

NATIONAL INSTITUTE OF PUBLIC HEALTH AND ENVIRONMENTAL PROTECTION

Bilthoven, The Netherlands

Report no. 679102024

**Validation of models on uptake of
organic chemicals by plant roots**

Polder, M.D., E.M. Hulzebos and D.T. Jager

June 1994

This report was prepared on behalf of the Directorate General for Environmental Protection, Directorate for Chemicals, External Safety and Radiation Protection of the Ministry of Housing, Physical Planning and Environment within the framework of project 679102: "Assessment Systems for Substances".

MAILING LIST/VERZENDLIJST

- 1 - 40 Directoraat-Generaal Milieubeheer, Directie Stoffen, Veiligheid en Straling, d.t.v. Ir.P.T.J.van der Zandt
- 41 Dr.Ir.B.C.J.Zoeteman
- 42 - 46 EEG-OECD-Commissies d.t.v. Dr.C.J.van Leeuwen
- 47 Depot van Nederlandse publikaties en Nederlandse bibliografie
- 48 Directie RIVM
- 49 Sectordirecteur Stoffen en Risico's
- 50 Sectordirecteur Milieuonderzoek
- 51 Sectordirecteur Toekomstverkenning
- 52 Hoofd Adviescentrum Toxicologie
- 53 Hoofd Laboratorium voor Ecotoxicologie
- 54 Hoofd Laboratorium voor Water en Drinkwateronderzoek
- 55 Hoofd Laboratorium voor Bodem en Grondwateronderzoek
- 56 Hoofd Laboratorium voor Afvalstoffen en Emissies
- 57 Hoofd Laboratorium voor Luchtonderzoek
- 58 Hoofd Centrum voor Wiskundige Methoden
- 59 Hoofd Laboratorium voor Toxicologie
- 60 Hoofd Laboratorium voor Carcinogenese en Mutagenese
- 61 Hoofd Afdeling Voorlichting en Public Relations
- 62 Ir.R.v.d.Berg, Laboratorium voor Bodem en Grondwateronderzoek
- 63 Dr.Ir.F.A.Swartjes, Laboratorium voor Bodem en Grondwateronderzoek
- 64 Prof.Dr.C.Kollöffel, Rijksuniversiteit Utrecht
- 65 Dr.W.F.ten Berge, DSM, Werkgroep Overdracht stoffen naar planten,
- 66 Drs.G.J.M.Bockting, Gemeente Arnhem
- 67 - 76 Projectleider, taakgroepleden UBS/BNS, d.t.v. Drs.T.G.Vermeire
- 77 - 81 Adviesgroep Toxicologie
- 82 - 86 Adviescentrum Toxicologie
- 87 - 91 Laboratorium voor Ecotoxicologie
- 93 - 94 Auteur(s)
- 95 Projecten- en rapportregistratie
- 96 - 97 Bibliotheek RIVM
- 98 Bibliotheek RIVM, depot ECO
- 99 - 150 Reserve exemplaren

CONTENTS

MAILING LIST/VERZENDLIJST	i
CONTENTS	ii
ACKNOWLEDGEMENTS	iv
SUMMARY	v
SAMENVATTING	vi
1. INTRODUCTION	1
2. METHODOLOGY	5
2.1. Model concentration factors	5
2.2. Data selection	6
2.3. Data handling	7
3. RESULTS	9
3.1. General remarks	9
3.2. Root concentration factor	9
3.3. Transpiration stream concentration factor	9
3.4. Shoot concentration factor	14
4. DISCUSSION	17
4.1. General remarks	17
4.2. Root concentration factor	18
4.3. Transpiration stream concentration factor	19
4.4. Shoot concentration factor	19
4.5. Conclusions	20
4.6. Recommendations	20

5. REFERENCES	21
5.1. References: included	21
5.2. References: evaluated but rejected	25
ANNEXES	29

ACKNOWLEDGEMENTS

Hereby, we express our gratitude to T.G. Vermeire for his substantial contributions, R. Posthumus for carrying out the on-line literature search, and E.J. v.d. Plassche for his extensive and relevant comment.

SUMMARY

The fate of a substance is governed by the distribution of the substance between soil, water, air, and biota, and the concentration of the substance and its altered forms existing over time in these media.

As vegetable food forms a major part of the diet of human beings, and also of cattle, the contamination of plants will have a large influence on the total daily intake of a substance.

*

In this report the application of soil-plant transfer factors is investigated. The main goal was to find sufficient experimental data in the available literature, if possible adjusted for differences in experimental design, which could be used to evaluate the currently applied method in the Uniform System for the Evaluation of Substances (USES). In this method, concentrations in root and stem of the plant are estimated on the basis of an empirical relationship with the octanol-water partitioning coefficient.

It was concluded that the root concentration factor as applied in USES is an appropriate instrument for the estimation of residues in roots, whereas the application of the stem concentration factor is insufficient for the purpose set in USES. Consequently for above-ground plant parts other approaches need to be explored which can be applied in the general risk assessment of substances.

SAMENVATTING

Het lot van een stof wordt bepaald door de verdeling van de stof over bodem, water, lucht en biota, en de concentratie van de stof en zijn afgeleide producten in deze media.

Omdat zowel het menselijke dieet als dat van vee voor een belangrijk deel bestaat uit plantaardig voedsel, zal de verontreiniging van planten van grote invloed zijn op de totale dagelijkse inname van een stof.

In dit rapport is de toepassing van bodem-plant overdrachtsfactoren onderzocht. Hoofddoel was het vinden van voldoende experimentele gegevens op dit terrein, indien mogelijk gecorrigeerd voor verschillen in proefopzet, om de methode die nu in het Uniform Beoordelingssysteem Stoffen (USES) wordt toegepast, te evalueren. Deze methode maakt een schatting van de concentraties in de wortel en stengel van de plant op basis van een empirische relatie met de octanol-water partitiecoëfficiënt.

De wortel concentratiefactor zoals die in USES wordt gebruikt, is een toereikend instrument voor het schatten van residuen in wortels, terwijl de toepassing van de stengel concentratiefactor niet voldoende geschikt is voor de doelstellingen van USES. Bijgevolg dienen voor de bovengrondse plantgedelen andere methoden te worden onderzocht voor de toepassing in de algemene risicoschatting van stoffen.

1. INTRODUCTION

The fate of a substance is governed by the distribution of the substance between environmental media such as soil, water, air, and biota, and the concentration of the substance and its altered forms existing over time in these media. A substance may be taken up from soil by plants, then passed up the food chain via herbivores, omnivores, and carnivores, and, finally, to man. Such a food chain can be modelled as in the Uniform System for the Evaluation of Substances, USES (RIVM et al., 1994; Vermeire et al., 1994; Jager et al., 1994) (Figure 1).

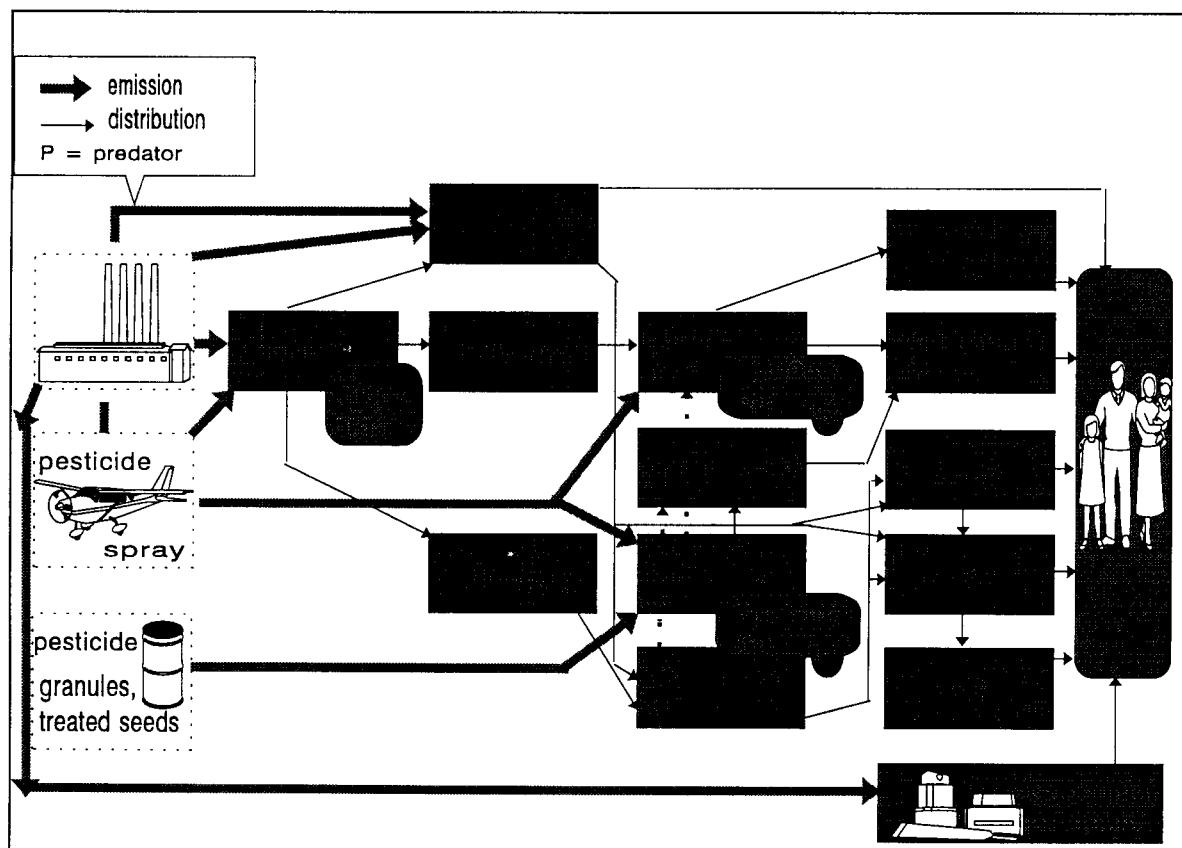


Figure 1. Exposure pathways in USES

USES was developed as a decision-support system to be applied by the government departments and institutes, by industry and institutes in the private sector and by international fora. USES is a tool that can be used for the rapid, quantitative assessment of the hazards and risks of organic substances, including new chemical substances, existing chemical substances, agricultural pesticides and biocides, to man and the environment. USES links emission quantities to concentrations in air,

water and soil at a local and a regional scale. Based on these environmental concentrations, levels in crops, meat and milk are estimated by applying transfer factors. These are combined with levels in other human intake media and dietary factors to an estimate of the total daily intake.

Consumption of plants or plant products like vegetables, fruit and grains forms a major part of the food consumption of human beings, but also of the feed consumption of cattle. Contamination of plants therefore, will have a large influence on the total daily intake of a substance. When trying to predict concentrations in plant tissues, one will be confronted with several problems related to the variety of plant species, and the inhomogeneity in this group with regard to physiology, rooting depth, leaf area, growth period, and so on. Only a very rough approximation of concentrations in food crops seems feasible.

Plants can be exposed to contaminants in different ways (Topp et al., 1986):

- active or passive uptake by the roots and possibly subsequent transport by the transpiration stream;
- wet and/or dry deposition on the above ground parts and possibly absorption and translocation over the cuticula;
- uptake of vapours into the leaf through the stomata or the leaf surface;
- uptake and transport in oil cells which are found in oil containing plants like carrots and cress.

The transfer factors describing the transfer of organics from soil to plants are the subject of investigation in this report. Modelling the transfer of organic substances from air to plants has been the subject of another study within the framework of the USES-project (Hulzebos, 1994) and will not be discussed here.

Many processes play a role in the uptake of substances in plants from the soil. In general, this uptake is a passive process (Shone et al., 1973) governed by the transpiration stream of the plant, in case of accumulation in leaves, or physical sorption, in case of roots. The few methods available for the estimation of this transfer have been compared by De Nijs and Vermeire (1990). They concluded that the model of Briggs et al. (1982, 1983) offered the most appropriate description. In this method, concentrations in root and stem of the plant are estimated on the basis of an empirical relationship with the octanol-water partitioning coefficient. It was recognized though, that the relations derived are based on experiments with barley only and used a relatively small range of non-ionised substances (RIVM et al., 1994).

The main assumptions of De Nijs and Vermeire (1990) for the route of organics from soil to plant were:

1. With regard to the fate of substances in soil:

- organic compounds are primarily sorbed by the organic fraction of the soil.
- the concentration in the soil pore water is determined by the partitioning between solids and soil solution and the uptake of substances in plants from soil is dependent on the concentration in the soil pore water.

2. With regard to uptake processes:

Plant uptake from soil can be described by concentration factors such as the ratio of the concentration in the plant (mg/kg fresh weight) and the concentration in the external solution (mg/l). The use of fixed concentration factors assumes that a steady state between plant and external solution occurs.

In this report the application of soil-plant transfer factors is further investigated. The main goal was to find sufficient experimental data in this area, if possible adjusted for differences in experimental design, which could be used to evaluate the currently applied method in USES (i.e. the concentration factors of Briggs et al., 1982, 1983) or to adapt it.

2. METHODOLOGY

Predictions of concentration factors for plants are calculated according to the model of Briggs and coworkers (1982, 1983), as described in subsection 2.1. Literature on accumulation experiments with plants is collected and selected according to the criteria, given in subsection 2.2. The adaptations of the selected data that are necessary to make the comparison with the model predictions possible, are described in subsection 2.3.

2.1. Model concentration factors

Concentration factors for root (RCF), transpiration stream (TSCF) and stem (SCF) are calculated according to the empirically derived models of Briggs et al. (1982, 1983).

Shone & Wood (1974) defined the RCF for the uptake and sorption of a chemical by plant roots as:

$$\text{RCF [l/kg root ww]} = \frac{\text{concentration in root [mg/kg ww]}}{\text{concentration in external solution [mg/l]}}$$

with the concentration in root expressed in tissue wet weight (ww). Briggs et al. (1982) related experimental RCF values with the $\log K_{ow}$ values of the tested substances according to the following equitation:

$$\log(\text{RCF}_{\text{Briggs}} - 0.82) = 0.77 \log(K_{ow}) - 1.52$$

The TSCF according to Shone & Wood (1974) is defined as:

$$\text{TSCF [-]} = \frac{\text{concentration in transpired water [mg/l]}}{\text{concentration in external solution [mg/l]}}$$

and is related by Briggs et al. (1982) with the $\log K_{ow}$ values of the tested substances as:

$$\text{TSCF}_{\text{Briggs}} = 0.748 e^{-[(\log(K_{ow}) - 1.78)^2 / 2.44]}$$

Briggs et al. (1983) defined the SCF_{liq} , which is the stem/external solution partition coefficient and the SCF_{tss} , being the stem/xylem sap partition coefficient:

$$\text{SCF}_{\text{liq}} [\text{l/kg stem ww}] = \frac{\text{concentration in stem [mg/kg ww]}}{\text{concentration in external solution [mg/l]}}$$

and

$$SCF_{ts} \text{ [l/kg stem ww]} = \frac{\text{concentration in stem [mg/kg ww]}}{\text{concentration in transpired water [mg/l]}}$$

The SCF_{liq} can be calculated from the SCF_{ts} and TSCF as follows:

$$SCF_{ts} \cdot TSCF_{Briggs} = (0.82 + 10^{[0.95\log(K_{ow}) - 2.05] - [(\log(K_{ow}) - 1.78)^2 / 2.44]}) \cdot (0.748e^{\dots})$$

2.2. Data selection

Literature on experimental concentration factors for plants is collected from local databases at the RIVM and by on-line research in BIOSIS. The search profile is given in Annex 1. Laboratory studies with plants grown in soil and nutrient medium as well as field studies are included.

Data selection is carried out according to the following criteria:

- The Henry coefficient (dimensionless) of the tested substance is $< 3.10^2$, to limit errors on concentration factors due to decreasing exposure concentrations in soil caused by volatilization.
- The % organic matter (o.m.) of the test soil is between 0 and 30, in view of the fact that the linear relation between organic fraction and the adsorption on soil does not hold with larger organic fractions.
- At least the initial nominal concentration in the soil is reported.
- Calculated concentrations in soil pore water (see 2.3.) and concentrations in nutrient medium are not above the water solubility.
- Calculated concentrations in the soil pore water lower than 0.00005 mg/l are excluded as these concentrations are considered insignificant, and because calculation errors are expected to become relatively large compared to the values calculated. The value of 0.00005 mg/l is chosen arbitrarily.
- If it is obvious from the literature that the residues found in shoots are caused mainly by foliar uptake from the air, the shoot concentration factor is not included.

Data on $\log K_{ow}$, water solubility and Henry coefficient of the substances regarded are collected from Mackay et al. (1992), the MEDCHEM database, Howard (1989, 1991) and the Agrochemicals Handbook (1994).

Experimental K_{oc} values are collected for the substances tested in soil (see 2.3). From Mackay et al. (1992) the soil, HPLC-determined values are selected, and if such value is not available, the values recommended by Bockting et al. (1993) are chosen. If not present in these public sources, values are obtained from confidential RIVM databases.

The following choices are made:

- When it is not reported whether a concentration is expressed in wet or dry weight, for plants wet weight (ww) and for soil dry weight (dw) is assumed, being the most common way of expression.
- The concentration factors from studies with radio-active labeled test compounds are based on total ^{14}C content of the plant tissue. So, metabolites formed in the plant tissue are included.

2.3. Data handling

When the exposure concentrations have been analysed, the geometric mean of the sample results at the end of the test and the initial (nominal) concentration is used for further calculations.

Concentrations in soil are recalculated to concentrations in the soil pore water according to the approach applied in USES (RIVM et al., 1994):

$$\text{Cpore water}_{\text{soil}} = \frac{\text{Ctot}_{\text{soil}} \cdot \text{RHO}_{\text{soil}}}{\text{Fwater}_{\text{soil}} + \text{Fsolid}_{\text{soil}} \cdot \text{Kp}_{\text{soil}} \cdot \text{RHO}_{\text{solid}}}$$

with:

$\text{Cpore water}_{\text{soil}}$: concentration in the pore water of the soil [$\text{kg}_{\text{chem}}/\text{m}_{\text{water}}^3$]
$\text{Ctot}_{\text{soil}}$: total concentration in soil [$\text{kg}_{\text{chem}}/\text{kg}_{\text{wet soil}}$]
RHO_{soil}	: bulk density of the soil [$\text{kg}_{\text{wet soil}}/\text{m}_{\text{wet soil}}^3$]
$\text{Fwater}_{\text{soil}}$: volume fraction of water in soil [m^3/m^3]
$\text{Fsolid}_{\text{soil}}$: volume fraction of solids in soil [m^3/m^3]
Kp_{soil}	: solids-water partition coefficient [$\text{m}^3_{\text{water}}/\text{kg}_{\text{solids}}$]
$\text{RHO}_{\text{solid}}$: density of the solid phase in the soil [$\text{kg}_{\text{solids}}/\text{m}_{\text{wet soil}}^3$]

The Kp_{soil} is calculated as:

$$\text{Kp}_{\text{soil}} = \frac{\text{Foc}_{\text{soil}} \cdot \text{K}_{\text{oc}}}{1000} \quad \text{or} \quad \frac{\text{a} \cdot \text{Foc}_{\text{soil}} \cdot \text{K}_{\text{ow}}}{1000}$$

with:

Kp_{soil}	: solids-water partition coefficient [$\text{m}^3_{\text{water}}/\text{kg}_{\text{solids}}$]
Foc_{soil}	: weight fraction organic carbon [$\text{kg}_{\text{oc}}/\text{kg}_{\text{solid}}$]
K_{oc}	: organic carbon-water partition coefficient [$\text{l}_{\text{water}}/\text{kg}_{\text{solid}}$]
a	: 0.411 as given by Karickhoff (1981)
K_{ow}	: octanol-water partition coefficient

If no experimental K_{oc} is found, the K_{oc} is replaced by: $\text{a} \cdot \text{K}_{\text{ow}}$ (see Annex 3). For RHO_{soil} and

$\text{RHO}_{\text{solid}}$ values of 1400 kg/m³ and 2500 kg/m³ respectively are assumed (Koorevaar et al., 1983); for both $\text{F}_{\text{water}_{\text{soil}}}$ and $\text{F}_{\text{solid}_{\text{soil}}}$, 0.4 is used (default values in USES (RIVM et al., 1994)) unless these data have been reported.

Residues expressed in plant dry weight are recalculated to wet weight with the assumption of 15% plant dry weight.

As many authors have reported residues in whole shoots, we have compared the SCF_{liq} , which is the concentration factor for stems, with the experimental SCF for above ground plant parts (stem and leaves). When concentrations in leaves, stem and grow tip are given, the mean of these values is used to calculate the SCF. Whole plant concentration factors are included in this report, but are not used in any further action.

For all compounds the mean RCF, TSCF and SCF are calculated based on all exposure concentrations and plant species.

3. RESULTS

3.1. General remarks

An overview of all evaluated studies with relevant data is presented in Annex 2. Data on the physico-chemical properties of the tested substances are given in Annex 3. Latin names of the tested plant species, and the calculations of the concentrations in the soil pore water are given in Annex 4 and 5, respectively.

For mirex no reliable data on the water solubility have been found. The results from exposure to mirex up to 8.7 µg/l calculated soil pore water are included. When the calculated concentrations of mirex in soil pore water raise above 8.7 µg/l, concentration factors in plants decrease proportionally, which indicates that these higher concentrations may not be reached in the soil pore water.

3.2. Root concentration factor

Mean experimental data selected from the literature are summarized in Table 1, the comparison with the calculated RCFs according to Briggs et al. (1982) is shown in Figure 2.

Most of the 27 compounds involved are deviating less than a factor 5 from the model prediction. More than 5 times lower than the RCF_{Briggs} are the mean RCFs of endrin, ethirimol, mirex, phenanthrene, tetrachloroazobenzene and TCDD. These compounds have a $\log K_{ow} \geq 4.32$. The mean RCFs of 2,4-dichlorophenol and pentachlorophenol are more than 5 times higher than the RCF_{Briggs} .

From the pesticides regarded, 12 out of 17 experimental RCFs are lower than the model values; the RCFs for the 5 PAHs involved are all below the RCF_{Briggs} .

The mean RCF of Aroclor 1248 (O'Connor et al, 1990) is based on residues in root peel only; residues in root core were below the detection limit of 20 µg/kg, indicating a mean concentration factor of below 110. DDT residues in potato and carrot roots as well as endrin levels in sugar beet and potatoe roots were below the detection limit, which was not reported (Harris & Sans, 1969). These data are not included in Table 1 and Figure 2.

3.3. Transpiration stream concentration factor

Table 2 and Figure 3 show the mean TSCF values found in the literature, and the comparison of these values with the model of Briggs et al. (1982). Three studies with TSCFs are available, all performed with plants exposed via nutrient medium. TSCF values more than 5 times below the $TSCF_{Briggs}$ are not found. More than 5 times higher are the experimental TSCFs of three of the oxabicycloalkanes: SD204328, SD204690 and SD208586, all with $\log K_{ow} \geq 4.2$.

TABLE 1. Experimental data on root concentration factors.

compound	log K _{ow}	plant species	ref ¹	mean expos. conc in µg/l (S.D., n) ²	mean RCF (S.D., n) ²
acenaphthene/fluorene	3.92	carrot	1	0.14 (0.072 n=4)	23 (8.3 n=4)
Aroclor 1248	6.3	carrot	2	0.38 (0.33 n=4)	1500 (1400 n=4)
atratone	2.69	barley	3	100	1.3
atrazine	2.75	barley	3	100	1.9
benfluralin	5.29	carrot	4	1.1 (0.35 n=2)	230 (57 n=2)
bromacil	2.11	soybean	5	58000	6
carbofuran	2.32	garden bean	6	100	1.3
2,4-D	2.81	barley	3	200	8.1
DDT	6.91	sugar beet	7	3.8 (5.3 n=2)	4100 (5000 n=2)
		ryegrass	8		
2,4-dichlorophenol	3.06	soybean	9	110 (7.1 n=2)	130 (5.5 n=2)
		oat	9		
dieldrin	4.32	potatoe	7	21 (25 n=3)	43 (90 n=6)
		carrot	7		
		sugar beet	7		
		ryegrass	8		
diuron	2.68	barley	3	200	3.1
endrin	4.32	carrot	7	0.82	12
ethirimol	4.39	barley	3	200	0.66
ethofumesate	2.16	sugar beet	10	160	8.3
fluoranthene	5.22	carrot	1	0.066 (0.011 n=4)	65 (40 n=4)
haloxyfop	4.63	soybean	11	-	50 (47 n=3)
		red fescue	11		
		tall fescue	11		
lindane	3.61	ryegrass	8	19	17
mirex	5.28	garden bean	12	3.8 (4.3 n=3)	30 (11 n=12)
		soybean	12		
		sorghum	12		
		wheat	12		
naphthalene	3.37	carrot	1	0.37 (0.35 n=5)	5.8 (3.9 n=5)

(TABLE 1. continued)

compound	log K _{ow}	plant species	ref ¹	mean expos. conc in µg/l (S.D., n) ²	mean RCF (S.D., n) ²
nitrobenzene	1.85	soybean	13	8000	1.2 (0.45 n=8)
		barley	13		
		lettuce	13		
		russian olive	13		
		autumn olive	13		
		green ash	13		
		hybrid poplar	13		
pentachlorophenol	5.24	soybean	14	12 (2.6 n=2)	2700 (1700 n=2)
		spinach	14		
phenanthrene	4.57	carrot	1	0.14 (0.053 n=7)	11 (7.6 n=7)
pyrene	5.18	carrot	1	0.069 (0.017 n=4)	77 (43 n=4)
simazine	2.18	barley	3	200	4.5
TCDD	6.8	soybean	15	0.15 (0.033 n=2)	780 (180 n=2)
		maize	15		
tetrachloro- azobenzene	6.46	carrot	16	0.39	490 (660 n=2)

¹ List of authors, mentioned in Table 1, 2 or 3:

- 1 Wild & Jones, 1992 11 Aguero-Alvarado et al., 1991
- 2 O'Connor et al., 1990 12 De la Cruz et al., 1975
- 3 Shone & Wood, 1974 13 McFarlane et al., 1990
- 4 Businelli et al., 1975 14 Casterline et al., 1985
- 5 Boersma et al., 1991 15 McCrady et al., 1990
- 6 Trapp et al., 1991 16 Worobey, 1988
- 7 Harris & Sans, 1969 17 Hsu et al., 1990
- 8 Voerman et al., 1975 18 Pylypiw et al., 1993
- 9 Isensee & Jones, 1971 19 Tafuri et al., 1977
- 10 Eshel et al., 1978 20 Beall & Nash, 1971

² S.D.: standard deviation; n: number of measurements

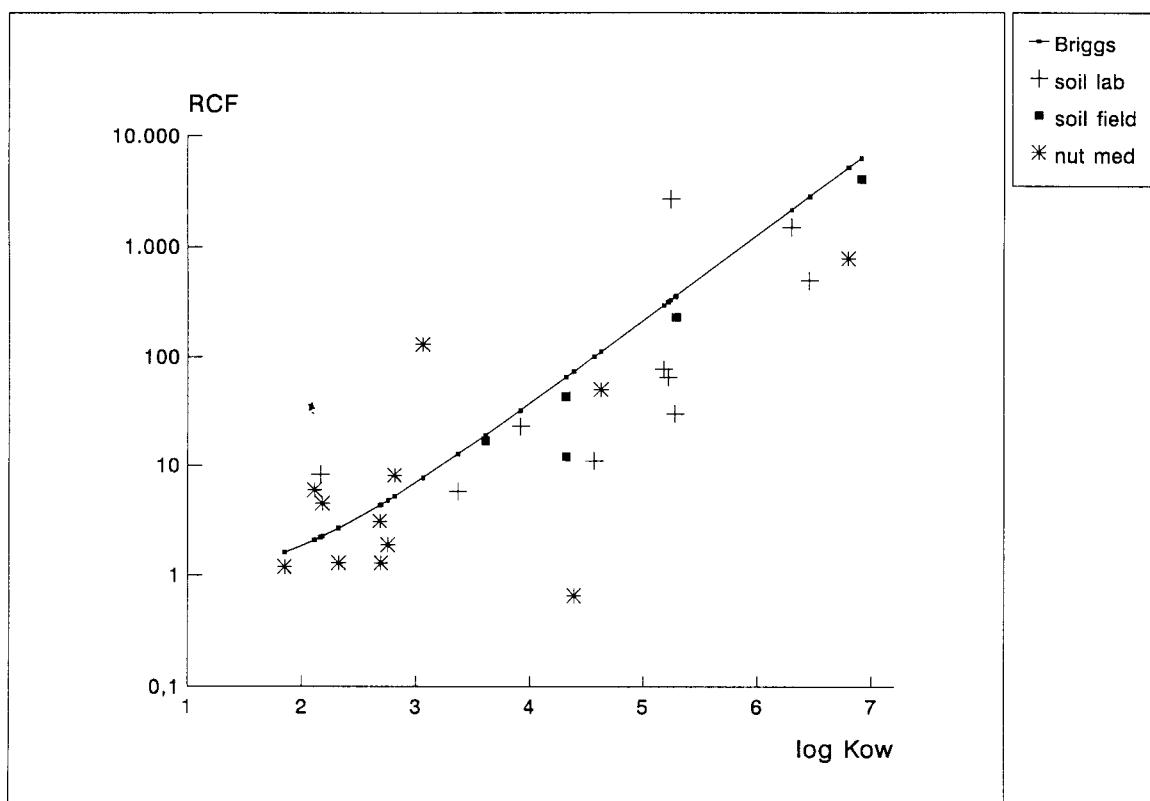


FIGURE 2. RCF: Comparison of the model of Briggs et al. (1982) and mean experimental values.
(Briggs: RCF calculated according to Briggs et al. (1982); soil lab: RCF from laboratory experiment(s), exposure via soil pore water; soil field: RCF from field experiment(s), exposure via soil pore water; nut med: experimental RCF, exposure via nutrient medium.)

TABLE 2. Experimental data on transpiration stream concentration factors.

compound	log K_{ow}	plant species	ref ¹	mean expos. conc in $\mu\text{g/l}$ (S.D., n) ²	mean TSCF (S.D., n) ²
atratone	2.69	barley	3	100	0.78
atrazine	2.75	barley	3	100	0.75
cinmethylin (SD95481)	4.62	soybean	17	-	0.08
2,4-D	2.81	barley	3	200	0.14
diuron	2.68	barley	3	200	0.81
ethirimol	4.39	barley	3	200	0.09
nitrobenzene	1.85	soybean	13	8000	0.74 (0.067 n=8)
		barley	13		
		lettuce	13		
		russian olive	13		
		autumn olive	13		
		green ash	13		
		hybrid poplar	13		
		honeysuckle	13		
SD96638	4.1	soybean	17	-	0.35
SD98319	2.73	soybean	17	-	0.58
SD204328	4.59	soybean	17	-	0.5
SD204689	3.68	soybean	17	-	0.47
SD204690	4.2	soybean	17	-	0.52
SD204691	3.53	soybean	17	-	0.72
SD205857	3.55	soybean	17	-	0.51
SD207573	0.96	soybean	17	-	0.22
SD208213	2.52	soybean	17	-	0.55
SD208380	1.82	soybean	17	-	0.24
SD208586	5.29	soybean	17	-	0.19
simazine	2.18	barley	3	200	0.9

¹ See legenda to Table 1.

² S.D.: standard deviation; n: number of measurements

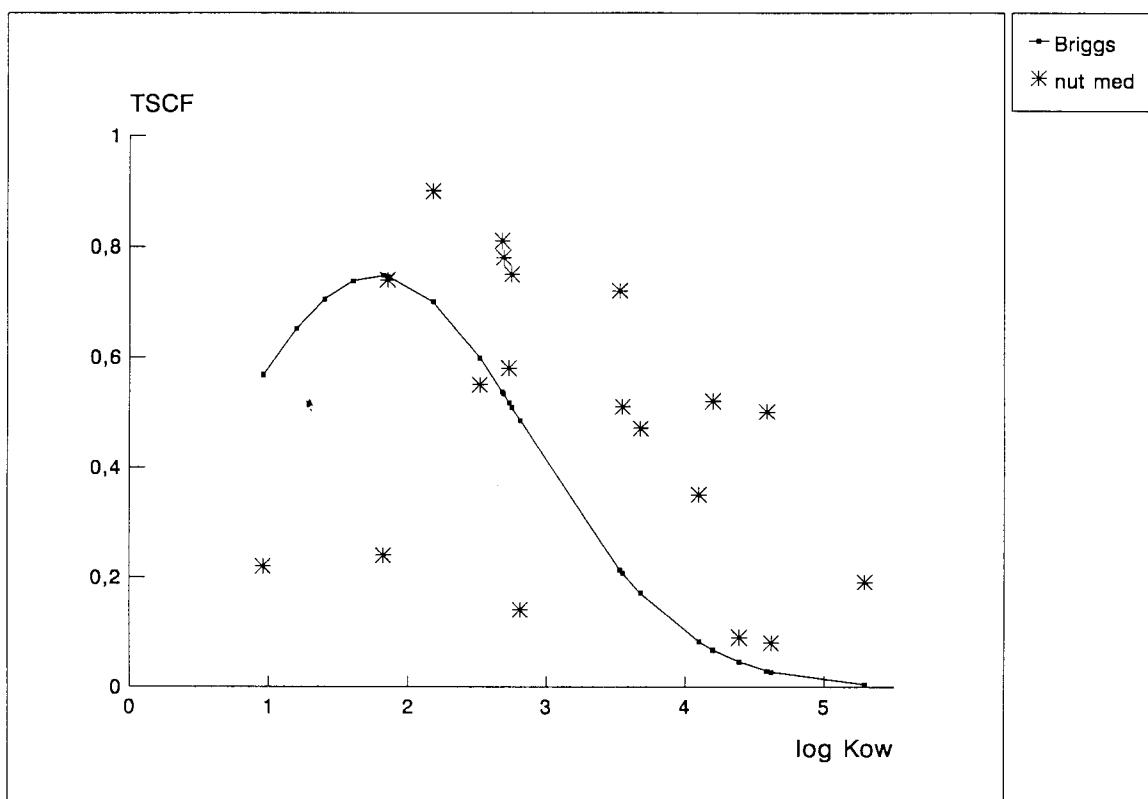


FIGURE 3. TSCF: Comparison of the model of Briggs et al. (1982) and mean experimental values.
(Briggs: TSCF calculated according to Briggs et al. (1982); nut med: experimental TSCF, exposure via nutrient medium.)

3.4. Shoot concentration factor

Mean concentration factors for whole shoots are given in Table 3, and are compared to the model values of Briggs et al. (1983) in Figure 4. For 9 of the 16 substances involved, the mean SCF values deviate more than a factor 5 of the SCF_{Briggs} .

More than 5 times lower than the model prediction are the SCFs found for atrazine, metolachlor, alachlor and lindane. The SCFs of DDT, ethofumesate, pentachlorophenol and tetrachloroazobenzene (510, 74, 620, and 77, respectively) are more than 50 times higher. They are excluded from Figure 4, because otherwise the values more close to the model become invisible. The SCF of bromacil is 13 times higher than could be expected from the model of Briggs et al. (1983).

Residues of Aroclor 1248 in shoots were below the detection limit of 20 µg/kg (O'Connor et al., 1990), which would give a mean SCF of lower than 110. The levels of benfluralin in carrot foliage were below the detection limit of 5 µg/kg (Businelli et al., 1975), so a mean SCF should be below 5. Endrin levels in alfalfa, oat and sugar beet (Harris & Sans, 1969) were also below the detection limit, which was not reported. These data are not included in Table 3 and Figure 4.

TABLE 3. Experimental data on shoot concentration factors.

compound	log K_{ow}	plant species	ref ¹	mean expos. conc in $\mu\text{g/l}$ (S.D., n) ²	mean SCF (S.D., n) ²
alachlor	3.52	corn	18	110	0.42
atrazine	2.75	corn	18	380	0.084
bromacil	2.11	soybean	5	58000	16 (7.8 n=2)
carbofuran	2.32	garden bean	6	100	1.6
chlordan	5.54	alfalfa	19	1.6 (1 n=2)	7.8 (5.3 n=2)
DDT	6.91	alfalfa	7	4.1 (4.7 n=4)	510 (550 n=8)
		oat	7		
		corn	7		
		sugar beet	7		
		ryegrass	8		
		soybean	20		
2,4-dichlorophenol	3.06	soybean	9	110 (7.1 n=2)	1.4 (1.7 n=2)
		oat	9		
dieldrin	4.32	alfalfa	7	130 (210 n=4)	3.0 (1.3 n=7)
		oat	7		
		corn	7		
		sugar beet	7		
		ryegrass	8		
		soybean	20		
endrin	4.32	soybean	20	110 (150 n=2)	20 (11 n=2)
		corn	7		
ethofumesate	2.16	sugar beet	10	160	74
haloxyfop	4.63	soybean	11	-	6.6 (3.4 n=3)
		red fescue	11	-	
		tall fescue	11	-	
lindane	3.61	ryegrass	8	19	0.79
metolachlor	3.13	corn	18	600	0.046
mirex	5.28	garden bean	12	3.8 (4.3 n=3)	13 (8.6 n=12)
		soybean	12		
		sorghum	12		
		wheat	12		

(TABLE 3, continued)

compound	log K_{ow}	plant species	ref ¹	expos. conc in $\mu\text{g/l}$ (S.D., n) ²	mean SCF (S.D., n) ²
pentachlorophenol	5.24	soybean	14	12 (2.6 n=2)	620 (55 n=2)
		spinach	14		
tetrachloroazobenzene	6.46	carrot	16	0.39	77

¹ See legenda to Table 1.

² S.D.: standard deviation; n: number of measurements

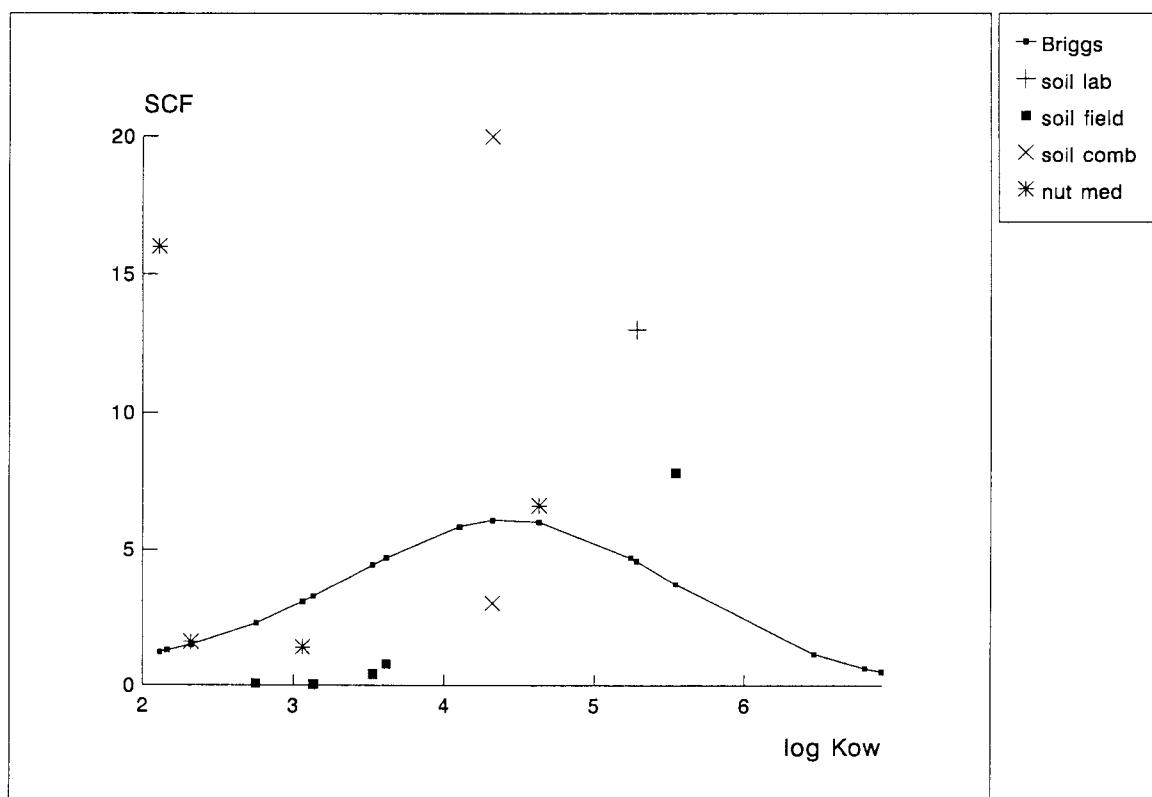


FIGURE 4. SCF: Comparison of the model of Briggs et al. (1983) and mean experimental values.
(Briggs: SCF calculated by Briggs et al. (1983); soil lab: SCF from laboratory experiment(s), exposure via soil pore water; soil field: SCF from field experiment(s), exposure via soil pore water; soil comb: SCF from laboratory and field experiments, exposure via soil pore water; nut med: experimental SCF, exposure via nutrient medium.)

4. DISCUSSION

4.1. General remarks

Briggs et al. (1982, 1983) derived the relations between $\log K_{ow}$ and plant concentration factors from experiments using young soybean plants grown in nutrient medium for compounds with $\log K_{ow}$ values in the range of -0.57 to 3.7. The experimental data set collected in this report, contains data on compounds with a $\log K_{ow}$ between 0.96 and 6.91 and a variety of plant species at different growth stages. A huge diversity of exposure methods and duration was also observed. Variation in extraction methods for plant and soil samples will have influenced the comparison between the data. From studies with radio-labeled substances the concentrations of the substance and metabolites were used for the calculation of the concentration factors. Metabolites formed in soil or in plants may have higher water solubilities and therefore move upwards more than expected on the basis of the $\log K_{ow}$ value of the parent compound. For example, the formation and translocation of metabolites may have caused the high SCF value of radio-labeled ethofumesate (Eshel et al., 1978).

Biodegradation of the tested compound in the soil can lead to an underestimation of the concentration factors in studies where soil concentrations were not analysed.

The uptake and transport will be influenced for substances (mainly pesticides, e.g. ethirimol, 2,4-D with pK_a values close to the pH of the soil, nutrient solution or xylem fluid (Shone & Wood, 1974). These substances will partly be dissociated and therefore may be translocated more easily. For this type of compounds a direct relation between $\log K_{ow}$ (at a certain pH) and concentration factors in root and stem is not clear.

Several sources of uncertainty have been introduced by calculating the concentration in soil pore water from the concentration in soil. For ρ_{soil} a value of 1400 kg/m^3 was assumed, where this parameter may vary substantially in different soil types, probably from 800 to 3400 kg/m^3 . In most cases the default values from USES (RIVM et al., 1994) had to be used for ρ_{solid} , ρ_{water} and ρ_{solid} . The constant a in the calculated K_p values is considered 0.411 according to Karickhoff (1981), but will differ for various compounds.

We selected studies carried out in test soils with a percentage organic matter below 30. However, in soils with less than 2% o.m. the adsorption might not be linear with the organic fraction (Denneman & van Gestel, 1990). For example, O'Connor et al. (1990) exposed carrots to Aroclor 1248 in two test soils with organic fractions of 1.1 and 0.2%. In the soil with 1.1% o.m. the RCF values for root peel were 222 and 379, whereas RCFs of 2452 and 2885 were found after exposure in soil with 0.2% o.m.

The recalculation from plant dry weight to wet weight is based on an assumed dry weight of 15%. This can lead to an underestimation of the concentration factors of a factor 1.5 to 3 in studies with young plants without well developed energy-storing organs like seeds or tubers, having 5 to 10% dry

weight (see Bockting & Van den Berg, 1992).

4.2. Root concentraton factor

The experimental values for the RCF are in reasonable good agreement with the relation proposed by Briggs et al. (1982), and certainly adequate for general risk assessment purposes (Fig. 2). This is even more remarkable when viewing the diversity of plant species and substances for which the experimental data were derived.

It is striking that the experimental data are generally lower than the regression of Briggs and coworkers (1982) predicts. This may be explained by the fact that the barley plants of Briggs and coworkers were grown in nutrient solution and that there was evidence that an equilibrium between roots and solution was reached within 24 hours. For many of the experimental results collected here, it remains unclear if an equilibrium was actually achieved. Results of Boersma et al. (1991) and Trapp et al. (1994) showed that for soybean there was no equilibrium reached with bromacil after 8 days.

Furthermore, observed RCF values in soil may be lower than expected because the plant is diminishing the concentration in the vicinity of the roots due to uptake, i.e., a gradient is formed in the soil. However, differences between studies in soil vs. nutrient medium were not obvious (Fig. 2 and Annex 2). Results of field and laboratory studies were also similar.

For several compounds high standard deviations were calculated (see Table 1). For haloxyfop (Aguero-Alvarado et al., 1991), DDT and dieldrin (Harris & Sans, 1969; Voerman et al., 1975) the high variation can be clearly attributed to the different plant species tested: grass species showed RCF values 10 or more times higher than crop species such as carrot, potatoe and soybean. For pentachlorophenol the RCF of soybean was 2.5 times higher than of spinach (Casterline et al. 1985).

The high variation in the RCF values of Aroclor 1248 (O'Connor et al., 1990) is probably related to the low percentage organic matter in the test soils (see 4.1.).

In several studies with carrots the residues in root peel and root core were analysed seperately. For Aroclor 1248 only residues in root peel could be determined, residues in core were not found (O'Connor et al., 1990). The concentration of tetrachloroazobenzene in root peel was ca. 40 times higher than in root core (Worobey, 1988). The residues of PAHs in root peel of carrots were always higher than in core, with some variation between the different compounds (Wild & Jones, 1992). However, the differences were never more than a factor of 6. It has to be noted that the exposure to a mixture of PAHs in sewage sludge mixed with soil might have influenced the accumulation of the individual compounds, although the mechanism is not known.

4.3. Transpiration stream concentration factor

Data on experimental TSCFs are more or less in agreement with the predictions of Briggs et al. (1982) although the variation is large. The contribution of this plant compartment to the assessments made in USES is less important than that from the root and shoot.

4.4. Shoot concentration factor

For the SCF, the agreement between expected values and experimental data is not satisfactory (Fig. 4). This may sometimes be due to the experimental situation, where volatilization and subsequent uptake by the leaf could not be avoided. It is clear that this pathway exists (see e.g. Bacci & Gaggi, 1985; Schroll et al., 1994), but its contribution in the laboratory and the field remains unclear. In contrast with the laboratory situation, air concentrations in the field will not build up rapidly.

It has to be kept in mind that the SCF of Briggs et al. (1983) describes the partitioning between exposure medium and *stems* of plants. Stems may equilibrate with the transpiration stream. In our study the concentration in the leaves is also included. Substances with low $\log K_{ow}$ values may accumulate in the leaf, as they move upwards in the transpiration stream. In the leaf the water is transpired, leaving the substance in the leaf tissue. An indication can be retrieved from the experiments of Trapp et al. (1994), where concentrations in leaves were higher than in stems when the transpiration rate was high. The authors concluded that the leaves become a sink for bromacil and its metabolites. The results of Boersma et al. (1991) support this view. This implies that the SCF as derived by Briggs and coworkers (1983) is not an appropriate relationship when predicting concentrations in food crops for human exposure.

For lipophilic substances, e.g. mirex and pentachlorophenol ($\log K_{ow} > 5$) concentrations found in leaves were lower than in stems, as one would expect. However, levels in both plant parts were significantly higher than predicted by Briggs and coworkers (1983) (see Annex 2.) On the contrary, the residues of mirex in roots were considerably lower than predicted by Briggs et al. (1982). The concentration factors of mirex decreased with increasing soil concentrations or decreasing soil organic matter content for all plant species tested (De la Cruz et al., 1975). The water solubility of mirex varies highly in the different handbooks (between 'practically insoluble' and a calculated value of 6.4 mg/l). The maximum concentration possible in the soil pore water is therefore hard to estimate and might have influenced the concentration factors. The low contents of organic matter of the two test soils (0.87 and 0.04% o.m., respectively) used in the study of De la Cruz et al. (1975) may also have influenced the results (see 4.1).

Differences between plant species may have played a role in the high standard deviations calculated for the mean SCF of 2,4-dichlorophenol and DDT (see Table 3.) The SCF value of 2,4-dichlorophenol for soybean and oat were 0.2 and 2.5, respectively (Isensee & Jones, 1971). A SCF

of DDT of 93 was found in ryegrass (Voerman & Besemer, 1975) and in soybean of 14 (Beall & Nash, 1971). The high SCF values for DDT (166 - 1700) obtained from Harris & Sans (1969) were probably the result of drift from the treatment of adjacent fields, as these authors stated.

For haloxyfop the SCF values found for two grasses were higher than for soybean, but less obvious than was seen with the RCF values (Aguero-Alvarado et al., 1991).

4.5. Conclusions

It can be concluded that the root concentration factors as derived by Briggs et al. (1982), are satisfactory for the purpose set in USES (see Vermeire et al., 1994; Jager et al., 1994). It seems likely that this RCF is a maximum value especially for substances with $\log K_{ow} > 4$.

The transpiration stream concentration factors found in the literature are more or less in agreement with the values calculated by Briggs et al. (1982).

Several shoot concentration factors found in the literature are much higher than the values calculated by Briggs et al. (1983). This might be due to uptake from air, non-equilibrium situations and in case of radio-labeled substances, the SCF might be based on metabolites instead of the parent compound. In addition Briggs et al. (1983) uses stem concentrations; leaves were excluded, whereas in this study the SCF was based on shoots. For the SCF used in USES major adaptations are necessary.

4.6. Recommendations

It is clear that the inability to predict shoot concentration factors requires further research.

Research on the applicability of other existing models for estimating concentrations in shoots (e.g. Trapp et al. 1994) can be performed with the data set collected for this report.

Further refinement of the data on SCF values gathered in this study with regard to exposure methods, plant species, and specific physico-chemical properties of the tested substances is also possible.

5. REFERENCES

5.1. References: included

Aguero-Alvarado, R. and A.P. Appleby (1991) Uptake, translocation and phytotoxicity of root-absorbed haloxyfop in soybean, *Festuca rubra* L. and *Festuca arundinacea* Schreb. *Weed Res.*, 31, (5), 257-263.

Bacci, E. and C. Gaggi (1985) Polychlorinated biphenyls in plant foliage: translocation or volatilization from contaminated soils? *Bull. Environ. Contam. Toxicol.* 35, 673-681.

Beall, M.L. Jr. and R.G. Nash (1971) Organochlorine insecticide residues in soybean plant tops: root vs. vapor sorption. *Agron. J.*, 63, 460-464.

Bockting, G.J.M. and R. van den Berg (1992) De accumulatie van sporenmetalen in groenten geteeld op verontreinigde bodems. Een literatuurstudie. RIVM report no.725201009.

Bockting, G.J.M., E.J. van de Plassche, J. Struijs and J.H. Canton (1993) Soil-water partition coefficients for organic compounds. RIVM report no. 679101013.

Boersma, L., C. McFarlane and F.T. Lindstrom (1991) Mathematical model of plant uptake and translocations of organic chemicals: Application to experiments. *J. Environ. Qual.*, 20, 137-146.

Briggs, G.G., R.H. Bromilow and A.A. Evans (1982) Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. *Pestic. Sci.*, 13, 495-504.

Briggs, G.G., R.H. Bromilow, A.A. Evans and M. Williams (1983) Relationship between lipophilicity and the distribution of non-ionised chemicals in barley shoots following uptake by the roots. *Pestic. Sci.*, 14, 492-500.

Businelli, M., F. Tafuri, L. Scarponi and C. Marucchini (1975) Persistence of benfluralin in soil and its uptake by carrots. *Pestic. Sci.*, 6, 475-480.

Casterline, J.L. Jr., N.M. Barnett and Y. Ku (1985) Uptake, translocation and transformation of pentachlorophenol in soybean and spinach plants. *Environ. Res.*, 37, 101-118.

De la Cruz, A.A. and B. Rajanna (1975) Mirex incorporation in the environment: uptake and distribution in crop seedlings. *Bull. Environ. Contam. Toxicol.*, 14, (1), 38-42.

De Nijs, A.C.M. and T.G. Vermeire (1990) Soil-plant and plant-mammal transfer factors. RIVM report nr. 670203001.

Denneman, C.A.J. and C.A.M. van Gestel (1990) Bodemverontreiniging en bodemecosystemen: voorstel voor C-(toetsings)waarden op basis van ecotoxicologische risico's. RIVM report no. 725201001.

Eshel, J., R.L. Zimdahl and E.E. Schweizer (1978) Uptake and translocation of ethofumesate in sugar-beet plants. *Pestic. Sci.*, 9, 301-304.

Harris, C.R. and W.W. Sans (1969) Absorption of organochlorine insecticide residues from agricultural soils by crops used for animal feed. *Pestic. Monit. J.*, 3, (3), 182-185.

Haynes, C. and R.C. Kirkwood (1992) Studies on the mode of action of diflufenican in selected crop and weed species: Basis of selectivity of pre- and early post-emergence applications. *Pestic. Sci.*, 35, 161-165.

Howard, P.H. (1989) *Handbook of environmental fate and exposure data for organic chemicals. I. Large production and priority pollutants*. Lewis Publishers, Baca Raton, Ann Arbor, London, Tokyo.

Howard, P.H. (1991) *Handbook of environmental fate and exposure data for organic chemicals. III. Pesticides*. Lewis Publishers, Baca Raton, Ann Arbor, London, Tokyo.

Hsu, F.C., R.L. Marxmiller and A.Y.S. Yang (1990) Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. *Plant Physiol.*, 93, 1573-1578.

Hulzebos, E.M. (1994) The uptake of air-borne substances in plants. RIVM report no. 679102023, in press.

Isensee, A.R. and G.E. Jones (1971) Absorption and translocation of root and foliage applied 2,4-dichlorophenol, 2,7-dichlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzo-p-dioxin. *J. Agric. Food Chem.*, 19, (6), 1210-1214.

Jager, D.T., C.J.M. Visser and D. van de Meent (1994) Uniform System for the Evaluation of Substances: IV. Distribution and intake. Accepted for publication, Chemosphere.

Karickhoff, S.W. (1981) Semi-empirical estimation of sorption of hydrophobic pollutants an natural sediments and soils. Chemosphere, 10, 833-846

Koorevaar, P., G. Menelik and C. Dirksen (1983) Elements of soil Physics. Developments in Soil Science 13. Elsevier, Amsterdam.

Mackay, D., W.Y. Shiu and K.C. Ma (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, Vol. II. Polynuclear aromatic hydrocarbons, polychlorinated dioxins, and dibenzofurans. Lewis Publishers, Boca Raton, Ann Arbor. London, Tokyo.

McCrady, J.K., C. McFarlane and L.K. Gander (1990) The transport and fate of 2,3,7,8-TCDD in soybean and corn. Chemosphere, 21, (3), 359-376.

McFarlane, C., T. Pfleeger and J. Fletcher (1990) Effect, uptake and disposition of nitrobenzene in several terrestrial plants. Environ. Toxicol. Chem., 9, 513-520.

MEDCHEM database (1994) MEDCHEM project of Pomona College, Claremont, California.

O'Connor, G.A., D. Kiehl, G.A. Eiceman and J.A. Ryan (1990) Plant uptake of sludge-borne PCB's. J. Environ. Qual., 19, 113-118.

Pylypiw, H.M. Jr., G.J. Bugbee and C.R. Frink (1993) Uptake of pre-emergent herbicides by corn distribution in plants and soil. Bull. Environ. Contam. Toxicol., 50, (3), 474-478.

RIVM, VROM, WVC (1994) USES 1.0, Uniform System for the evaluation of substances. National Institute of Public Health and Environmental Protection (RIVM), Directorate-General for Environmental Protection (DGM), Ministry of Welfare, Health and Cultural Affairs (WVC), The Hague, Ministry of Housing, Physical Planning and Environment.

Royal Society of Chemistry (1994) The agrochemicals handbook. Third edition, update january 1994, Cambridge.

Schroll, R., B. Bierling, G. Cao, U. Dörfler, M. Lahaniati, T. Langenbach, I. Scheunert and R. Winkler (1994) Uptake pathways of organic chemicals from soil by agricultural plants. *Chemosphere*, 28, 297-303.

Shone, M.G.T., D.T. Clarkson, J. Sanderson and A.V. Wood (1973) A comparison of the uptake and translocation of some organic molecules and ions in higher plants. In: *Ion transport in plants*, Academic Press, New York, 571-582.

Shone, M.G.T. and A.V. Wood (1974) A comparison of the uptake and translocation of some organic herbicides and systemic fungicide by barley. *J. Exp. Bot.*, 25, (85), 390-400.

Tafuri, F., M. Businelli, L. Scarponi and C. Marucchini (1977) Decline and movement of AG chlordane in soil and its residues in alfalfa. *J. Agric. Food Chem.*, 25, (2), 353-356.

Topp, E., I. Scheunert, A. Attar and F. Korte (1986). Factors affecting the uptake of ^{14}C -labelled organic chemicals by plants from soil. *Ecotox. Environ. Saf.*, 11, 219-228.

Trapp, S., M. Matthies, I. Scheunert and E.M. Topp (1990) Modeling the bioconcentration of organic chemicals in plants. *Environ. Sci. Technol.*, 24, (8), 1246-1252.

Trapp, S. and L. Pussemier (1991) Model calculations and measurements of uptake and translocation of carbamates by bean plants. *Chemosphere*, 22, 327-339.

Trapp, S., C. Mc Farlane and M. Matthies (1994) Model for uptake of xenobiotics into plants: validation with bromacil experiments. *Environ. Toxicol. Chem.* 13, 413-422.

Vermeire, T.G., P.T.J. van der Zandt, H. Roelfzema and C.J. van Leeuwen (1994) Uniform System for the Evaluation of Substances: I. Principles and structure. Accepted for publication, *Chemosphere*.

Voerman, S. and A.F.H. Besemer (1975) Persistence of dieldrin, lindane and DDT in a light sandy soil and their uptake by grass. *Bull. Environ. Contam. Toxicol.*, 13, (4), 501-505.

Wild, S.R. and K.C. Jones (1992) Organic chemicals in the environment. Polynuclear aromatic hydrocarbon uptake by carrots grown in sludge-amended soil. *J. Environ. Qual.*, 21, 217-225.

Worobey, B.L. (1988) Translocation and disposition of $[^{14}\text{C}]$ trans 3,4,3',4'-tetrachloroazobenzene into carrots grown in treated soil. *Chemosphere*, 17, 1727-1734.

5.2. References: evaluated but rejected

Bellin, C.A. and G.A. O'Connor (1990) Plant uptake of pentachlorophenol from sludge-amended soils. *J. Environ. Qual.*, 19, 598-602.

Beynon, K.I., G. Stoydin and A.N. Wright (1972) A comparison of the breakdown of the triazine herbicides cyanazine, atrazine and simazine in soils and in maize. *Pestic. Biochem. Physiol.*, 2, 153-161.

Chism, W.J., S.W. Bingham and R.L. Shaver (1991) Uptake, translocation and metabolism of quinclorac in two grass species. *Weed Technol.*, 5, (4), 771-775.

DiTomaso, J.M., J.J. Hart and L.V. Kochian (1992) Transport, kinetics and metabolism of exogenously applied putrescine in roots of intact maize seedlings. *Plant Physiol.*, 98, (2), 611-620.

Fang, J. and H. Huang (1990) Studies on the absorption and translocation of paclobutrazol by the root system. *Fruit Sci. Reports*, 17, (4), 155-164.

Fielding, J.F. and E.W. Stoller (1990) Effects of additives on the efficacy, uptake and translocation of the methyl ester of thifensulfuron. *Weed Sci.*, 38, 172-178.

Frink, C.R. and G.J. Bugbee (1989) Ethylene dibromide: persistence in soil and uptake by plants. *Soil Sci.*, 148, (4), 303-307.

Führ, F. (1990) Changes of residues in soil and plant surfaces following pesticide application: Bioaccumulation in plants. In: *Pesticide effects on terrestrial wildlife*. L. Somerville and C.H. Walker (eds.), Taylor and Francis, London, New York, 65-80.

Goatley, J.M. Jr., A.J. Powell Jr., M. Barrett and W.W. Witt (1990) Absorption, translocation and metabolism of chlorsulfuron in Kentucky bluegrass and tall fescue. *J. Am. Soc. Hort. Sci.*, 115, (5), 771-774.

Hart, J.J., J.M. DiTomaso, D.L. Linscott and L.V. Kochian (1992) Characterization of the transport and cellular compartmentation of paraquat in roots of intact maize seedlings. *Pestic. Biochem. Physiol.*, 43, (3), 212-222.

Knerr, L.D., H.J. Hopen and N.E. Balke (1991) Effect of naptalam on chloramben toxicity, uptake, translocation and metabolism in cucumber (*Cucumis sativus*). *Weed Sci.*, 39, (1), 27-32.

Lindstrom, F.T., L. Boersma and C. McFarlane (1991) Mathematical model of plant uptake and translocation of organic chemicals: Development of the model. *J. Environ. Qual.*, 20, 129-136.

Maitlen, J.C. and D.M. Powell (1982) Persistence of aldicarb in soil relative to the carry-over of residues into crops. *J. Agric. Food Chem.*, 30, 589-592.

McFarlane, C., C. Nolt, C. Wickliff, T. Pfleeger, R. Shimabuku and M. McDowell (1987) The uptake, distribution and metabolism of four organic chemicals by soybean plants and barley roots. *Environ. Toxicol. Chem.*, 6, 847-856.

Nash, R.G. (1983) Distribution of butylate, heptachlor, lindane and dieldrin emulsifiable concentrated and butylate microencapsulated formulations in microagroecosystem chambers. *J. Agric. Food Chem.*, 31, 1195-1201.

Nelson, S.D. and S.U. Khan (1992) Uptake of atrazine by hyphae of *Glomus vesicular- arbuscular* mycorrhizae and root systems of corn (*Zea mays* L.). *Weed Sci.*, 40, (1), 161-170.

Paterson, S., D. Mackay, D. Tam and W.Y. Shiu (1990) Uptake of organic chemicals by plants: a review of processes, correlations and models. *Chemosphere*, 21, (3), 297-331.

Reed, A.N. and D.A. Buchanan (1990) Translocation and metabolism of BAS111 in apple seedlings. *Hortscience*, 25, (3), 324-326.

Rouchaud, J., F. Gustin, F. van de Steene, C. Pelerents, F. Benoit, N. Ceustersmans, I. van Parys, E. Seutin, M. de Proft and L. Gillet (1990) Plant absorption and metabolism of the soil applied chlorpyrifos, chlорfenvinphos and carbofuran insecticides in cabbage and sugar beet crops. *Mededelingen van de faculteit landbouwwetenschappen riksuniversiteit Gent*, 55, (3 part B), 1291-1300.

Ryan, J.A., R.M. Bell, J.M. Davidson and G.A. O'Connor (1989) Plant uptake of non-ionic organic chemicals from soils. *Chemosphere*, 17, 2299-2323.

Sacchi, G.A., P. Vigano, G. Fortunati and S.M. Cocucci (1986) Accumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin from soil and nutrient solution by bean and maize plants. *Experientia*, 42, 586-588.

Scheunert, I. (1992) Exposure of plants and other organisms to xenobiotic substances and the uptake of these by the soil pathway. *Angewandte Botanik*, 66, (5-6), 153-156.

Scheunert, I., C. Marra, R. Viswanathan, W. Klein and F. Korte (1983) Fate of hexachlorobenzene-¹⁴C in wheat plants and soil under outdoor conditions. *Chemosphere*, 12, (6), 843-858.

Scheunert, I., Chen Bin and F. Korte (1989) Fate of 2,4,6-trichlorophenol-¹⁴C in a laboratory soil-plant system. *Chemosphere*, 19, (10/11), 1715-1720.

Schlagnhaufer, C.D. and R.N. Arteca (1991) The uptake and metabolism of brassinosteroid by tomato (*Lycopersicon esculentum*) plants. *J. Plant Physiol.*, 138, (2), 191-194.

Schroll, R. and I. Scheunert (1992) A laboratory system to determine separately the uptake of organic chemicals from soil by plant roots and by leaves after vaporization. *Chemosphere*, 24, (1), 97-108.

Topp, E., I. Scheunert and F. Korte (1989) Kinetics of the uptake of ¹⁴C-labeled chlorinated benzenes from soil by plants. *Ecotox. Environ. Saf.*, 17, 157-166.

Verma, A. and M.K.K. Pillai (1991) Bioavailability of soil-bound residues of DDT and HCH to certain plants. *Soil Biol. Biochem.*, 23, (4), 347-351.

Wang, Y.S., C.G. Jaw and Y.L. Chen (1992) Uptake and metabolism of isouron in rice (*Oryza sativa* L.) seedlings. *Biol. Fertil. Soils*, 14, 1-4.

Wegmann, M.A., R.C. Daniel, H. Häni and A. Iannone (1987) Toxic organic substances in sewage sludges: a case study of soil-plant transfer. *Toxicol. Environ. Chem.*, 14, 287-296.

Wild, S.R. and K.C. Jones (1992) Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock. *Sci. Total Environ.*, 119, 85-119.

Winter, S. and B. Streit (1992) Organochlorine compounds in a three-step terrestrial food chain. *Chemosphere*, 24, (12), 1765-1774.

Zhang, L., G. Wang, H. Mo and J. Qian (1991) Radiotracer study on residues and residue distribution of zineb in plant-soil system. *Biomedical Environ. Sci.*, 4, (3), 268-272.

ANNEXES

ANNEX 1

SEARCH PROFILE FOR ON-LINE RESEARCH IN BIOSIS, APRIL 1993

f (bioaccumulat? or bioconcèntrat? or accumulat?)/(ti;ut)
f (biotransfer or transfer or uptake or translocation or stem#)/(ti;ut)
f (transpiration stream or root# or distribution or disposition)/(ti;ut)
f bcf or baf or tscf or rcf or scf
f 1 to 4
f (soil# or nutrient solution or hydroponic? or terrestri?)/(ti;ab)
f 5 and 6
f 7 and sc=51520
f (selenium or aluminium or cadmium or coppper or iron)/(ti;ut)
f (manganese or zinc or lead or mercury or tin or phosphorus)/(ti;ut)
f (sulphur or phosphate# or sodium or potassium or metal#)/(ti;ut)
f (arsenic or magnesium or calcium or nitrogen or ammonium)/(ti;ut)
f (nitrification or nitrifying or nitrate# or nitrite#)/(ti;ut)
f 9 to 13
f 8 not 14
f 15 not la=(bu or ch or cz or hu or it or ja or po or ru or sp)

ANNEX 2
ACCUMULATION FACTORS FOR PLANTS

Exposure duration:

d: days, w: weeks, m: months, gr se: growing season

Nutrient medium:

Hoagl sol: Hoagland solution, nutr sol: nutrient solution,
modif Hoagl sol: modified Hoagland solution,
half str Hogl sol: half strength Hoagland solution

Concentrations reported as:

soil: mg/kg dry weight
plant tissue: mg/kg wet weight
soil liq (calculated concentration in soil pore water): mg/l
nutrient medium: mg/l

If otherwise, it is mentioned in the column 'comment'.

BCF: bioconcentration factor for the plant part(s), mentioned in the column 'exposure period and plant part(s)'

compound	species	% OM	exposure period and plant part(s)	soil conc in mg/kg dw	tissue conc in mg/kg ww	BCF plant/soil	BCF plant/soil liq in mg/l	reference	comment
FIELD STUDIES:									
DDT	alfalfa	3.6%	1 gr ss shoot	0.57	0.01	0.018	0.00006	166.66	Harris & Sans 1969
	carrot		1 gr ss shoot	0.57	0.03	0.053	0.00006	500	DDT was not detected in carrot and potato.
	corn		1 gr ss shoot	0.57	0.04	0.07	0.00006	666.66	Residues in aerial plant parts
	sugar beet		1 gr ss shoot	0.57	0.04	0.07	0.00006	666.66	* were probably the result of drift from treatment to adjacent fields.
	sugar beet		1 gr ss tuber	0.57	0.03	0.05	0.00006	500	
	alfalfa	1.4%	1 gr ss shoot	0.23	0.02	0.069	0.00007	285.71	
	corn		1 gr ss shoot	0.23	0.12	0.533	0.00007	1714.2	
Dieldrin	alfalfa	3.6%	1 gr ss shoot	1.12	0.02	0.018	0.0061	3.2786	
	carrot		1 gr ss shoot	1.12	0.02	0.018	0.0061	3.2786	
	corn		1 gr ss shoot	1.12	0.02	0.018	0.0061	3.2786	
	sugar beet		1 gr ss shoot	1.12	0.03	0.027	0.0061	4.9180	
	potato		1 gr ss tuber	1.12	0.03	0.027	0.0061	4.9180	
	carrot		1 gr ss tuber	1.12	0.04	0.036	0.0061	6.5573	
	sugar beet		1 gr ss tuber	1.12	0.07	0.063	0.0061	11.475	
	corn	1.4%	1 gr ss shoot	0.57	0.01	0.018	0.0068	1.25	
	potato		1 gr ss tuber	0.57	0.03	0.053	0.0068	3.75	
	carrot		1 gr ss tuber	0.57	0.05	0.088	0.0068	6.25	
endrin	corn	1.4%	1 gr ss shoot	0.12	0.01	0.083	0.00082	12.195	
	carrot		1 gr ss tuber	0.12	0.01	0.083	0.00082	12.195	
alachlor	corn	3-5%	14 d shoot	0.52	0.047	0.09	0.1112	0.4196	Pylypiw et al. 1993
atrazine	corn	3-5%	14 d shoot	1.50	0.032	0.021	0.382	0.0837	
metolachlor	corn	3-5%	14 d shoot	2.63	0.028	0.011	0.604	0.0463	
DDT	ryegrass	3%	6 m shoot	56.50	0.7	0.0124	0.0075	93.3333	Voerman et al. 1975
	ryegrass		6 m root	56.50	0.71	0.0126	0.0075	7628	Conc's in plant reported in DW recalculated to WW.
dieldrin	ryegrass	3%	6 m shoot	7.64	0.06	0.0793	0.05	1.2	DDT + DDE residues in soil and plant were summed
lindane	ryegrass	3%	6 m root	7.64	11.33	1.483	0.05	226.6	The grass was mown 2 times during the growing season.
			6 m shoot	0.33	0.015	0.04545	0.019	0.7894	
			6 m root	0.33	0.33	1	0.019	17.363	

compound	species	% OM	exposure period and plant part(s)	soil conc. in mg/kg dw	tissue conc in mg/kg ww	BCF plant/soil	conc in soil liq in mg/l	BCF plant/soil liq	reference	comment
chloroane	alfalfa	1.7%	79 d shoot 79 d shoot	1.24 3.30	0.01 0.0093	0.0006064 0.002818	0.00087 0.0023	11.494 4.0434	Tafun et al. 1977	10% granules. Soil concs based on 0-10cm layer. Shoots washed with 1% lauryl sulphate.
benfluralin	carrot	1.2%	106 d root 106 d root 106 d peeled root	0.46 0.76 0.46 0.76	0.214 0.243 0.017 0.019	0.465217 0.319736 0.036956 0.025	0.0008 0.0013 0.0008 0.0013	267.5 186.92 21.25 14.615	Businelli et al. 1975	Residues in foliage were *always below detection limit of 5 ng/g.
LABORATORY STUDIES:										
DDT dieldrin endrin	soybean	0.9%	53 d shoot 53 d shoot 53 d shoot	20.00 20.00 20.00	0.12 1.62 5.72	0.006 0.081 0.286	0.00885 0.4361 0.2115	13.559 3.7147 27.044	Beall & Nash 1971	14C labeled test compounds. Initial nominal soil concs, volatilization prohibited. Concs in plant dw reported, converted to ww.
Aroclor 1248	carrot	1.1% 0.2%	75 d root peel 75 d root peel 75 d root peel 75 d root peel	0.50 0.75 0.50 0.75	0.020 0.053 1.275 2.250	0.04 0.07 2.55 3.00	0.00009 0.00014 0.00052 0.00078	222.22 378.57 2451.9 2884.6	O'Connor et al. 1990	Conc's in all plant parts except root peel were below detection limits (0.02 mg/kg). BCF based on initial soil concentration in dw.
DDT dieldrin atrazine	barley	3.5%	7 d whole pl 7 d whole pl 7 d whole pl	2.16 2.08 0.98	0.87 1.24 2.53	0.41 0.60 2.58	0.00022 0.332 0.332	3954.5 7.6204	Trapp et al. 1990	Test substance mixed with soil; soil not covered, so volatilization could occur.
naphthalene	carrot	2.1% 2.1% 2.9% 3.9% 7.6%	82 d root peel 82 d root core 82 d root core 82 d root core 82 d root core	1.88 1.59 1.47 6.58 39.40	1.58 0.62 0.78 1.25 1.97	0.84 0.39 0.53 0.19 0.05	0.8127 0.09746 0.0657 0.2197 0.6794	1.9441 6.3615 11.872 5.6695 2.8996	Wild & Jones 1992	Sewage sludge contaminated with PAH's was mixed with soil at three rates (6.1, 18.6 and 62.1 g/kg dry weight giving 2.9, 3.9 and

compound	species	% CM	exposure period and plant part(s)	soil conc in mg/kg dw	tissue conc in mg/kg ww	BCF plant/soil	BCF conc in soil liq in mg/l	reference	comment
acenaphthene/ fluorene									
	carrot	2.1%	82 d root peel	4.06	2.19	0.54	0.0867	32.833	
		2.9%	82 d root peel	8.38	3.27	0.39	0.0998	32.765	
		3.9%	82 d root peel	17.74	4.08	0.23	0.1573	25.937	
		7.6%	82 d root peel	51.00	3.57	0.07	0.2325	15.354	
		2.1%	82 d root core	3.57	1.25	0.35	0.0586	21.331	
		2.9%	82 d root core	7.09	2.27	0.32	0.08445	26.879	
		3.9%	82 d root core	16.53	3.14	0.19	0.1466	21.418	
		7.6%	82 d root core	53.00	2.12	0.04	0.2416	8.7748	
phenanthrene									
	carrot	2.1%	82 d root peel	16.27	1.79	0.11	0.07393	24.212	
		2.9%	82 d root peel	48.67	1.46	0.03	0.1602	9.1136	
		3.9%	82 d root peel	74.25	2.97	0.04	0.1818	16.336	
		7.6%	82 d root peel	130.00	2.6	0.02	0.1634	15.911	
		2.1%	82 d root core	15.00	0.3	0.02	0.0682	4.3988	
		2.9%	82 d root core	36.00	0.72	0.02	0.1185	6.0759	
		3.9%	82 d root core	83.00	0.83	0.01	0.2053	4.0826	
fluoranthene									
	carrot	2.1%	82 d root peel	47.00	0.47	0.01	0.0794	5.9193	
		2.9%	82 d root peel	42.90	4.29	0.1	0.0525	81.714	
		3.9%	82 d root peel	72.00	5.76	0.08	0.0655	87.938	
		7.6%	82 d root peel	140.25	5.61	0.04	0.0655	85.648	
pyrene									
	carrot	2.1%	82 d root peel	41.50	0.83	0.02	0.052	15.961	
		2.9%	82 d root peel	63.63	5.09	0.08	0.0578	88.062	
		3.9%	82 d root peel	111.83	6.71	0.06	0.07548	88.897	
		7.6%	82 d root peel	258.75	10.35	0.04	0.0896	115.51	
3,4,3',4'—tetrachloro-azobenzene									
	carrot	3%	4 m root peel	0.02	0.0019	0.095	0	0	Worobey 1988
		4 m root pulp	10.00	0.375	0.098	0.00039	961.53		
		4 m root pulp	0.02	0.0011	0.055	0	0		
		4 m tops	10.00	0.01	0.001	0.00039	25.641		
		4 m tops	0.02	0.00005	0.0025	0	0		
			10.00	0.03	0.003	0.00038	76.923		

Concentrations of 12 PAH's were measured at start and end of test in the treatments and the control (2.1% om). The BCF values are based on average soil concs. Conc's in plant dw reported, converted to ww. Soil concs not reported by the authors, calculated as tissue conc/BCF.

Concentration factors reported as 0 by the authors were not included in this table.

Compounds with soil liq concs < 0.05 ug/l are excluded.

NB SOIL AND TISSUE CONC'S IN UG/KG AND UG/L!!!!

compound	species	% OM	exposure period and plant part(s)	soil conc in mg/kg dw	tissue conc in mg/kg ww	BCF plant/soil	BCF conc in soil liq in mg/l	reference	comment	
mirex	garden bean	0.87%	4 w grow tip	3.50	0.018	0.005142	0.0087	2.0689 De la Cruz et al 1975		
			4 w leaves	3.50	0.03	0.008571	0.0087	3.4482		
		0.04%	4 w stem	3.50	0.0705	0.020142	0.0087	8.1034		
			4 w root	3.50	0.177	0.050571	0.0087	20.344		
			4 w grow tip	3.40	0.0405	0.011911	0.0087	0.2242		
	garden bean	0.87%	4 w leaves	3.40	0.06	0.017647	0.0086	0.3322		
			4 w stem	3.40	0.0825	0.024264	0.0086	0.4568		
		0.04%	4 w root	3.40	0.252	0.074117	0.0086	1.3953		
			4 w grow tip	0.80	0.009	0.01126	0.002	4.5		
			4 w leaves	0.80	0.0165	0.020625	0.002	8.25		
mirex	soybean	0.87%	4 w stem	0.80	0.0353	0.044125	0.002	17.65		
			4 w root	0.80	0.0735	0.091875	0.002	36.75		
		0.04%	4 w grow tip	0.80	0.0135	0.016875	0.0425	0.3176		
			4 w leaves	0.80	0.0285	0.035625	0.0425	0.6705		
			4 w stem	0.80	0.0495	0.061875	0.0425	1.1647		
	garden bean	0.87%	4 w root	0.80	0.1035	0.129375	0.0425	2.4352		
			4 w grow tip	0.30	0.0039	0.01	0.00075	4		
		0.04%	4 w leaves	0.30	0.0015	0.005	0.00075	2		
			4 w stem	0.30	0.009	0.03	0.00075	12		
			4 w root	0.30	0.0315	0.105	0.00075	42		
mirex	soybean	0.87%	4 w grow tip	0.31	0.006	0.019354	0.0165	0.3636		
			4 w leaves	0.31	0.0015	0.004638	0.0165	0.0909		
		0.04%	4 w stem	0.31	0.0279	0.089677	0.0165	1.6848		
			4 w root	0.31	0.0345	0.111290	0.0165	2.0909		
			4 w grow tip	0.350	0.0135	0.003857	0.0087	1.5517		
	soybean	0.87%	4 w leaves	0.350	0.0315	0.009	0.0087	3.6206		
			4 w stem	0.350	0.0839	0.0238	0.0087	9.5747		
		0.04%	4 w root	0.350	0.1875	0.053571	0.0087	21.551		
			4 w grow tip	0.340	0.0465	0.013676	0.0165	0.2574		
			4 w leaves	0.340	0.054	0.015882	0.0186	0.2990		
mirex	soybean	0.87%	4 w stem	0.340	0.1298	0.036411	0.1806	0.6854		
			4 w root	0.340	0.2205	0.064852	0.1806	1.2209		
		0.04%	4 w leaves	0.80	0.009	0.01125	0.002	4.5		
	soybean		4 w stem	0.80	0.018	0.0225	0.002	9		
			4 w root	0.80	0.0338	0.04225	0.002	16.9		
			4 w grow tip	0.80	0.0735	0.091875	0.002	36.75		
mirex	soybean	0.04%	4 w leaves	0.80	0.012	0.015	0.0425	0.2823		
			4 w stem	0.80	0.027	0.03375	0.0425	0.6352		
		0.04%	4 w root	0.80	0.045	0.05625	0.0425	1.0588		
			4 w root	0.80	0.0735	0.091875	0.0425	1.7294		

compound	species	% OM	exposure period and plant part(s)	soil conc in mg/kg dw	tissue conc in mg/kg ww	BCF plant/soil	conc in soil liq in mg/l	BCF plant/soil liq	reference	comment
mirex	soybean	0.87%	4w grow tip	0.30	0.0015	0.005	0.00075	0.00075	2 De la Cruz et al 1975	20
			4w leaves	0.30	0.015	0.05	0.00075	0.00075		
		0.04%	4w stem	0.30	0.0173	0.057666	0.00075	0.00075	34	34
			4w root	0.30	0.0255	0.085	0.00075	0.00075		
			4w grow tip	0.31	0.0075	0.024193	0.0165	0.0165		
	sorghum	0.87%	4w leaves	0.31	0.0045	0.014516	0.0165	0.0165	0.4545	0.2727
			4w stem	0.31	0.03	0.096774	0.0165	0.0165		
		0.04%	4w root	0.31	0.048	0.154838	0.0165	0.0165	2.9090	2.9090
			4w leaves	3.50	0.033	0.009428	0.0087	0.0087		
			4w stem	3.50	0.0765	0.021857	0.0087	0.0087		
mirex	sorghum	0.87%	4w root	3.50	0.1215	0.034714	0.0087	0.0087	8.7931	8.7931
			4w leaves	3.50	0.06	0.017142	0.1806	0.1806		
		0.04%	4w stem	3.50	0.24	0.068571	0.1806	0.1806	1.3289	1.3289
			4w root	3.50	0.2565	0.073285	0.1806	0.1806		
			4w leaves	0.80	0.03	0.0375	0.002	0.002	13.965	13.965
	wheat	0.87%	4w stem	0.80	0.0465	0.058125	0.002	0.002	23.25	23.25
			4w root	0.80	0.066	0.0825	0.002	0.002		
		0.04%	4w leaves	0.80	0.0495	0.061875	0.0425	0.0425	1.1647	1.1647
			4w stem	0.80	0.069	0.08625	0.0425	0.0425		
			4w root	0.80	0.1005	0.125625	0.0425	0.0425		
mirex	sorghum	0.87%	4w leaves	0.30	0.0165	0.055	0.00075	0.00075	22	22
			4w stem	0.30	0.0255	0.085	0.00075	0.00075		
		0.04%	4w root	0.30	0.03	0.1	0.00075	0.00075	34	34
			4w leaves	0.31	0.027	0.087096	0.0165	0.0165		
			4w stem	0.31	0.0315	0.101612	0.0165	0.0165		
	wheat	0.87%	4w leaves	0.31	0.042	0.135483	0.0165	0.0165	2.5454	2.5454
			4w stem	0.30	0.0255	0.007285	0.0087	0.0087		
		0.04%	4w root	3.50	0.084	0.024	0.0087	0.0087	9.6551	9.6551
			4w leaves	3.40	0.0315	0.009264	0.1806	0.1806		
			4w stem	3.40	0.1425	0.041911	0.1806	0.1806		
mirex	wheat	0.87%	4w root	3.40	0.1995	0.058676	0.1806	0.1806	1.1046	1.1046
			4w leaves	0.80	0.027	0.03375	0.002	0.002		
	wheat	0.04%	4w stem	0.80	0.03	0.0375	0.002	0.002	15	15
			4w root	0.80	0.0405	0.050625	0.002	0.002		
mirex	wheat	0.04%	4w leaves	0.80	0.0285	0.035625	0.0425	0.0425	0.6705	0.6705
			4w stem	0.80	0.048	0.06	0.0425	0.0425		
			4w root	0.80	0.0825	0.103125	0.0425	0.0425	1.9411	1.9411

compound	species	% OM	exposure period and plant part(s)	soil conc in mg/kg dw	tissue conc in mg/kg ww	BCF plant/soil	conc in soil liq in mg/l	BCF plant/soil liq	reference	comment
mirex	wheat	0.87%	4 w leaves 4 w stem 4 w root	0.30 0.30 0.30	0.0136 0.03 0.0345	0.045 0.1 0.115	0.00075 0.00075 0.00075	18 De la Cruz et al 1975 40		
		0.04%	4 w leaves 4 w stem 4 w root	0.31 0.31 0.31	0.006 0.0315 0.054	0.019354 0.101612 0.174193	0.0165 0.0165 0.0165	46 0.3636 1.9090		
								3.2727		*
pentachloro-phenol	soybean	2%	90 d root 90 d shoot 90 d stem 90 d leaf 90 d pod 90 d seed 64 d root 64 d shoot	4.00 4.00 4.00 4.00 4.00 4.00 5.40 5.40	40.5 6.1 11.8 5.54 0.75 0.2 20.57 9.35	10.125 1.525 2.95 1.385 0.1875 0.05 3.809259 1.731481	0.0105 0.0105 0.0105 0.0105 0.0105 0.0105 0.0142 0.0142	3857.1 Casterline et al 1985 580.95 1123.8 527.61 71.428 19.047 1448.5 658.45		Soil was sterilized to prohibit microbial degradation. Soil conc for soybean as geom. mean of measured concs on day 0, 8, 32, and 90. For spinach conc on day 64 estimated geom mean of day 0, 8, 32 and 64.
ethofumesate	sugar beet	2.9%	20 d root 20 d hypocotyl 20 d cotyledon 20 d leave	1.00 1.00 1.00 1.00	1.34 1.46 40.12 11.96	0.162 1.46 40.12 11.96	0.162 0.162 0.162 0.162	8.2716 Eshel et al. 1978 9.0123 247.65 73.827		14C ring-labeled compound. Activated charcoal on soil to prevent movement of ethofumeate. Plant conc measured at d 3, 5, 10, 15, 20, highest at d 20. Soil conc not measured.

compound	species	nutrient solution	exposure period	medium conc in mg/l	tissue conc in mg/kg wet weight	BCF	reference	comment
TCDD	soybean	nutr sd	5 d root	0.00013	0.117	900	McCrady et al. 1990	TCDD conc in shoot was insignificant so translocation from root to shoot does not occur.
	maize	nutr sd	5 d root	0.000177	0.115	650		
bromacil	soybean	modif Hoagl sd	8 d root 8 d stem 8 d leaves	58.00 58.00 58.00	345.8 601 1237.6	6 10.36 21.34	Boersma et al. 1991	14C-labeled bromacil; shorter exposure durations with higher concs. not included because equilibr. after 8 d not reached.
nitrobenzene	soybean	N.R.	3 d root 3 d transp str	8.00 8.00	1.1	McFarlane et al 1990	RCF = (dpm/g fresh root) / (dpm/ml solution).	
	barley		3 d root 3 d transp str	8.00 8.00	0.77		TSCF = (dpm/ml stem sap) / (dpm/ml nutrient medium)	
lettuce			3 d root 3 d transp str	8.00 8.00	0.57 0.77			
			3 d root 3 d transp str	8.00 8.00	0.92 0.7			
russian olive			3 d root 3 d transp str	8.00 8.00	1.5 0.59			
			3 d root 3 d transp str	8.00 8.00	0.9 0.77			
autumn olive			3 d root 3 d transp str	8.00 8.00	0.9 0.77			
			3 d root 3 d transp str	8.00 8.00	0.9 0.77			
green ash			3 d root 3 d transp str	8.00 8.00	1.4 0.81			
			3 d root 3 d transp str	8.00 8.00	0.9 0.75			
hybrid poplar			3 d root 3 d transp str	8.00 8.00	1.4 0.81			
			3 d root 3 d transp str	8.00 8.00	2 0.75			
honeysuckle			3 d root 3 d transp str	8.00 8.00	2 0.75			

compound	species	nutrient solution plant part(s)	exposure period	medium conc in mg/l	tissue conc in mg/kg wet weight	BCF	reference	comment
<hr/>								
cinmethylin SD207573	soybean	half str. 1 d transp str Hoagl sol				0.08 Hsu et al. (1990) 0.218		High pressure chamber technique— decapitated plants.
SD208380						0.243		Steady state reached in 0–24 h
SD208213						0.552		TSCF based on conc. in plant sap at steady state and conc in nutrient medium after 24 h.
SD88319						0.582		All substances tested are oxabicyclic alkane compounds.
SD204691						0.723		
SD205857						0.513		
SD204689						0.466		
SD96636						0.349		
SD204690						0.52		
SD204328						0.498		
SD208586						0.192		
<hr/>								
haloxyfop	soybean	half str.	4 d root Hoagl 4 d leaves			6.86 Aguero-Alvarado 1991 3.57		14C activity reported as dpm/g DW, converted to WW
	red fescue	sol	4 d root			100		Initial conc. 10.85 ug/l; BCF calculated as
	tall fescue		4 d shoot			10.29		(dpm/g WW) / (dpm/m).
			4 d root			43.19		
			4 d shoot			5.81		
<hr/>								
carbofuran	garden bean	N.R.	3 d root 3 d stem 3 d leaves	0.10 0.10 0.10	130.00 91.40 224.00	1.3 Trapp et al. 1991 0.91 2.24		Conc factors given by the authors were 1000 x lower than the values calculated by the evaluators. Conc in nutrient medium of 100 ug/l was repor- ted; it could have been 100 mg/l. Conc factors given as reported by the authors.
2,4-dichloro- phenol	soybean cat	nutr sol	14 d root 14 d shoot 14 d root 14 d shoot	0.10 0.10 0.11 0.11	13.06 0.02 13.50 0.28	130.5 Isensee & Jones 1971 0.195 122.7/22 2.545454		Conc in plants in DW, conver- ted to WW. Conc in nutrient medium as geom. mean of init. nominal and calculated final conc. 14C ring-labeled compound tested.

compound	species	nutrient solution	exposure period	medium conc in mg/l	tissue conc in mg/kg wet weight	BCF	reference	comment
atrazine	barley	nutr sd pH 6.5	1 d root 1 d transp str	0.10 0.10	1.85 Shone & Wood 1974 0.753			
atratone	barley		1 d root 1 d transp str	0.10 0.10		1.28 0.783		
simazine	barley		1 d root 1 d transp str	0.20 0.20		4.54 0.902		
diuron	barley		1 d root 1 d transp str	0.20 0.20		3.1 0.814		
ethirimol	barley		1 d root 1 d transp str	0.20 0.20		0.661 0.09		
2,4-D	barley		1 d root 1 d transp str	0.20 0.20		8.07 0.142		

compound	species	nutrient solution plant part(s)	exposure period	medium conc in mg/l	tissue conc in mg/kg wet weight	BCF	reference	comment
diflufenican	wheat	Hoagl sol	7 d whole plant	0.24 0.25 0.35 1.34 11.28	6.60 4.50 5.55 11.70 131.10	27.84810 18.14516 15.99423 8.731343 11.62234	Haynes et al. 1992	Water solubility 0.05 mg/l. Concs in plant tissue reported in DW, converted to WW.
barley		Hoagl sol	7 d whole plant	0.24 0.25 0.35 1.34 11.28	4.35 4.35 3.45 9.75 126.15	18.35443 17.54032 9.942363 7.276119 11.18851		
Galium aparine		Hoagl sol	7 d whole plant	0.24 0.25 0.35 1.34 11.28	7.95 7.35 6.30 5.70 601.20	33.54430 29.63709 18.15561 4.253731 53.29787		
Setaria viridis		Hoagl sol	7 d whole plant	0.24 0.25 0.35 1.34 11.28	18.60 18.90 23.10 25.50 670.05	78.48101 76.20967 66.57060 19.02985 59.40159		
Stellaria media		Hoagl sol	7 d whole plant	0.24 0.25 0.35 1.34 11.28	21.15 16.2 23.25 233.25 1242.9	89.24060 65.32258 67.00288 174.0671 110.1861		
Viola arvensis		Hoagl sol	7 d whole plant	0.24 0.25 0.35 1.34 11.28	24.15 19.35 29.1 324.6 1336.35	101.8897 78.02419 83.86167 242.2388 118.4707		

ANNEX 3
PHYSICO-CHEMICAL PROPERTIES

compound	log K _{ow}	water sol. in mg/l	Henry coeff.	log K _{oc}
acenaphthene/fluorene	3.92 ^a	3.8	5.10 ⁻³	3.69
alachlor	3.52 ^b	242 ^d	1.3.10 ⁻⁶	2.27 ^g
anthracene	4.54 ^a	0.0045	1.6.x10 ⁻³	4.44
Aroclor 1248	5.8-6.3 ^a	0.1-0.5	2.10 ⁻³ -0.12	-
atratone	2.69 ^b	-	-	
atrazine	2.75 ^c	30	1.1.10 ⁻⁷	2.19 ^g
benfluralin	5.29 ^b	1.1	4.6.10 ⁻⁴	-
bromacil	2.11 ^b	815	4.3.10 ⁻⁹	
carbofuran	2.32 ^c	700	1.6.10 ⁻⁷	
chlordan	5.54 ^c	0.1	2.10 ⁻³	-
cinmethylin (SD95481)	4.62 ^e	63 ^d	1.8.10 ⁻⁵	
2,4-D	2.81 ^c	682	7.8.10 ⁻⁹	
DDT	6.91 ^b	0.003	1.2.10 ⁻³	5.63 ^f
2,4-dichlorophenol	3.06 ^b	146	6.1.10 ⁻³	
dieldrin	4.32 ^c	0.17	2.4.10 ⁻³	-
diflufenican	5.42 ^b (est)	0.05 ^d	9.7.10 ⁻⁵	
diuron	2.68 ^b	37 ^c	2.7.10 ⁻⁶	
endrin	4.32 ^b	2.5.10 ⁻⁴ ^c	3.1.10 ⁻⁴	4.25 ^f
ethirimol	4.39 ^b (est)	200 ^d	1.2.10 ⁻⁷	
ethofumesate	2.16 ^b (est)	110 ^d	6.9.10 ⁻⁸	2.53 ^g
fluoranthene	5.22 ^a	0.26	4.3.10 ⁻⁴	4.68
haloxyfop	4.63 ^b (est)	2.7 ^d	8.6.10 ⁻⁸	
lindane	3.61 ^c	7.3	1.2.10 ⁻⁴	2.98 ^f
metolachlor	3.13 ^b	530 ^d	3.7.10 ⁻⁷	2.24 ^g
mirex	5.28 ^b	pract. insol.	4.10 ⁻⁵	-
naphthalene	3.37 ^a	31	1.8.10 ⁻²	3.11
nitrobenzene	1.85 ^c	1900	10 ⁻³	
pentachlorophenol	5.24 ^b	14 ^c	1.1.10 ⁻⁴	4.51 ^g
phenanthrene	4.57 ^a	1.1	1.3.10 ⁻³	4.25

compound	log K _{ow}	water sol. in mg/l	Henry coeff.	log K _{oc}
pyrene	5.18 ^a	0.13	3.8.10 ⁻⁴	4.81
SD96638	4.1 ^e	15.7 ^b (est)	2.9.10 ⁻⁶ (est)	
SD98319	2.73 ^e	765 ^b (est)	1.3.10 ⁻⁹ (est)	
SD204328	4.59 ^e	4 ^b (est)	7.9.10 ⁻⁷ (est)	
SD204689	3.68 ^e	49 ^b (est)	1.7.10 ⁻⁵ (est)	
SD204690	4.2 ^e	11 ^b (est)	2.1.10 ⁻⁶ (est)	
SD204691	3.53 ^e	69 ^b (est)	2.8.10 ⁻⁷ (est)	
SD205857	3.55 ^e	70 ^b (est)	1.3.10 ⁻⁵ (est)	
SD207573	0.96 ^e	128 g/l ^b (est)	2.7.10 ⁻¹³ (est)	
SD208213	2.52 ^e	1320 ^b (est)	2.2.10 ⁻⁹ (est)	
SD208380	1.82 ^e	10 g/l ^b (est)	8.10 ⁻¹¹ (est)	
SD208586	5.29 ^e	0.79 ^b (est)	1.3.10 ⁻¹¹ (est)	
simazine	2.18 ^b	3.5 ^d	1.9.10 ⁻⁸ (est)	
TCDD	6.8 ^a	1.9.10 ⁻⁵	1.4.10 ⁻³	
tetrachloroazobenzene	6.46 ^b (est)	0.011	7.1.10 ⁻⁶	-

a Mackay et al. 1992

b MEDCHEM database

c Howard, 1989, 1991

d Agrochemicals Handbook, 1994

e MEDCHEM database as consulted by Hsu et al., 1990

f Bockting et al., 1993

g confidential RIVM database

ANNEX 4
SCIENTIFIC PLANT NAMES

Common name	Scientific name
Alfalfa	<i>Medicago sativa</i> L.
Autumn olive	<i>Eleagnus umbellata</i> Thun.
Barley	<i>Hordeum vulgare</i> L.
Carrot	<i>Daucus carota</i> Sorte
Corn	<i>Zea mays</i> L.
Garden bean	<i>Phaseolus vulgaris</i> L.
Green ash	<i>Fraxinus pennsylvanica</i> Marsh.
Green bean	<i>Phaseolus vulgaris</i> L.
Honeysuckle	<i>Lonicera tatarica</i> L.
Hybrid poplar	<i>Populus x robusta</i> C.K. Schneid.
Lettuce	<i>Lactuca sativa</i> L.
Maize	<i>Zea mays</i> L.
Oat	<i>Avena sativa</i> L.
Potato	<i>Solanum tuberosum</i> L.
Red fescue	<i>Festuca rubra</i>
Russian olive	<i>Eleagnus angustifolia</i> L.
Ryegrass	<i>Lolium perenne</i> L.
Sorghum	<i>Sorghum vulgare</i> Pers.
Soybean	<i>Glycine max</i> Merr.
Sugar beet	<i>Beta vulgaris</i> L.
Tall fescue	<i>Festuca arundinacea</i>
Wheat	<i>Triticum aestivum</i> L.

ANNEX 5

CALCULATION OF CONCENTRATIONS IN THE SOIL PORE WATER

compound	log K _{ow}	K _{ow}	% OM	fec	log K _{oc} exp.	K _p	water content in soil	conc soil DW mg/kg	conc liq WW mg/kg	conc liq in mg/l	reference
ethofumesate	2.16	144.544	2.90	0.01706	2.53	0.00578	0.40	1.00	0.714	0.16180 Eshel et al. 1978	
atrazine	2.75	562.341	3.87	0.02276	2.19	0.00353	0.40	1.50	1.071	0.38208 Pylypiw et al. 1993	
lindane	2.75	562.341	3.50	0.02059	2.06	0.00236	0.30	0.98	0.632	0.33229 Trapp et al. 1990	
alachlor	3.61	4073.803	3.00	0.01765	2.98	0.01685	0.40	0.33	0.236	0.01913 Voerman et al 1975	
metolachlor	3.52	3311.311	3.87	0.02276	2.27	0.00424	0.40	0.52	0.371	0.11209 Pylypiw et al. 1993	
naphthalene	3.13	1348.963	3.87	0.02276	2.24	0.00396	0.40	2.63	1.879	0.60376	
	3.37	2344.229	2.10	0.01285	3.11	0.00191	0.40	1.88	1.343	0.81271 Wild & Jones (1992)	
	3.37	2344.229	2.10	0.01285	3.11	0.01591	0.40	1.59	1.136	0.09746 CONC'C in UGL	
	3.37	2344.229	2.90	0.01706	3.11	0.02198	0.40	1.47	1.050	0.06570	
	3.37	2344.229	3.90	0.02294	3.11	0.02955	0.40	6.58	4.700	0.21967	
	3.37	2344.229	7.60	0.04471	3.11	0.05759	0.40	39.40	28.143	0.67940	
acenaphthene/fluorene	3.92	83117.638	2.10	0.01285	3.69	0.06050	0.40	4.06	2.900	0.06666 Wild & Jones 1992	
	3.92	83117.638	2.90	0.01706	3.69	0.08955	0.40	8.38	5.986	0.09982 CONC'C in UGL	
	3.92	83117.638	3.90	0.02294	3.69	0.11236	0.40	17.74	12.671	0.15732	
	3.92	83117.638	7.60	0.04471	3.69	0.21896	0.40	51.00	36.429	0.23249	
	3.92	83117.638	2.10	0.01285	3.69	0.06050	0.40	3.57	2.550	0.05862	
	3.92	83117.638	2.90	0.01706	3.69	0.08955	0.40	7.09	5.064	0.08445	
	3.92	83117.638	3.90	0.02294	3.69	0.11236	0.40	16.53	11.807	0.14659	
	3.92	83117.638	7.60	0.04471	3.69	0.21896	0.40	53.00	37.857	0.24161	
	4.32	20892.961	3.60	0.02118	0.18184	0.40	1.12	0.800	0.00615 Harris et al. 1969		
	4.32	20892.961	1.40	0.00824	0.07072	0.40	0.57	0.407	0.00802		
	4.32	20892.961	3.00	0.01765	0.15154	0.40	7.64	5.457	0.05028 Voerman et al 1975		
	4.32	20892.961	0.90	0.00529	0.04546	0.40	20.00	14.286	0.43610 Beall & Nash 1971		
	4.32	20892.961	0.90	0.00529	0.09414	0.40	20.00	14.286	0.21154		
	4.32	20892.961	1.40	0.00824	0.14645	0.40	0.12	0.086	0.00082 Harris et al. 1969		
	4.57	37153.523	2.10	0.01235	4.25	0.21967	0.40	16.27	11.621	0.07893 Wild & Jones 1992	
	4.57	37153.523	2.90	0.01706	4.25	0.30335	0.40	48.67	34.764	0.16023 CONC'C in UGL	
	4.57	37153.523	3.90	0.02294	4.25	0.40796	0.40	74.25	53.036	0.18183	
	4.57	37153.523	7.60	0.04471	4.25	0.79500	0.40	130.00	92.857	0.16344	
	4.57	37153.523	2.10	0.01235	4.25	0.21967	0.40	15.00	10.714	0.06816	
	4.57	37153.523	2.90	0.01706	4.25	0.30335	0.40	36.00	25.714	0.11862	
	4.57	37153.523	3.90	0.02294	4.25	0.40796	0.40	83.00	59.286	0.20325	

compound	log K _{ow}	K _{ow}	% OM	foc	log K _{oc} exp.	K _d	water content in soil	conc soil DW mg/kg	conc liq WW mg/l	conc liq in mg/l	reference
pentachlorophenol											
	5.24	173780.083	2.00	0.01176	4.51	0.38070	0.40	4.00	2.857	0.01050	Casterline et al. 1985
	5.24	173780.083	2.00	0.01176	4.51	0.38070	0.40	5.40	3.857	0.01417	
pyrene	5.18	151366.125	2.10	0.01235	4.81	0.79757	0.40	41.50	29.643	0.05201	Wild & Jones 1992
	5.18	151366.125	2.90	0.01706	4.81	1.10141	0.40	63.63	45.450	0.05775	CONC' C in UGL
	5.18	151366.125	3.90	0.02294	4.81	1.48121	0.40	111.83	79.879	0.07548	
fluoranthene	5.18	151366.125	7.60	0.04471	4.81	2.88645	0.40	258.75	184.821	0.08963	
	5.22	165958.691	2.10	0.01235	4.68	0.59125	0.40	47.00	33.571	0.07944	Wild & Jones 1992
	5.22	165958.691	2.90	0.01706	4.68	0.81649	0.40	42.90	30.643	0.05252	CONC' C in UGL
	5.22	165958.691	3.90	0.02294	4.68	1.09803	0.40	72.00	51.429	0.06555	
mirex	5.22	165958.691	7.60	0.04471	4.68	2.13976	0.40	140.25	100.179	0.06553	
	5.28	190546.072	0.87	0.00512	0.87	0.40079	0.40	3.50	2.500	0.00872	De la Cruz et al. 1975
	5.28	190546.072	0.87	0.00512	0.87	0.40079	0.40	0.80	0.571	0.00199	
	5.28	190546.072	0.87	0.00512	0.87	0.40079	0.40	0.30	0.214	0.00075	
	5.28	190546.072	0.04	0.00024	0.04	0.01843	0.40	3.40	2.429	0.18059	
	5.28	190546.072	0.04	0.00024	0.04	0.01843	0.40	0.80	0.571	0.04249	
benfluralin	5.28	190546.072	0.04	0.00024	0.04	0.01843	0.40	0.31	0.221	0.01647	
	5.29	194984.460	1.20	0.00706	0.56568	0.40	0.46	0.329	0.00081	Businelli et al. 1975	
	5.29	194984.460	1.20	0.00706	0.56568	0.40	0.76	0.543	0.00134		
chloradane	5.54	346736.850	1.70	0.01000	1.42509	0.40	1.24	0.886	0.00087	Tafuri et al. 1977	
	5.54	346736.850	1.70	0.01000	1.42509	0.40	0.80	0.571	0.04249		
DDT	6.91	8128905.162	3.50	0.02059	5.63	8.78252	0.30	3.30	2.357	0.00231	
	6.91	8128905.162	3.60	0.02118	5.63	9.03345	0.40	2.16	1.394	0.00222	Trapp et al. 1990
	6.91	8128905.162	1.40	0.00824	5.63	3.51301	0.40	0.57	0.407	0.00006	Harms et al. 1969
	6.91	8128905.162	3.00	0.01765	5.63	7.52787	0.40	0.23	0.164	0.00007	
tetrachloroazobenzene	6.91	8128905.162	0.90	0.00529	5.63	2.25836	0.40	56.50	40.357	0.00751	Vermann et al. 1975
	6.46	2884031.503	3.00	0.01765	20.91771	0.20	10.00	14.286	0.00885	Beall & Nash 1971	
	6.46	2884031.503	3.00	0.01765	20.91771	0.20	0.02	0.012	0.00000	0.00039	Worobey 1988
Aroclar 1248	6.30	1995262.315	1.10	0.00647	5.30622	0.40	0.50	0.357	0.00009	O'Connor et al. 1990	
	6.30	1995262.315	1.10	0.00647	5.30622	0.40	0.75	0.536	0.00014		
	6.30	1995262.315	0.20	0.00118	0.96477	0.40	0.50	0.357	0.00052		
	6.30	1995262.315	0.20	0.00118	0.96477	0.40	0.75	0.536	0.00078		