section 6.5. Thus, when making risk
predictions for exposure profiles for which no data exists, one must take care that all
possible ‘good’ models give similar predictions. In the example given in section 6.5,
the two models give similar incidence curves for chronic low exposures.
The approximation to the model used in many papers”’sl is examined for the models
and parameter values from this report, and it was found the exact and approximate
solutions can differ greatly in many realistic situations when the probability of tumour
is no longer low.

Analysing the rat data using the two stage model gives insight to the working of the model,

which can be used when working with human epidemiological data. We must recognise,

however, that lung tumours in humans behave differently to those in rats. Rats, unlike

humans, have a low spontaneous lung tumour incidence rate. Also, unlike in humans, lung
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tumours may be present in rats without causing the death of the animal. As for in the rat
analysis, care must be taken when using the model. Different parameter values or dose-rate
models that describe the available data equally well may give different estimates for radiation
induced tumour risks at low doses. The rat data was, however, described well by the model.
The two stage carcinogenesis model is certainly worthy of receiving further attention.



Report n0..610065006 page 41 of 44

REFERENCES

[1] E.S. Gilbert, F.T. Cross and G.E. Dagle,
Analysis of Lung Tumour Risks in Rats Exposed to Radon.
Radiat. Res. 145, 350-360 (1996)

[2] S.H. Moolgavkar, S.H. Cross, G. Liibeck and G.E. Dagle,
A Two-Mutation Model for Radon-Induced Lung Tumours in Rats.
Radiat. Res. 121, 28-37 (1990)

[3] E.G. Liibeck, S.B. Curtis, F.T. Cross and S.H. Moolgavkar,

Two-Stage Model of Radon-Induced Malignant Lung Tumours in Rats: Effects of Cell
Killing.

Radiat. Res. 145, 163-173 (1996)

[4] S.H. Moolgavkar, A. Dewanji and D.J. Venzon,
A Stochastic Two-Stage Model for Cancer Risk Assessment. . The Hazard Function and the

Probability of Tumour.
Risk Analysis 8, 383-392 (1988)

[5] S.H. Moolgavkar and G. Liibeck,

Two-Event Model for Carcinogenesis: Biological, Mathematical and Statistical
Considerations.

Risk Analysis 10, 323-341 (1990)

[6] F.T. Cross,

Radiation Inhalation Studies in Animals,

Report DOE/FR-0396, U.S. Department of Energy,
Washington DC, (1988)

[7] L.B. Venema and H.P Leenhouts,

A Two-Mutation Model of Carcinogenesis: Application to 2°Ra Induced Osteosarcoma
Prevalence in Beagles.

RIVM Report number 610065001 (1994)

[8] H.P. Leenhouts and K.H. Chadwick,

A Two-Mutation Model of Carcinogenesis: Analysis of Radiation Induced Lung Tumours in
Animals and Implications for Risk Evaluation.

RIVM Report 749251001 (1993)

[9] S.H. Moolgavkar and D.J. Venzon,



page 42 of 44 Report no..610065006

Two-Event Models for Carcinogenesis: Incidence Curves for Childhood and Adult Tumours.
Mathematical Biosciences 47, 55-77 (1979)

[10] L. Ingber,
Very Fast Simulated Reannealing.
Mathl. Comput. Modelling, 12 967-973 (1989)



Report 10..610065006 page 43 of 44

APPENDIX: EXACT INCIDENCE CALCULATIONS

Our aim is to obtain an expression for Po( 1) as a function of the mutation, multiplication and
death rates P, (1), k(1) €(t) and v(2). We do this using the generating function
v (y,2;1):= Y P, (t)y'z". By multiplying (1) by y'z" and summing over i and m we obtain

i,m

o o
a—\';=(y—l)ulSw +(1,yz +5y° +v—8y—vy—u2y)5\'yi- €)

We are interested in P(M(¢)=0)=wy (1,0;¢). We can solve (3) to obtain this using the
method of characteristics. The partial differential equation (3) can be transformed into an
ordinary differential equation on a curve (v(u),z(w),t(w)) (called a characteristic)
parameterised by u. The differential equations describing the curve are

dy dt

dz
hCAPS +e)’ +v—gy—vy— , 2 =0,—=L1L 4)
i (n,yz+ey Y —Vy = H,)) o o

(These are the coefficients of % , ";i and 56_‘ltf respectively.) There is a whole family of
4

such characteristics satisfying (4). A particular characteristic can be pinpointed by defining a
point that lies on it. Now, y satisfies the following ordinary differential equation along each

of the characteristics described above:

A (y-DuySv. 5)
U

(The right hand side is just the coefficient of y in (3).) Note as dt | du=1, we can take r=u.
As dz/ du=0, z remains constant on these curves. We wish to find v (1,0;7) and so we want
to find a characteristic that passes through the point (1,0;¢). Thus, we require the characteristic
(v(u),z(u);t(u)) for which there exists a u, such that (v(1g),z(ug) 1(uy)=(1,0;1). As t(u)=u, we
therefore require the characteristic with the boundary conditions that z(x) =0 for all 4, and
y(t)=1. We write this characteristic y(1,¢). Like all characteristics, it is parameterised by u,

and the 7 given in the argument determines the particular characteristic we are examining.
Now, from (5):

P(0) =y (1L0:1) = exp [(y(w1) = D, ()S(w)du

This integration can be done numerically given the function y(, ). The function y(u,¢) can be
evaluated exactly in the case where the rates p,, € and v are piecewise constant. (This is the
case in the data we consider in this paper.) Let 0=1¢, <, <...<t, =, and suppose the
parameters take on values p, €; and v; on the interval (7, ;7). Suppose further that 4; and B,
are the two roots of the polynomial & x* —[g, +v, + i, Jx +Vv,. It is easy to show that

0 < 4 <1< B,. An expression for y(u,¢) can be found successively on each subinterval,
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starting with the subinterval (#_;,t,), with initial condition y(t,t,)=1. (This is the condition
that y(t)=1.) The value y(t; ;,t;) found from the solution on this subinterval is used as a
boundary condition for the subsequent subinterval - y(f; 1.t )=V(t,.t). The solution y(u,1) is

thus inductively built up. For u e(t,_,,¢;), we have

B, - 4, ig”%:j’ exple; (4, — B)(u~1)]
y0= 1_y(’@ﬁfelx (4~ Bt
y(ti’t)—Ai pie (4 j i

with y(t,1)=1.




