RIJKSINSTITUUT VOOR VOLKSGEZONDHEID EN MILIEU
BILTHOVEN

RIVM Rapport nr. 715001002
RIZA Werkdocument 96.035X

Afstemming tussen de modellen
DEMNAT, SMART/MOVE en GREINS.
Verkenning van de mogelijkheden op korte en langere termijn

J. Wiertz en R. van Ek

maart 1996

Samengesteld na overleg tussen:
R. Alkemade (RIVM) J. Latour (RIVM)
G. Beugelink (RIVM) D. Prins (IBN-DLO)
R. van Ek (RIZA) J. Runhaar (CML)
J. Kros (SC-DLO) J. Wiertz (RIVM)

onder voorzitterschap van:
F.J. van Zadelhoff (IKC-N)

Dit onderzoek werd verricht in opdracht en ten laste van het Directoraat-Generaal
Milieubeheer, Directie Drinkwater, Water en Landbouw afd. Gebiedsbescherming in het
kader van het project Verdroging (nr. 715001).
Rijksinstituut voor Volksgezondheid en Milieu, Postbus 1, 3720 BA Bilthoven,
tel. 030-2749111, fax 030-2742971

print
27 maart 1996 14.24
VERZENDLIJST

1. Directeur DWL, drs. G.J.A. Al
2. Plv. Directeur-Generaal Milieubeheer, dr.ir. B.C.J.佐oteman
3. Hfd. van de afd. Gebiedsbescherming ir. J.F.M. van Vliet
5. Hoofdingenieur-directeur RIZA Prof.dr. J. de Jong
6. Directeur CMI. Prof. dr. H.A. Udo de Haes
7. Directeur IBN-DLO dr. A.B.J. Sepers
8. Directeur SC-DLO dr. A.N. van der Zande
9. Directeur sector Milieu-onderzoek RIVM ir. F. Langeweg
10. ir. R. van den Berg (RIVM)
11. drs. F.A.M. Claessen (RIZA)
12. dr. H.J.P.A. Verkaar (IBN-DLO)
13. dr. F.J. Zadelhoff (IKC-N)
14. dr. J. van Baalen (LNV Directie Natuurbepheer)
15. drs. F. Baerselman (LNV Directie gewasbescherming)
16. dr. J.P. Bakker (Vakgr. Plantenecoloogie RUG)
17. dr. A. Barendregt (vakgr. Milieukunde RUU)
18. Prof. dr. F. Berendse (Vakgr. TON LUW)
19. drs. J. Clausman (provincie Zuid-Holland)
20. drs. R. van Diggelen (Vakgr Planteneconomie RUG)
21. dr. H.F. van Dobben (IBN-DLO)
22. drs. L.J. Draaijer (IKC-N)
23. drs. R. Daring (SC-DLO)
24. drs. E. van Eik (RIZA)
25. Secr. NOV, drs. T. Garritsen (RIZA)
26. drs. C.L.G. Groen (FLORON)
27. dr. A.P. Grootjans (Vakgr. Planteneconomie RUG)
28. drs. W.B. Harms (SC-DLO)
29. dr. G. Hekstra (DGM/SVS)
30. dr. P.C. de Hullu (SBB)
31. drs. A.J.M. Jansen (KIWA)
32. drs. R.H. Kemmers (SC-DLO)
33. dr. S. Knapwijk (STOWA)
34. dr. J. Klijn (SC-DLO)
35. drs. M. Klein (IKC-N)
36. drs. J. Kros (SC-DLO)
37. drs. C.B.F. Kuijpers (DGM/B)
38. dr. C. Kwakernaak (SC-DLO)
39. drs. E.J. Lammers (LNV Directie Noord)
40. drs. W. Lammers (IKC/N)
41. drs. Laseur (RIZA)
42. drs. E.C.L. Marteijn (RIZA)
43. dr. R. van der Meijden (Rijksherbarium)
44. Raad voor Natuurbeheer
45. dr. H. Olff (Vakgr. TON LUW)
46. H. Piek (Natuurmonumenten)
47. dr. A.H. Prins (IBN-DLO)
48. dr. M.J.S.M. Reijnen (IBN-DLO)
49 dr. J.G.M. Roelofs (Vakgr. Oecologie KUN)
50 drs. J. Runhaar (CML)
51 drs. J.C. Smittenberg (Prov. Drenthe)
52 dr. J.T.A. Verhoeven (Vakgr. Botanische ecologie RUU)
53 dr. G. van Wirdum (IBN-DLO)
54 drs. F. van Wijland (LNV LBL)
55 ir. J.P.M. Witte (vakgr. Waterhuish. LUW)
56 Depôt van Nederlandse Publicaties en Nederlandse Bibliografie
57 Directeur Milieu RIVM Prof.ir. N.D. van Eegmond
58 drs. T. Aldenberg
59 dr. ir. J.R.M. Alkemade
60 ing. G.P. Beugelink
61 ir. A.H.M. Bresser
62 ir. W. van Duijvenbooden
63 drs. A.W. van der Giessen
64 dr.ir. J.J.M. van Grinsven
65 ir. G.J. Heij
66 drs. L.H.M. Kohsiek
67 ir. F. Langeweg
68 dr. R. Leemans
69 dr. L. van Liere
70 drs. R.J.M. Maas
71 drs. J.G. Nienhuis
72 drs. R. Reiling
73 dr. W. Slooff
74 drs. R.J. van de Velde
75 Bibliotheek SC-DLO
76 Bibliotheek R.U. Leiden faculteit Biologie
77 Bibliotheek K.U. Nijmegen faculteit Biologie
78 Bibliotheek R.U. Groningen faculteit Biologie
79 Bibliotheek KIWA Nieuwegein
80 Bibliotheek IBN-DLO
81-82 Auteurs
83 SBD/Voorlichting en Public Relations
 Bureau Rapportenregistratie
84-85 Bibliotheek RIVM
86-105 Bureau Rapportenbeheer
105-125 Reserve-exemplaren
VOORWOORD

Deze nota is tot stand gebracht na intensief overleg tussen betrokkenen van diverse instituten en instellingen. De stuurgroep is zich bewust geweest dat zij de werkgroep niet met een gemakkelijke boodschap op weg zette, maar wel dat een punt bereikt was in het overleg welke afstemming en samenwerking mogelijk maakte. De stuurgroep is de werkgroep derhalve dank verschuldigd voor het afmaken van de voorzet. Hoewel de wedstrijd misschien nog niet gewonnen is, zijn toch doelpunten gescroond en openingen gemaakt om definitief de winst te grijpen. Dank dus aan alle leden van de werkgroep en anderen die bij de discussie betrokken zijn geweest en ook aan haar voorzitter Erik van Zadelhoff.

De voorzet is nu weer "teruggekopt" naar de stuurgroep. In haar vergadering van 25 oktober 1995 heeft de stuurgroep het rapport besproken en zich achter het rapport en de daarin besproken akties gesteld. De stuurgroep zal op korte termijn projectvoorstellen laten opstellen voor de akties die voor de komende jaren als gewest en noodzakelijk zijn geformuleerd. Daarna zullen de voorstellen in een volgende stuurgroepvergadering (februari 1996) besproken worden en afhankelijk van de mogelijkheden tot financiering worden uitgevoerd. Doel is voorlopig drie afgestemde modellen te hebben, waarvan de ontwikkelingen efficiënt en effectief verlopen.

In overleg met stuurgroep en voorzitter van de werkgroep is besloten dit rapport een bredere verspreiding te geven dan de direct betrokkenen. Naast het feit dat dit rapport voor ons bruikbaar is voor de gewenste afstemming van de werkprogramma's, bevat het ook informatie over de modellen die in deze overzichtelijke vorm niet eerder gepresenteerd is. Hierbij dient wel aangetekend te worden dat niet geprobeerd is gedetailleerde beschrijvingen van de modellen te geven of een handboek nationale ecologische effectvoorspellingsmodellen samen te stellen.

Mocht u naar aanleiding van lezing van dit rapport vragen of opmerkingen hebben, dan stellen wij dat bijzonder op prijs. U kunt met uw vragen of opmerkingen terecht bij de verschillende leden van de stuurgroep of de redacteuren van het rapport: Jaap Wiertz (RIVM/LBG) en Remco van Ek (RIZA).

De stuurgroep Afstemming DEMNAT-MOVE-GREINS

ir. R. van den Berg (RIVM/LBG, voorzitter)
drs. F. Claessen (RIZA)
dr. H.P.J.A. Verkaar (IBN-DLO)
dr. F.J. van Zadelhoff (IKC-N)
INHOUDSOPGAVE

Verzendlijst .. 3
Voorwoord .. 5
Inhoudsopgave .. 7
Summary .. 9
Samenvatting .. 10

1 INLEIDING .. 11

2 GLOBALE SPECIFICATIES MODELLIJNEN 13
2.1 DEMNAT .. 13
2.2 SMART/MOVE .. 14
2.3 GREINS ... 14
2.4 Vergelijking van de modellijnen 15

3 ANALYSE GEWENSTE AFSTEMMING EN AKTIES 21
3.1 Ruimtelijke gegevensbestanden (basis informatie) (1a) 22
3.2 Fysische, chemische en ecologische gebiedsschematisatie (1b) 24
 3.2.1. Abiotische gebiedsschematisatie 25
 3.2.2. Biotische gebiedsschematisatie 27
 3.2.3. Uiteindelijk abiotische schematisatie als invoer voor voorspelling 27
3.3 Abiotische standplaatsmodellering (2) 28
3.4 Biotische responsmodule (3) 30
3.5 Natuurwaardering (4) 34
3.6 Vergelijking van modellen 'overall', en per bouwsteen 35

4 SAMENVATTEND OVERZICHT VAN AKTIES 37

5 REFERENTIES ... 38

Bijlage
1 Verklaring van de belangrijkste afkortingen 41
Figuren
1 Positionering van de modellen naar schaal en milieuthema 19
2a Huidige schakeling van hydrologische en abiotische submodule 30
2b Mogelijk verbeterde schakeling van hydrologische en abiotische submodule 30
3 Schematische weergave van het gebruik van een gemeenschappelijk vegetatie-
opnamenbestand voor de bepaling van optimum/tolerantie (MOVE),
bijstelling NTM en een herziening van de indeling in ecologische soorten-
groepen (ecotopensysteem) ... 33

Tabellen
1 Vereenvoudigde vergelijking op een aantal aspecten van de modellen 17
2 Overzicht van de bouwstenen ... 21
3 Overzicht van kenmerken in verschillende (biotische) bouwstenen 32
4 Overzicht van te ondernemen akties ... 37
SUMMARY

The development of three vegetation models has been going on in the Netherlands for several years. Two models, DEMNAT for desiccation, SMART/MOVE for desiccation, acidification and eutrophication are being developed on the national scale. The third model GREINS for desiccation, acidification and eutrophication as well as nature management and succession, will be developed on a more regional scale. This has meant more or less of a difference in the objectives and scales of these models.

In this study these three models has been analysed and compared to achieve more efficiency and consistency in research and policy. Integration is not possible at the moment, but cooperation at the level of separate submodels, maps and dose-response relationships has been proposed.
SAMENVATTING

Al enkele jaren zijn er verschillende vegetatiemodellen in ontwikkeling ter ondersteuning van het nationale milieu-, water- en natuurbeleid, nl. DEMNAT, SMART/MOVE en GREINS. DEMNAT is vooral sterk in de verdrogingssamenhang, MOVE in de combinatie van verdroging, verzuring, en verminering. GREINS tenslotte is weliswaar een regionaal model, maar combineert wel al deze stressfactoren met de factoren beheer en succesie.

Vooralsnog is integratie van de modellen niet mogelijk. Bij een vergelijkende analyse van de modellen konden wel een aantal modules/bouwstenen onderscheiden worden die in meerdere modelconstellaties bruikbaar zouden zijn, zoals de grondwatertrapkaarten, de ecologische responsies van soorten. Voor enkele prioritaire bouwstenen is een gemeenschappelijk actieprogramma opgesteld. Dit betrof o.a. een digitale kaart van natuurgebieden, kaarten voor kwelflux en -kwaliteit, koppeling van het hydrologisch model MOZART met het bodemmodel SMART2, de ecologische optima-curves van plantensoorten en een vergelijking tussen modellen op onderdelen en op einduitkomsten.
1 INLEIDING

Al vele jaren worden er op verschillende plaatsen in Nederland voorspellingsmodellen met betrekking tot natuurwaarden ontwikkeld. Ook door de rijksoverheid is ter ondersteuning van het nationale milieu-, water-, en natuurbeleid gewerkt aan verschillende effectmodellen voor de terrestrische vegetatie. De doelstellingen die gesteld werden vanuit het water-, milieu- en natuurbeleid vertonen een grote mate van overlap, evenals de beleidsanalytische modellen die door de drie betrokken ministeries V&W (RIZA), VROM (RIVM) en LNV (IKC-N, SC-DLO, IBN-DLO) werden ontwikkeld. De ruimtelijke aspecten spelen bij de modellering een grote rol (gebiedsgericht beleid). Een verschil tussen de drie ministeries is dat V&W zich uitsluitend richt op aquatische ecosystemen en op grondwater-afhankelijke terrestrische ecosystemen, terwijl LNV en VROM zich richten op alle mogelijke ecosystemtypen.

Vanwege de grote overlap tussen het milieu-, water- en natuurbeleid is afstemming tussen de verschillende modelllijnen gewenst. Het gaat hier om de modellen DEMNAT, SMART/MOVE en het GREINS-model. De betrokken opdrachtgevers kunnen ten opzichte van parlement, burgers en ministers van LNV, VROM en V&W, het naast elkaar bestaan van deze modellen alleen verantwoorden als hiervoor duidelijke motieven zijn te geven (bv. verschillen in doelstelling, schaal, maatregelen, e.d.). Indien dit niet het geval is, zal de keuze voor één model dan wel een gedeeltelijke of gehele integratie van de modellen aan de orde zijn. Vandaar dat op initiatief van het RIVM een stuurgroep is ingesteld, die de afstemming moet bewaken. Deze stuurgroep bestaat uit:

ir. R. van den Berg RIVM, ‘opdrachtgever’ MOVE en DEMNAT,
drs. F.A.M. Claessen RIZA, ‘opdrachtgever’ DEMNAT,
dr. H.P.J.A. Verkaar IBN-DLO, programmaleider van het NBP-deelprogramma "Natuurontwikkeling",
dr. F.J. van Zadelhoff IKC-N, waar de nationale doelstellingen ten aanzien van ecologische streefbeelden worden opgesteld.

Andere modellen, zoals ABIOFLOR (DHV Water BV 1992), HYVEG (Noest 1994), ECAM (Grootjans 1990), WAFLO (Gremmen et al. 1990), ICHORS (Barendregt et al. 1986), en ITORS (Ertsen, 1995), zijn niet beschouwd, omdat deze veelal een regionale of lokale toepassing als doel hebben en niet direct door de rijksoverheid worden ontwikkeld. Er lijken voldoende contacten te bestaan om te kunnen beoordelen wanneer deze andere modellen ook bij het afstemmingsoverleg betrokken dienen te worden.

1 DEMNAT = Dosis Effect Model voor de terrestrische NATuur, een landelijk ecolo-hydrologisch voorspellingsmodel van RIVM en RIZA;
SMART/MOVE = Simulation Model for Acidification’s Regional Trend (versie 2)/ Multi stress mOdel for Vegetation, een multi-stress model van RIVM, SC en IBN-DLO;
het GREINS - model = Een regionaal effectenmodel wat in het kader van het Natuurbeleidsplan - deelprogramma Natuurontwikkeling wordt ontwikkeld door LNV, Het stroomgebied van de Dicutsche Aa dient bij de opzet van het model als proefgebied.
In de stuurgroep is afgesproken dat de mogelijkheden voor afstemming en mogelijke integratie van de genoemde ‘rijksmodellen’ moeten worden onderzocht. Dit dient te gebeuren via een korte serie overlegrondes zonder dat daarbij de voorgenomen ontwikkeling van de modellen vertraging oploopt. Verder dient bij het afstemmingsoverleg zoveel mogelijk rekening te worden gehouden met reeds aangegane verplichtingen of verwachtingen t.a.v. de modellen. Ten behoeve van dit afstemmingsoverleg heeft de stuurgroep een werkgroep in het leven geroepen bestaande uit R. Al kemade, G. Beugelink, R. van Ek, J. Kros, J. Latour, D. Prins, J. Runhaar en J. Wiertz en F.J. van Zadelhoff (vrz.). Afgesproken is dat de werkgroep gezamenlijk een werkprogramma zal opstellen en presenteren met daarin concrete aktiepunten. Daarnaast moet dit werkprogramma uitmon den in een advies voor verder gezamenlijk onderzoek. Complete integratie van de modellen kan een resultaat zijn, maar dit is niet perse noodza kelijk. Een mogelijkheid is dat, afhankelijk van de verschillen in vraagstelling, verschillende modellen blijven bestaan, waarbij gebruik wordt gemaakt van gemeenschappelijk te ontwikkelen en te gebruiken model-onderdelen en gegevensbestanden. Met name de laatste mogelijkheid is door de werkgroep verder onderzocht, waarbij is nagegaan welke model-onderdelen en gegevensbestanden gemeenschappelijk bruikbaar zijn, en in hoeverre afstemming en gemeenschappelijke ontwikkeling mogelijk is. Idealiter zou deze afstemming zover moeten gaan dat de modellen uiteindelijk alleen verschillen in onderdelen waar dat gezien vanuit de specifieke vraag en de schaal van de studie logisch is. Vanuit deze basis van samenwer king en na een verdere vergelijking van effectvoorspellingsmodulen (b.v. DEMNAT en MOVE binnen thema 5 van het Nationaal Onderzoekprogramma Verdroging) zou te zijner tijd moeten worden vastgesteld of integratie dan wel een separaat voortbestaan voor de hand ligt.

Er zijn vijf bijeenkomsten geweest over drie thema’s:
1. grote lijn van drie modellen (modelstructuur, input/output);
2. modelspecificaties (doel, input/output, submodellen, schaal, gebieden);
3. raakvlakken/overlap met voorstellen voor werkplannen ’96 e.v. (drie bijeenkomsten).

In afwijking van het aanvankelijke plan is geen workshop gehouden met de volledige modelteams aangezien reeds veel ruggespraak is geweest. De belangrijkste resultaten van de werkgroepvergaderingen zijn neergelegd in dit rapport. Het is samengesteld uit bijdragen van de verschillende werkgroepleden.

In hoofdstuk 2 worden de drie modellen beschreven en met elkaar vergeleken. In hoofdstuk 3 worden gemeenschappelijke akties beschreven per ‘bouwsteen’ (onderdeel van de causaliteiten-keten), waarna een samenvattend overzicht van de akties wordt gegeven in hoofdstuk 4.
2 GLOBALE SPECIFICATIES MODELLIJNEN

Voor ieder model zijn enkele kernpunten geëxtraheerd. In de laatste paragraaf zijn enkele vergelijkende conclusies getrokken.

2.1 DEMNAT

De huidige versie van DEMNAT is eigendom van het RIZA en het RIVM, en is ontwikkeld in samenwerking met de Landbouwuniversiteit Wageningen, en de Rijksuniversiteit Leiden (CML en het Rijksherbarium). DEMNAT kan worden omschreven als een landsdekkend ecohydrologisch voorspellingsmodel voor waterhuishoudkundige maatregelen op nationale schaal.

DEMNAT-1 is toegepast bij de 3e Nota Waterhuishouding. Daarna is, in het kader van het Beleidsplan Drink- en Industriewaterwinning en de daarbij behorende MER-studie (Beugelink et al., 1992) DEMNAT-2.0 ontwikkeld en toegepast. Het model is daartoe volledig ingebouwd in een menu gestuurd GIS-systeem (AR/ERINFO). In 1995 moet DEMNAT-2.1 operationeel zijn om ingezet te kunnen worden bij de Watersysteemverkenningen van het RIZA en de Milieubalans/Milieuverkenningen van het RIVM.

Naast de landelijke versie van DEMNAT loopt er een studie naar de mogelijkheden om de concepten van DEMNAT-2.0 te gebruiken bij het in kaart brengen van de gewenste grondwatersituatie op provinciale schaal (GGS-Noord Braham project). Een tweede belangrijke doelgroep van DEMNAT wordt daarmee de regionale waterbeheerder (d.w.z. de provinciale overheid en de waterschappen).

Veel aandacht is bij DEMNAT uitgegaan naar een goede, landsdekkende plaatsbepaling en karakterisering van de huidige toestand van ecosystemen. Een juiste koppeling tussen ingreep en ecosystem wordt gezien als een van de voornaamste randvoorwaarden om te komen tot een zinvolle ecologische effectvoorspelling. Voor de gebiedsschematisatie is gebruik gemaakt van een door het CML ontworpen indelingssysteem van ecotopen (vegetatie; Stevers et al. 1987) en ecoserie (bodems; Klijn et al. 1992). Hiermee is het mogelijk, onder zekere aannames, informatie over de flora verder te differentiëren naar bodemeenheden binnen de kilometergridcel (de km-cel is de hoogste resolutie van FLORBASE).

De ecologische effectvoorspelling wordt uitgevoerd via zogenaamde "dosis-effect functies". Deze functies geven de verandering in volledigheid (relatieve soortenrijkdom) van een ecotopgroep, als functie van de bodem en een hydrologische dosis. De relaties zijn berekend met het programma GEVOEL, waar onder meer kennis uit het SWNBL-stalakaarten onderzoek en het toetsingsonderzoek ecotopensysteem is verwerkt.

Thans wordt gewerkt aan o.a. een betere modellering van gebiedsvreemd water (deelfuncties voor Cl en P in plaats van percentage inlaat water), verbetering van de bodemmodule door het inbouwen van het kenmerk kwel in de ecoserie-typologie (ecoseries-2.1) en een betere berekening van het herstel van natte en vochtige ecosystemen.
2.2 SMART/MOVE

In de diverse Milieu-en Natuurverkenningen is er behoefte aan modellen waarmee de effecten van verschillende (nationale) scenario’s voor verzuring, vermesting en verdroging op de Nederlandse flora en fauna kunnen worden voorspeld. Daarvoor is het multistress model voor de vegetatie (SMART/MOVE) in ontwikkeling bij het RIVM in samenwerking met IBN-DLO en SC-DLO. Een multistress benadering is noodzakelijk omdat milieufactoren elkaar in hun effecten onderling kunnen versterken en verzwakken.

SMART/MOVE kan worden gebruikt voor prognose (kans op voorkomen), ecologische normstelling en stress-analyse. Dit gebeurt in het Milieu/Natuurbeleid en de Milieu/NatuurVerkenningen en in het Gebiedsgerichte rijksebeleid en de uitwerking van gebiedsvisies. Bij de laatste twee aspecten zijn ook provincies doelgroep. De belangrijkste beleidsvragen zijn:
- aangeven risico’s en effecten van scenario’s op natuurdoeltypen en (aandachts)soorten (Jansen et al. 1993),
- berekenen van ecologische normen voor verzuring, vermesting en verdroging per FGR (Fysisch Geografische Regio) en natuurdoeltype (b.v. volgens de risicobenadering uit de ecotoxicologie),
- ruimtelijke analyse van de belangrijkste bedreiging/stress

SMART/MOVE voorspelt primair op nationale schaal de kans op voorkomen van plantsoorten als functie van vocht, nutriënten, zuurgraad en zout. Het bestaat uit een procesgeoriënteerd bodem-model (SMART2) gekoppeld aan een statistisch afgeleid vegetatie-effectmodel. De GVG wordt nu bepaald met het hydrologisch model LGM. De wijzigingen in standplaatsfactoren leiden tot een veranderde kans op voorkomen van plantsoorten. Hierbij wordt gebruik gemaakt van de ecologische amplitude (nu beschikbaar voor 700 plantsoorten).

Bij de Milieuverkenningen ligt de nadruk op de vraag of de condities voor water, bodem en lucht geschikt zijn/bleven voor het voorkomen van natuurdoeltypen. Bij de Natuurverkenning is dit niet genoeg en dient ook de vraag beantwoord te worden of soorten en natuurdoeltypen ter plekke ook werkelijk voor zullen komen rekening houdend met reeds aanwezige vegetatie, grondgebruik en beheer. De modellen dienen hiervoor meer factoren te omvatten en er dient meer aandacht te worden besteed aan de beschrijving van de uitgangssituatie (incl. historie).

2.3 GREINS

Het onderzoek wordt uitgevoerd in het NatuurBeleidsPlan-deelprogramma “Natuurontwikkeling” door IBN-DLO, SC-DLO, AB-DLO, LUW in samenwerking met RUG. Het modellen-instrumentarium dient bruikbaar te zijn bij het opstellen en evalueren van gebiedsvisies; momenteel wordt de gebiedsvisie van de Drentsche Aa als voorbeeldproject onderzocht.

Het doel van de studie is het ontwikkelen van een methode om natuurontwikkelingsscena-
rio's te genereren en natuurwaarden in ruimte en tijd te voorspellen. De scenario's dienen bij voorkeur gebaseerd te zijn op verschillende keuzen in natuurdoelen en ruimtelijke strategieën. De methode moet een hulpmiddel zijn bij:
1. het identificeren van natuurdoelen, randvoorwaarden en kansrijke gebieden, en
2. het opstellen van inrichtings- en beheersrichtlijnen als sturingsmogelijkheid bij verschillende scenario's van klimatologische, atmosferische en waterhuishoudkundige beïnvloeding.

Het is de bedoeling dat na de afsluiting van het natuurontwikkelingsonderzoek er een integratie plaatsvindt tussen de versnipperingsmodellen en natuurontwikkelingsmodellen. Er liggen dan verschillende richtingen open: een verdere ontwikkeling van het modelinstrumentarium voor andere gebiedstypen, een instrument ten behoeve van de plattelandsontwikkeling of voor het beheer van grootschalige natuurgebieden.

2.4 Vergelijking van de modellijnen

In tabel 1 staan nog eens voor de meest relevante aspecten de belangrijkste overeenkomsten en verschillen weergegeven tussen de drie modellijnen. Deze tabel is bruikbaar als overzicht, maar een nadere toelichting is wenselijk aangezien sommige aspecten in een tamelijk vereenvoudigde vorm zijn weergegeven. Daarnaast mag deze tabel niet als definitief worden beschouwd, aangezien er nog onenigheid bleek te bestaan tussen de verschillende groepen over de juiste invulling van enkele aspecten. De onderstaande tekst gaat in op de vraag waarom voor een bepaald modelconcept is gekozen en wat daarvan de voor- en nadelen zijn, en of er mogelijkheden zijn voor ‘niche’ vorming. Met het laatste wordt bedoeld dat elke modellijn zijn eigen specialisatie uitbouwt, zodat een al te grote overlap met doelstellingen c.q. gebruiksmogelijkheden van andere modellijnen wordt vermeden.

Voor de landelijke schaal bestaan de modellijnen SMART/MOVE en DEMNAT. In het algemeen geldt bij de landelijke modellering als voordeel dat een algeheel beeld kan worden gevormd van de ecologische consequenties van ingrepen in het milieu. Hiermee wordt voorkomen dat bepaalde ecosystemen onevenredig veel aandacht krijgen terwijl andere systemen juist verwaarloosd worden. Het betekent echter ook dat bij de modellering gebruik moet worden gemaakt van de beschikbare landsdekkende informatie. Dit zijn vaak bestanden, die minder betrouwbaar en soms deels ook verouderde informatie bevatten. Daarnaast is sommige relevante informatie, zoals bijvoorbeeld de flora-informatie, slechts in beperkte mate plaatsgebonden of vlakdekkend aanwezig, zodat bij het modelleren van de processen op standplaatsniveau de nodige aannames moeten worden gemaakt. Dit betekent dat de modelresultaten van SMART/MOVE en DEMNAT voor een specifieke rekeneenheid een grotere onbetrouwbaarheid zullen hebben dan het GREINS-model.

SMART/MOVE en DEMNAT zijn beide weliswaar landelijk toepasbaar, de aanpak bij beide modellen is nogal verschillend. Bij SMART/MOVE is voor de bodemmodule uitgegaan van een procesgerichte benadering en voor de vegetatie-module van een statistische benadering. Verder is een aantal onderdelen van het modelconcept nog in ontwikkeling (b.v. koppeling flora-informatie aan SMART-bodemkenheden, wijze van aggregeren van flora-informatie en de natuurwaardering).

2 Niet operationeel in de versie die eind 1995 wordt opgeleverd.
Tabel 1 Vereenvoudigde vergelijking op een aantal aspecten van de modellen.

<table>
<thead>
<tr>
<th></th>
<th>DEMINAT</th>
<th>SMART/MOVE</th>
<th>GREINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>beleidssterrein</td>
<td>Beleidsvaluatie/verkenning van verfonding op nationale en provinciale schaal (MER/DIV, MV, WSV/Nota WHW, Provinciale WHP)</td>
<td>Beleidsvaluatie/verkenning van verzorging, vermeidung, verfonding en klimaatvaardering op nationale schaal (MV, NMP, Nota ecosystems in Ned., Gebiedsvisie, Prov. beleid)</td>
<td>Beleidsvaluatie inrichting en beleid t.b.v. natuurontwikkeling op regionale schaal (Landinrichtingsplannen, Gebiedsvisie)</td>
</tr>
<tr>
<td>doel</td>
<td>Effecten van ingrepen in de waterhuishouding op kwaliteit en voorkomen van natie, vochtige ecoopgroepen</td>
<td>Effecten van atmosferische depositie, bodemstoring en hydrologie op de kaas op voorkomen van soorten</td>
<td>Effecten van atmosferische depositie, hydrologie en inrichtingsmaatregelen op de klimaatstroom voor natuurontwikkeling</td>
</tr>
<tr>
<td>hydrologische modellering</td>
<td>NAOBREGLMG/IMAOZART</td>
<td>LGM¹</td>
<td>SIMGRO</td>
</tr>
<tr>
<td>ingrepen</td>
<td>GVG, kwel, pest, P en Cl oppervlakewater</td>
<td>GVG, kwel, pest, mestgift, atmosferische depositie¹</td>
<td>GVG, kwel, pest, atmosferische depositie, beleid</td>
</tr>
<tr>
<td>veranderingen in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>schematisatie (bv abiotische standplaatsmodellering)</td>
<td>bodem+kwel+vegetatie structuur (5 typen) via de bodemkaart 1 : 50.000, het LKN</td>
<td>bodem+kwel+vegetatie structuur (18 typen) via de bodemkaart 1 : 50.000, het LKN en plaatselijk verzamelde informatie</td>
<td></td>
</tr>
<tr>
<td>standplaatsmodule</td>
<td>GEVEOL (zie ook biotische responsmodule)</td>
<td>SMART2</td>
<td>SMART2</td>
</tr>
<tr>
<td>parameters bepaald via de abiot. stipps. module</td>
<td>vocht, pH, N-beschikbaarheid, CI-bodemwater</td>
<td>vocht (uit GVG), N-beschikbaarheid, pH, ¹</td>
<td>vocht, N-beschikbaarheid, pH</td>
</tr>
<tr>
<td>invoer biotische schematisatie</td>
<td>luchtegevoeg met FLOEBASE</td>
<td>luchtegevoeg uit FLOEBASE en vegetatie structuur gegevens uit LGN</td>
<td>luftpertypen, vegetatiestructuur onderbouwd met vegetatieopnamen ter plekke</td>
</tr>
<tr>
<td>biotische responsmodule</td>
<td>ECOOPENSYSPEEM (ingebouwd in GEVEOL; zie ook abio-respons module)</td>
<td>MOVE</td>
<td>NTM en vegetatie succesie reeks</td>
</tr>
<tr>
<td>uitvoer biotische responsmodule</td>
<td>veranderingen in volledigheid ecoopgroepen (+ natuurwaarde)</td>
<td>karst op voorkomen soorten</td>
<td>natuurwaarde vegetatiestructuur</td>
</tr>
<tr>
<td>naturwaardering</td>
<td>oppervlakte, relatieve soortenindex, zeldzaamheid</td>
<td>ndt, FTZ-doeleer, abiot. kwaliteit in Amino³</td>
<td>zeldzaamheid, bodemgheid (NTM), ndt, FTZ-doeleer</td>
</tr>
<tr>
<td>ecosystemen</td>
<td>natie, vochtige terrestrie ecosysteem en kleine aquatische ecosystemen</td>
<td>alle terrestrie systemen</td>
<td>alle terr. ecosystemen in het Drentsche Aa-smoongebied</td>
</tr>
<tr>
<td>kleinste erkenningshier</td>
<td>ecosystem (0.01 - 100 ha)</td>
<td>bodem+kwel-landgebruik-¹</td>
<td>HYFY - IR-structuuroere - beleid onbeheer</td>
</tr>
<tr>
<td>schaalniveau</td>
<td>nationaal/regionaal</td>
<td>nationaal/regionaal/Europe</td>
<td>regionaal/lokaal</td>
</tr>
<tr>
<td>gebruikersversie</td>
<td>nog geen keuze</td>
<td>ja (veg.deel)</td>
<td>nee</td>
</tr>
</tbody>
</table>

¹ in ontwikkeling, opdracht verleend tot SMART2-betrouwbare gebieden
² voorzorg alleen Drentsche Aa
³ toevoeging MOZART voorgenomen (CI en P oppv. w.)
⁴ klimaat/meteo data
⁵ nationaal en per Fysisch-geografische regio (Ten Brink & Van den Berg 1995); echter nog alternatieve benaderingen beoogd
⁶ in ontwikkeling
De DEMNAT versies (versie 1 en 2.0) kennen een korter ontwikkelingstraject, waarbij meer pragmatische keuzes zijn gemaakt.

SMART/MOVE maakt, net zoals het GREINS-model, gebruik van de procesgerichte bodemmodule SMART2. De daarin onderscheiden rekenregels zijn inzichtelijk en voor een groot deel gebaseerd op fysisch/chemische grondslagen (massa-balans, evenwichtsvergelijkingen, ionen-balans). Sterk punt van SMART2 is dat bij de berekening van standplaatsfactoren rekening wordt gehouden met relevante factoren zoals strooiselval en atmosferische depositie. De standplaatsfactoren kunnen op een continue schaal worden gemodelleerd. De biotische respons wordt gemodelleerd met MOVE, waarbij ook formele, goed controleerbare statistische rekenregels worden gehanteerd. Het gebruik van formele rekenregels is een belangrijk punt aangezien dit de inzichtelijkheid en de controleerbaarheid van SMART/MOVE ten goede komt. Een nadeel van deze benadering is dat de gevolgde benadering hoge eisen stelt aan de kwaliteit van de invoer. Wanneer de invoerbestanden tekortkomingen bevatten hoeft het gebruik van formele rekenregels niet noodzakelijkerwijs tot goede resultaten te leiden. Verder is op dit moment nog onvoldoende duidelijk hoe fijnzchalig de bodem (in combinatie met vegetatiestructuurtypes) landsdekkend kan worden gemodelleerd met SMART. Voorlopig bestaan de kleinste rekeneneheden uit 250 x 250 m cellen (6.25 ha).

DEMNAT gebruikt dosis-effect relaties waarbij voor alle mogelijke combinaties de abiotische respons van de bodem is geïntegreerd met de biotische respons van de vegetatie. Deze dosis-effect relaties zijn volledig afgestemd op de indelings van ecologische bodemeenheden (ecoses) en ecologische soortengroepen (ecotooptypen) van het CML. Het gebruik van dosis-effect relaties biedt zowel voordelen als nadelen. Een voordeel is dat DEMNAT een sterk verfijnde gebiedsschematisatie kan hanteren bij het doorrekenen van ingrepen. De kleinste bodemeenheid is bijvoorbeeld 0.25 ha, waarop nog verschillende ecologische soortengroepen kunnen worden onderscheiden. Dit is van belang omdat de voor natuurwaardering relevante ecosystemen vaak slechts een geringe oppervlakte hebben. Daarnaast zijn dosis-effect functies opgesteld op basis van ervaringen uit de praktijk en minder gevoelig voor fouten in de parametratisatie dan een dynamisch procesmodel. Een nadeel is dat de dosis-effect functies met de nodige ‘expert judgement’ zijn opgesteld. Het gebruik van ‘expert judgement’ in plaats van formele rekenregels gaat ten koste van de inzichtelijkheid en controleerbaarheid, en introduceert een subjectief element in de relaties die niet perse juist hoeft te zijn. Met name de relaties voor de bodem zouden beter onderbouwd moeten worden. Zo houdt DEMNAT nu bijvoorbeeld geen rekening met de consequenties van strooiselval en atmosferische depositie voor de standplaats. Verder kan het gebruik van dosis-effect functies leiden tot enige dubbeltelling, aangezien de verschillende dosis-effect relaties afzonderlijk worden doorgerekend. De uitvoer van DEMNAT is in termen van CML-ecotopengroepen. In hoeverre dit als een nadeel moet worden beschouwd in relatie tot de door het Ministerie van LNV geformuleerde natuurdoeltypen is nog onduidelijk. In ieder geval is een vertaalslag nodig van de CML-
ecotopen typologie naar natuuroeltypen, wil het model voldoende aansluiten bij de
natuurdoelstellingen van het ministerie van LNV. Aan zo’n vertaling wordt momenteel
gewerkt. In SMART/MOVE is niet gekozen voor een aggregatie op voorhand, zodat een
vertaling achteraf niet nodig is.

Positionering van de modellen

In figuur 1 is de positionering van de verschillende modellen grafisch weergegeven.
Hoewel de verschillende modellen enige overlap vertonen, zijn er ook duidelijke
verschillen aan te geven, die samenhangen met de specifieke doelstellingen van de
modellen. De vraag is of de overlap dermate groot is dat integratie voor de hand ligt, of
dat elke modellijn juist zijn eigen specialisatie zou kunnen uitbouwen zodat de modellen
complementair zijn aan elkaar (niche-vorming).

Figuur 1 Positionering van de modellen naar schaal en milieuthema.
Sterk punt van het GREINS-model is de bruikbaarheid ten behoeve van regionale planvorming. Alle relevante ver-thema’s (verzuring, vermesting, verdroging en versnippering) worden in principe door het model afgedekt, inclusief beheer. Het GREINS-model zou dus de niche ‘(sub)regionaal planningsinstrument voor natuurontwikkeling’ kunnen vervullen.

Sterk punt van SMART/MOVE is de multi-stress modellerings. Het model kan in principe uitspraken doen over verzuring, vermesting en verdroging op nationale en provinciale schaal. In hoeverre het model zich ook op subregionale of zelfs lokale schaal moet wagen staat nog open (denk aan kwaliteit invoergegevens!). SMART/MOVE zou zich met name kunnen richten op de multi-stress analyse, door bijvoorbeeld de methodiek uit te bouwen waarmee per gebied in Nederland is aan te geven wat de grootste milieu-stress is voor de flora. SMART/MOVE is in principe ook bruikbaar voor ecologische normstelling en scenario analyse. Ten aanzien van verdroging ontstaat dan een overlap met DEMNAT. Indien SMART/MOVE zich richt op de subregionale/lokale schaal dan ontstaat ten aanzien van ecologische normstelling mogelijk overlap met het GREINS-model.

Sterk punt van DEMNAT is de modellerings van de verdrogingsproblematiek. De wijze waarop dat gebeurt gaat verder dan bij SMART/MOVE. Op basis van een aantal verschillende typen hydrologische maatregelen zijn ecologische effecten door te rekenen en natuurwaarden te bepalen. Het modelconcept is toepasbaar op de landelijke en provinciale schaal. In het laatste geval is de beschikbaarheid van voldoende flora informatie een belangrijke voorwaarde. Verder richt DEMNAT zich op het bepalen van de gewenste grondwatersituatie op provinciale -en regionale schaal. Voor een fijner schaalmoment (subregionaal, lokaal) is het beter dat b.v. de GREINS-benadering wordt gevolgd. Een niche voor DEMNAT zou dus kunnen zijn ‘beleidsanalytisch instrument inzetbaar bij de analyse van de verdrogingsproblematiek op nationale schaal, en de gewenste grondwatersituatie op provinciale -en eventueel regionale schaal’.

Op basis van deze verkenning is geconcludeerd dat integratie van twee of meer modellen nog niet aan de orde is. Wel is duidelijk dat de afzonderlijke modellen zowel verschillen als overlap vertonen, en dat samenwerking op onderdelen mogelijk en gewenst is. Zo is in ieder geval de wens geuit dat er gezamenlijk wordt gewerkt aan de opbouw van bestanden die voor alle modellen van belang zijn. Daarnaast kan ook aan de samenwerking per onderdeel van de modellen een nadere invulling worden gegeven (b.v. bodem of vegetatie-compartiment). Samenwerking kan echter worden bemoeilijkt doordat niet alle onderdelen direct 1 : 1 vergelijkbaar zijn met elkaar, en doordat enkele modellen (m.n. SMART/MOVE en GREINS) nog dermate in ontwikkeling zijn dat duidelijke specificaties van bepaalde onderdelen nog niet zijn te geven.

Afsluitend is geconcludeerd dat zoveel mogelijk voorkomen moet worden dat de verschillende modellen voor een zelfde schaal en vraag toepasbaar worden gemaakt. Een mogelijke optie is om de specialisatie van elk model uit te bouwen zodat de verschillende modellen complementair kunnen zijn aan elkaar.
3 ANALYSE GEWENSTE AFSTEMMING EN AKTIES

In dit hoofdstuk is aangegeven welke bouwstenen onderscheiden kunnen worden binnen de modelbouw, en op welke punten samenwerking (‘akte’) mogelijk lijkt te zijn. Een enkele akte zou al opgenomen kunnen worden in de werkplannen voor 1996. Deels zal waarschijnlijk ook extra capaciteit benut kunnen worden via het NOV (thema 5: multi-stress analyse i.r.t. verdroging).

In tabel 2 staat aangegeven welke bouwstenen we (tot nu toe) onderscheiden en welke onderdelen van de verschillende modelrichtingen tot de bouwsteen behoren. De lijst weerspiegelt geen dominantie en pretendeert geen complete opsomming te zijn.

Tabel 2 Overzicht van de bouwstenen.

<table>
<thead>
<tr>
<th>BOUWSTENEN</th>
<th>PRODUKTEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a Ruimtelijke gegevensbestanden</td>
<td>Geohydrologische krt, Waterstaatkundig Informatie</td>
</tr>
<tr>
<td>(basis informatie)</td>
<td>Systeem, Bodem -en Gt krt (1:50.000), FLORBASE, LKN, LGN, Natuurgebieden krt</td>
</tr>
<tr>
<td>1b Fysische, chemische en ecologische</td>
<td>Bodemfysische eenheden ten behoeve van hydrologische modellen (bv. MOZART/</td>
</tr>
<tr>
<td>gebiedsindeling</td>
<td>LGM/NAGROM/SIMGRO). Bodemchemische eenheden, inclusief vegetatie structuur</td>
</tr>
<tr>
<td></td>
<td>en soorten(groepen) t.b.v. (ecologische) standplaatsmodellen (bv. fysiotopen/SMART, ecoseries)</td>
</tr>
<tr>
<td>2 Abiotische</td>
<td>MOZART, LGM, NAGROM, SIMGRO, SMART2</td>
</tr>
<tr>
<td>(standplaats)modellen</td>
<td></td>
</tr>
<tr>
<td>3 Biotische responsmodule</td>
<td>Biotische module GREINS, NTM, MOVE, CML-Ecotopen,</td>
</tr>
<tr>
<td>4 Natuurwaardering</td>
<td>GREINS/NTM, CML-ecotopen</td>
</tr>
</tbody>
</table>

Een vergelijking op losse onderdelen (bouwstenen) van de ingreep-effect keten is noodzakelijk om aan te kunnen geven waar mogelijke verschillen zitten tussen de verschillende modellijnen en waarom. Naast een dergelijke vergelijking is het echter ook wenselijk een ‘overall’-vergelijking te maken. Het zou bijvoorbeeld niet zo mogen zijn dat SMART/MOVE een heel ander ecologisch effect verondersteld dan DEMNAT na een zelfde hydrologische dosis voor een zelfde gebied. De opzet voor een overall-analyse wordt besproken in paragraaf 3.6.
Hierna worden de actiepunten volgens de structuur van tabel 2 besproken. Bij het opstellen van de actiepunten is een onderscheid gemaakt in drie verschillende typen acties:

‘Type A’ Concrete acties die op korte termijn (in 1996) gestart kunnen worden;

‘Type B’ Relevante acties voor afstemming die binnen 2 à 3 jaar zijn te realiseren;

‘Type C’ Lange termijn acties met een strategisch karakter die zich richten op de algemene zwakke schakels in de ecologische-effectvoorspelling.

Aktiepunten van het type C -fundamentele problemen waar we gezamenlijk als modelleurs mee zitten- zijn ook opgenomen in de rapportage om te voorkomen dat alleen samenwerking ontstaat op makkelijke onderdelen terwijl juist de grootste gemeenschappelijke knelpunten, vanwege de lange doorlooptijd en mogelijk ook een groot beroep op financiële middelen, een lage prioriteit krijgen.

3.1 Ruimtelijke gegevensbestanden (basis informatie) (1a)

Om modellen te kunnen draaien zijn invoergegevens nodig over de uitgangssituatie in termen van bodem, hydrologie, flora en fauna. Op landelijk schaalniveau bestaat al een aantal gemeenschappelijk gebruikte geografische bestanden die via (geheel of gedeeltelijk) gezamenlijke financiering zijn opgebouwd (FLORBASE, FLORIVON, hoogtepuntenbestand) of tegen betaling beschikbaar zijn (LKN, bodembestanden, LGN). Ten aanzien van de huidige gemeenschappelijk gebruikte geografische bestanden bestaan bij de verschillende modellieurs gelijk gestemde wensen voor verbetering. Daarnaast zijn er vanuit de verschillende modellijnhen ook hienten geconstateerd in de geografische informatie. Deze hienten kunnen wellicht ook via gezamenlijke financiering worden opgelost. Hieronder zijn de belangrijkste wensen t.a.v. gezamenlijke opbouw van de geografische basis informatie weergegeven.

Natuurgebiedenkaart

Op dit moment ontbreekt er nog steeds een gedetailleerd digitaal bestand met de ligging van natuurrerreinen, waarbij ook een typering van het gebied is opgenomen en een inschatting van de toestand waarin het gebied zich bevindt. Er is een actie gaande (trekkers CBS, IKC-N en RIVM) die deels gefinancierd wordt door het RAVI (RAad voor Vastgoed Informatie) om een pilotproject te laten uitvoeren naar de opbouw van een nationaal digitaal bestand van natuurrerreinen. Binnenkort wordt de opdrachtspecificatie vastgesteld (o.a. definitie van wat natuurrerrein is, passend op 1:10.000 digitale top-krt.). Verder is bij IKC-N een project ‘Basiskaart natuur’ gestart dat mogelijk aansluit op de acties medegefinancierd door het RAVI.

Aktie (A1): Afstemming is gewenst tussen het ‘RAVI-project’ en de ontwikkeling van de ‘Basiskaart Natuur’. Onderzocht moet worden in hoeverre de projecten een gelijke doelstelling hebben. Indien mogelijk zouden onderdelen van de verschillende projecten gebruikt kunnen worden om gezamenlijk de gewenste digitale natuurgebieden kaart samen
te stellen. Betrokkenen: RIVM, CBS, IKC-N, RAVI, RIZA.

De kwelkaart:
De huidige kwelkaart van het LGM geeft een kwelflux weer per vierkante kilometer. Nog niet geheel Nederland is gedekt (West- en Zuid-Nederland en randgebieden ontbreken) en informatie over de kwaliteit van het kwelwater ontbreekt (IR, zoet/zout, macro-ioniën). Er lopen op dit moment acties bij het RIVM om de kwelkaart van het LGM ruimtelijk te verfijnen, te vervolledigen en te ijken (afstemming met LKN-grondwaterrelaties krt.). Verder beschikt het RIZA over een kwelkaart van NAGROM waarbij de bovenrand is verfijnd naar gridcellen van 500 x 500 meter (MONA). In deze kwelkaart is tevens voor holocene Nederland rekening gehouden met dichtheidsverschillen in de ondergrond als gevolg van zout water. TNO-GG heeft het voornemen een studie te doen naar de relatie oppervlakteswater/grondwater in verband met de waterkwaliteit. Ook kan gebruik gemaakt worden van de Landelijke Hydrologische Systeemanalyse van TNO. Het KIWA (Jansen, Meuleman, Koerselman) doen voornamelijk op sub-regionaal en lokaal niveau onderzoek naar de relatie grondwaterkwaliteit/kwaliteit en vegetatie.

De modellering van grondwaterkwaliteit vormt voorlopig nog een moeilijk op te lossen probleem. Een eerste globale kaart van de grondwaterkwaliteit kan echter al wel met behulp van expert judgement en meetgegevens gemaakt worden (zie aktie B1). Tenslotte moet worden opgemerkt dat het modelleren van de relatie tussen hydrologie en vegetatie op landelijke schaal nog erg lastig is vanwege het verschil in schaal van de uitvoer van hydrologische modellen en de schaal waarop processen spelen in de vegetatie. Voor alle landelijke en regionale hydrologische modellen geldt dat het ruimtelijk detail voorlopig nog onvoldoende aansluit op het schaalniveau van de standplaats en dat ruimtelijke detailering wenselijk is (zie ook par. 3.3 hydrologische modellering).

Aktie (A2): In eerste instantie is behoefte aan verbeterde (ook qua resolutie), landsdekkende kaart van de hoeveelheid kwel (kwantiteit) in Nederland. Dit onderzoek is al geprogrammeerd in het reguliere onderzoek van RIVM/RIZA. RIVM, RIZA, TNO-GG.

Aktie (B1): In tweede instantie is behoefte aan een kaart van de kwaliteit van het (uitvredend) kwelwater (zoet/zout, IR, e.a. kwaliteitsaspecten). RIVM, RIZA, TNO.

Aktie (C1): Tenslotte is afstemming is gewenst bij de modellering, gegevensopbouw, en de analyse van modelresultaten om te komen tot een juiste schaal van de berekende kwelfluxen, andere hydrologische informatie en ecologische informatie. Met juiste schaal wordt bedoeld dat een zinvolle match of interface gemaakt wordt tussen celgrootte en tijdsstap van m.n. hydrologie, standplaats en vegetatie. Hoogtepuntenkaarten en het WIS kunnen hierbij een rol spelen. Betrokkenen RIVM, RIZA, CML, SC, IBN-DLO.

Uitbreiding WIS:
Het Waterstaatkundig Informatie Systeem (WIS) van de Meetkundige Dienst is vrijwel gereed. Hoewel het WIS veel waterstaatkundig belangrijke parameters bevat zijn er ook

5 Een instituut is ondersteund wanneer het de trekkerrol heeft voor het beschreven aktiepunt.
tekortkomingen. Zo mist het bestand een goede schatting van de slootlengte/dichtheid per afwateringselement. Dergelijke informatie is nodig voor de benodigde ruimtelijke detailering van de hydrologische modellen. In het huidige WIS zijn alleen de schouwbare wateren opgenomen. Veel kleine oppervlakte wateren zoals sloten en vennen (CUWVO-wateren) ontbreken terwijl juist daar veel natuurwaarden kunnen voorkomen. Mogelijk kan het LKN-IPIECO bestand hier nog een rol spelen, omdat daar oppervlaktes en lengtes van IPI’s per 1x1 km geschat zijn uit de 1:25.000 top-kaart. Voor het vastleggen van ecologische streefbeelden en bij effectvoorspelling (MOVEAQUA, DEMAQUA) is het plaatsgebonden maken van (clusters) ecosystemen aan de hand van geografische informatie op een fijner schaal wenselijk.

Aktie (B2): Er moet geïnventariseerd worden welke ruimtelijke informatie nodig is voor een adequate modellering van de natuurwaarden aanwezig in kleine wateren en de wijze waarop deze aan het WIS kan worden gekoppeld. Betrokkenen: RIVM, RIZA, IKC-N, MD.

Actualisering Gt-kaart:
De huidige Gt-kaart 1: 50.000 is voor veel delen in Nederland in sterk verouderd. Dit geldt met name voor die stukken waar na de kartering grootschalige ruilverkavelingsprojecten hebben plaatsgevonden. Een betrouwbare Gt-kaart van de actuele situatie is nodig voor een juiste landschapsecologische gebiedsschematisatie en voor het vastleggen van de uitgangssituatie t.b.v. scenario-analyse. Bij SC-DLO is een project gestart dat voorziet in een gedeeltelijke actualisering van de Gt-kaart (Finke et al. 1995). Voor alle modellen vormt een actualisering van de Gt-kaart een belangrijke verbetering in de modellering van de waterhuishouding.

Aktie (B3): Een deel van de financiering van de verschillende modellen zou vrij gemaakt moeten worden voor de actualisering van de meest verouderde kaartbladen van de Gt-kaart. Gezien het veel algemenere belang dat hiermee gemoeid is en de grootte van de kosten, zou de mogelijkheid van co-financiering moeten worden onderzocht. Betrokkenen: RIVM, RIZA, SC-DLO, Provincies.

3.2 Fysische, chemische en ecologische gebiedsschematisatie (1b)

In alle modellen wordt gebruik gemaakt van fysische, chemische en biologische gebiedsschematisaties om de voor de modellering relevante landschapsecologische eenheden te omgrenzen. Daarbij wordt o.a. gebruik gemaakt van de ruimtelijke gegevensbestanden genoemd onder 1a (zie tabel 2). De eenheden worden verondersteld homogeen te zijn ten aanzien van natuurpotenties én de dienen zoveel mogelijk vergelijkbaar te reageren op ingrepen in de water- en stoffenhuishouding. De combinatie van een fysisch/chemische bodem schematisatie met een biotische schematisatie, zoals vegetatiestructuur en soortensamenstelling, vormt de basis voor de kleinste rekeneenheden van de verschillende modellen.

Men gebruikt voor het overgrote deel dezelfde basis informatie, maar de wijze waarop de
modellen de informatie combineren verschilt. Zo maakt DEMNAT onderscheid tussen de
bodemkundige (ecoseries) en de biotische gebiedsschematisatie (ecotooporgruppen);
combinatie van een ecoserie en een ecotoopgroep leidt tot een ‘ecoplot’. Voor iedere
ecoplot zijn dosis-effect curves geformuleerd.
Bij SMART/MOVE en GREINS wordt eerst een abiotische gebiedsschematisatie afgeleid.
Deze leidt tot fysiotopen. Echter, om de waarde van de abiotische standplaatsfactoren te
kunnen vaststellen, moet eerst nog een run met SMART doorgerekend worden, waarbij
gegevens over de fysiotopen gecombineerd worden met hydrologische data en data over
vegetatiesestructuurtypen (5 bij SMART/MOVE, 18 bij GREINS). De gebiedsschematisatie
voor SMART/MOVE is overigens nog niet ‘uitontwikkeld’.

3.2.1 Abiotische gebiedsschematisatie

De relevante fysisch/chemische bodemindelingen zijn:
- de ecoseries (bodemfysisch/chemisch; DEMNAT-2.1),
- de fysiotopen (bodemchemisch; SMART2),
- MOZART - plots (bodemfysisch; MOZART)
- Gt-klassen met drainageweerstanden (bodemfysisch; LGM).
- hydrologische rekencellen (bodemfysisch; SIMGRO)

De bodemfysische, bodemchemische dan wel bodemfysisch/chemische indelingen zijn in
de meeste gevallen afgeleid van de bodem- en Gt kaart 1 : 50.000. Dit geldt voor de
fysiotopen, het LKN-bodemGt bestand, het ecoserie-bodem-Gt bestand en de Gt-klassen
zoals die door het LGM en MOZART worden gebruikt. De Gt-klassen indeling zoals die
gebruikt wordt binnen MOZART, de ecoseries, de fysiotopen en het LGM vormt b.v.
daardoor geen probleem.
MOZART vormt echter een uitzondering: voor de kaart met bodemfysische eenheden
wordt de bodemkaart 1 : 250.000 gebruikt. Hoewel dit voor de landelijke modellering op
zich geen bezwaar is, vormt het wel een probleem bij de koppeling van de
bodemschematisatie van MOZART aan die van andere modellen (b.v. SMART/MOVE,
DEMNAT). Door een bodemfysische kaart af te leiden van de bodemkaart 1 : 50.000 is
een betere 1 : 1 koppeling te maken met andere modellen. Een aanzet daartoe is al
gemaakt door Folkert de Vries van SC-DLO in opdracht van het RIVM. Het betrof hier
echter een vertaling van de bovenste 30 cm van de bodem.

De gebiedsschematisatie van SMART/MOVE (fysiotopen) en van DEMNAT (ecoserie)
komen conceptueel qua indelingssystemen in grote trekken overeen. De klassengrenzen
vallen grotendeels samen waardoor een vertaalsleutel tussen fysiotopen en ecoseries
relatief eenvoudig is te maken. In DEMNAT-kader wordt een definitie-studie voor
DEMNAT-3.0 uitgevoerd waarbij o.a. de mogelijkheden worden beschreven om SMART2
te combineren met MOZART tot een landelijke geïntegreerde hydrologische en
biogeochemische standplaatsmodule. Zowel MOVE als DEMNAT zouden baat kunnen hebben bij een dergelijke integratie van (bodem)modellen. Indien de definitie-studie geen aanleiding geeft tot een landelijke module voor de onverzadigde zone, zou gestreefd moeten worden naar één classificatie met in ieder geval dezelfde klassenindelingen van de bodemkenmerken. Daarbij moet de mogelijkheid bestaan om, afhankelijk van de vraagstelling en het type voorspelling (bijv. voorspelling verandering in vochttoestand, of zuurgraad, op nationaal of lokaal niveau), het aantal eenheden te verminderen door kenmerken buiten beschouwing te laten of kenmerkklassen te verminderen. Door gebruik te maken van dezelfde kenmerken en kenmerkklassen blijven de bodemschematisaties onderling vergelijkbaar en zijn minder problemen te verwachten bij mogelijke toekomstige koppelingen tussen verschillende modulen (b.v. tussen MOZART en SMART).

Wellicht ten overvloede zij opgemerkt dat de bodemschematisatie voor SMART/MOVE en GREINS een combinatie van abiotische én vegetatie-structuur informatie is om de startsituatie voor een SMART-run mee te definiëren. Deze informatie (fysiotopen+vegetatiesstructuur) gecombineerd met (kweltype+kwelflux+depositie) wordt gebruikt om de abiotische startsituatie voor een SMART-run mee te genereren (b.v. periode 1950-1990). De uitkomst van die run wordt later gecombineerd met een biotische gebiedsschematisatie (floristische informatie, b.v. soortengroepen afgeleid uit FLORBASE).

De ruimtelijke schematisatie is voor het GREINS-model gedetailleerder (gegeneraliseerde kaartvlakken/polygonen van 1:50.000 i.p.v. grids), omdat het een regionale studie betreft. De eenheden worden fysiotopen genoemd. Fysiotopen zijn bodemkundig/chemisch als homogeen te beschouwen. Daarentegen zijn ze hydrologisch/bodemfysisch heterogeen.

De wijze waarop voor GREINS de hydrologische rekencellen van het eindige elementen model SIMGRO (verzadigde en onverzadigde zone) worden vastgesteld verschilt sterk van de gebiedsschematisaties die hierboven aan de orde zijn geweest. De SIMGRO - cellen bevatten informatie over de drainage basis, drainage weerstand en het primaire, secundaire en tertiaire oppervlaktewaterstelsel. Aangezien de wijze van schematisatie sterk afwijkt van andere gebiedsindelingen en de SIMGRO-cellen plaatsgebonden zijn, is koppeling alleen mogelijk via een ‘overlay’ binnen een GIS. De HYdrologische cellen van SIMGRO en de FYsioptopen van SMART2 zijn over elkaar gelegd. Deze overlay resulteert dan in een groot aantal HYFY-eenheden.

Aktie (B4): Er zou een bodemfysische standaardindeling moeten komen, afgeleid van de bodemkaart 1 : 50.000. Daarbij moet via vertaaltabellen duidelijk zijn hoe de relaties liggen tussen de eenheden van de bodemkaart 1 : 50.000, de bodemfysische eenheden, de ecoseries en de fysiooop-eenheden. Daarnaast zou er op basis van overleg duidelijk moeten worden wanneer welk bodem-indelingsysteem het meest geschikt is in afhankelijkheid van de toepassing en welke klassengrenzen gehanteerd dienen te worden indien men in staat wil zijn vergelijkende studies uit te voeren of verschillende modulen.
aan elkaar te koppelen. Betrokkenen: SC-DLO, CML met terugkoppeling naar IBN-DLO, RIVM, RIZA, LUW.

3.2.2 Biotische gebiedsschematisatie

De biotische indelingen zijn:
- CML-ecotooptypen (ca. 130 eenheden waarbij plantesoorten zijn ingedeeld naar ecotooptypen op basis van operationele standplassfactoren zoals voedselrijkdom, vochttoestand, zuurgraad, saliniteit en vegetatie-structuur; Stevers et al. 1987);
- vijf vegetatie-structuureenheden t.b.v. SMART2/MOVE (oorbomen, dennen, sparren, heide en gras) afgeleid uit het LGN, de natuurwaardekaart en de 4e Bosstatistiek\(^4\) (Kros et al. in prep.);
- SMART/MOVE ecologische karakterisering per soort (waarbij het optimum en de amplitude berekend is in regressies; Wiertz & Van Dijk 1992);
- 18 vegetatie-structuureenheden t.b.v. SMART2/GREINS afgeleid uit LGN en de vegetatiekaart van Drenthe (Prins 1995).

In DEMNAT worden ecotoopgroepen (combinaties van ecotooptypen met eenzelfde standplassvoorkeur) onderscheiden. De ruimtelijke locatie is bepaald tot op het kleinste kaartvlak van de bodemkaart door middel van vaste relaties tussen ecotoopgroepen en bodemtypen (Van der Linden et al. 1992).

In SMART/MOVE is nog geen vaste methode voor de biotische gebiedsschematisatie. Er zijn nu toepassingen waar gewerkt wordt met floristisch gedefinieerde natuurdoeltypen. Deze worden gekoppeld aan fysischtopen met een gelijke vegetatiestructuur (per 250x250 m cell). De wens is te komen tot een combinatie/overlay van o.a. bodemtype, vegetatiestructuur, grondgebruik/natuurgebiedenkaart en floristische informatie.

In het GREINS-model wordt een vegetatiestructuur indeling gebruikt met 18 eenheden. De ruimtelijke resolutie is groot (aantal en oppervlak van structuurtypen per HYFY is bekend; HYFY is een overlay van hydrologische schematisatie voor SIMGRO en de 1:50.000 bodemkaart). Een afzonderlijke floristische voorspelling vindt niet plaats, omdat na toepassing van SIMGRO, de vegetatie-structuurreeks toekenning en SMART, direct een natuurwaardering plaats vindt met NTM. NTM is geijkt met vegetatieopnamen uit het gebied.

3.2.3 Uiteindelijke abiotische schematisatie als invoer voor biotische voorspelling

Binnen DEMNAT wordt een onderscheid gemaakt tussen ecoserries (ecologische bodemeenheden) en ecotoopgroepen (ecologische soortengroepen). De combinatie van

\(^4\) Verder werkt SMART/MOVE met afzonderlijke soorten; zie hierna
ecoserie en ecotoopgroep wordt ecoplot genoemd en vormt de kleinste rekenenheid van DEMNAT. Daartoe is voor elke ecoserie (minimale oppervlakte 0.25 ha) aangegeven met welke kans de verschillende ecotoopgroepen kunnen voorkomen op die ecoserie. Door die kans te vermenigvuldigen met het oppervlak van de ecoserie wordt een inschatting gegeven van de omvang van de ecoplot.

3.3 Abiotische standplaatsmodellering (2)

Om te kunnen voorspellen welke veranderingen zullen optreden in voor plantengroei operationele standplaatsfactoren (vochttoestand, voedselrijkdom, zuurgraad, saliniteit) wordt gebruik gemaakt van abiotische (hydrologische en bodemkundige) standplaatsmodellen.

De hydrologische doses voor DEMNAT-2.1 worden berekend met het LGM (bij RIVM) en met NAGROM in combinatie met MOZART (bij RIZA). Momenteel is er overleg gaande tussen het RIVM en het RIZA over het gebruik van MOZART door het RIVM. Over de toegepaste schematisatie en parametrisatie in resp. LGM en NAGROM zal overleg tussen het RIZA en het RIVM worden opgestart.

De input 'vochtgehalte' in SMART/MOVE wordt bij het RIVM geleverd door het LGM. Op dit punt zal het gebruik van het model voor de onverzadigde zone MOZART een verbetering betekenen. MOZART gebruikt de kwel/wegzijgingsflux uit NAGROM (en mogelijk t.z.t. ook uit LGM) voor een gedetailleerde berekening van de waterbalans van het topsysteem. Mogelijke uitvoer van MOZART omvat de verandering van resp. GVG, peil klein oppervlaktemperatuur en het chloridegehalte van het klein oppervlaktewater. Als er voldoende aanvullende informatie beschikbaar is kunnen ook fosfaatbalansen worden uitgevoerd.

In het GREINS model wordt de hydrologische beschrijving gedaan met SIMGRO, dat echter alleen op regionale schaal toepasbaar is. Geconcludeerd wordt, dat op dit punt geen nadere afstemmingsacties vanuit de werkgroep behoeven te worden geïnitieerd.
In 1995 is in het kader van de ontwikkeling van het LGM een prototype gereed gekomen van een module voor het transport van opgeloste stoffen. In dat model wordt rekening gehouden met advectief-dispersief transport, eerste orde afbraak, adsorptie-kinetiek en zowel lineaire als niet-lineaire evenwichtsadsorptie. In 1996 zal een geïmplementeerde versie van het LGM gereed komen en zal zoet/zout worden ingebouwd. Daarmee komt een verbeterde kaart van de kwantiteit kwel-infiltratie beschikbaar en zullen eenvoudige kwaliteitsberekeningen mogelijk worden. Bij berekeningen, waarbij o.m. rekening dient te worden gehouden met de chemische interactie van water en bodemmatriek, stelt de parametrisatie van het model dermate hoge eisen aan de beschikbaarheid van data, dat modellering van de grondwaterkwaliteit alleen al om die reden zeer moeilijk is. Een globale kaart van de grondwaterkwaliteit kan echter wel met behulp van meetgegevens worden gemaakt (zie par. 3.1, aktie B1).

Voor de bodemchemische modellering worden met SMART1 veranderingen in de zuurgraad/basenverzadiging en nutriënten/organische stof voorspeld in afhankelijkheid van grondwaterstand, kwel/flux, vegetatie-structuur en atmosferische depositie. Er zijn plannen om SMART2 met een P-module uit tebreiden.

In DEMNAT-kader heeft een voorlopige inventarisatie plaatsgevonden naar de relevantie van SMART2 voor DEMNAT (zie figuur 2). Uit de notitie van Klijn et al. komt naar voren dat SMART2 passende en relevante invoer kan bieden voor DEMNAT (m.b.t. pH, N-beschikbaarheid). De dosis-effect relaties van DEMNAT worden op dit moment opgesteld via het programma GEVOEL, dat ingreep-effect relaties voor de bodem integreert met ingreep-effect relaties voor de vegetatie. Bij toepassing van MOZART in combinatie met SMART2 is het mogelijk om de ingreep-effect relaties voor de bodem apart uit te rekenen los van de biotische module (d.i. het CML-ecotopensysteem). Hoe de combinatie MOZART - SMART2 exact vorm zal krijgen hangt af van de financiële mogelijkheden en de wil van de opdrachtgevers om te komen tot integratie van modellen. Zo kan bijvoorbeeld gekozen worden voor de bouw van één gemeenschappelijk te gebruiken (landelijk) standplaatsmodel waaraan één of meerdere biotische modulen koppelbaar zijn (zie wederom figuur 2), of voor een meer gescheiden ontwikkeling van de standplaatsmodellen. In het laatste geval ligt de vraag nog open hoe de koppeling SMART2 - MOZART uitgewerkt zou moeten worden. Naast een doorlopende koppeling tussen SMART2 en MOZART (in programmatuur) is bijvoorbeeld ook een eenmalig koppeling denkbaar ten behoeve van nieuw op te stellen tabellen met dosis-effect relaties met GEVOEL.

Bij een doorlopende koppeling tussen SMART/MOZART is ook op andere punten samenwerking mogelijk voor de langere termijn. Gedacht kan worden aan modellen die nodig zijn om N- en P-balansen voor het oppervlaktewater op te stellen, rekening houdend met o.a. de uitspoeling uit landbouwpercelen.

Akte (B5): Met het oog op de uitkomst van de definitiestudie DEMNAT-3.0 en vanwege
het belang voor SMART/MOVE dient er een project te worden gestart waarbij MOZART en SMART2 aan elkaar worden gekoppeld. E.e.a. is afhankelijk van de uitkomsten van SMART2 voor veen- en kleigronden, en de beperkingen ten aanzien van de ruimtelijke schaal waarop SMART2 kan rekenen. Betrokkenen: RIZA, SC-DLO, RIVM, en CML.

3.4 Biotische responsmodule (3)

Om de abiotische effecten door te vertalen naar effecten op de vegetatie worden relaties bepaald tussen enerzijds standplaatsfactoren en anderzijds biotische aspecten. Dit kan zijn de kans op voorkomen van soorten (MOVE; Latour et al. 1993), volledigheid van ecotoopgroepen (DEMNAT; Witte et al. 1992), veranderingen in vegetatie-structuurtypen (Prins 1995), of rechtstreeks voorspelde veranderingen in natuurwaarde op basis van de potenties van standplaatsen (het NTM onderdeel binnen het GREINS-model; Gremmen 1987).

Figuur 2a Huidige schakeling van hydrologische en abiotische submodules. GEVOEL omvat meer dan alleen de biotische respons. Binnen GEVOEL worden ook de effecten van de hydrologische doses voor de standplaats aangegeven (abirotische respons). Daarbij wordt vooral gebruik gemaakt van de staalkaarten uit het SWNBL project.

Figuur 2b Mogelijk verbeterde schakeling van hydrologische en abiotische submodules.
Bij SMART/MOVE is er een vrij sterke scheiding tussen abiotische en biotische voorspelling: er is een aparte rekenmodule (SMART) om de veranderde bodemkundige situatie vast te stellen. De nieuwe waarde voor bijv. pH kan vervolgens simpel vergeleken worden met die van de amplitude van de betreffende soort. Bij DEMNAT is de abiotisch en biotische voorspelling meer gemengd: in de dosis-effect curve per ecoplot wordt een relatie gelegd tussen verandering van pH en verandering van soortenkaart. Hier is dus de grootte van verandering veel meer bepalend en wordt het feitelijk niveau van de pH deels afgeleid uit de vegetatie; ook wordt meer gekeken naar het aantal soorten dat verdwijnt dan naar welke soorten verdwijnen. Bij het NTM - model kan net als bij SMART/MOVE - met SMART de nieuwe absolute waarde van bodemfactoren berekend worden, maar er kan ook gewerkt worden met alleen de veranderingsgrootte (zie de desbetreffende algemene beitsregels afgeleid van NTM). Bij de verdere voorspelling wordt een directe vertaling gegeven van abiotisch naar natuurwaarde (momenteel verbonden met soortenkaart en zeldzaamheid). In de calibratiefase worden overigens wel vegetatie opnamen gebruikt om de natuurwaarde van standplaatsstypen te ‘ijken’. Verder wordt bij het GREINS-model per fysioot de vegetatie-structuur reeks bepaald bij een bepaald beheer. Deze reeks wordt verondersteld bij een bepaald beheer, en oefent via de strooiselproduktie invloed uit op de standplaats. Een omgekeerde relatie (standplaats oefent invloed uit op de vegetatie-structuur reeks) is niet in het model opgenomen.

Bij MOVE zijn de responscurves van soorten gedefinieerd op een continue milieu-as. Bij het CML-ecotopensysteem worden soorten toegevoegd aan ecotooptypen, die zijn gedefinieerd op basis van vegetatie-structuur en abiotische standplaatsfactoren (met ca. 4 klassen).

Bij de responsmodule van het GREINS-model (het NTM) worden natuurwaarden toegevoegd aan standplaatsstypen, die zijn gedefinieerd op basis van abiotische standplaatsfactoren (met ca. 3 klassen; zie tabel 3). Ter calibratie van de natuurwaarde per standplaats worden soorten toegewezen aan de onderscheiden standplaatsstypen op basis van Ellenberg-indicatiewaarden.

In de calibratie fase van het NTM - model lijken NTM en DEMNAT op elkaar qua milieucoomponentering (4 milieufactoren excl. veg.structuur, resp. 5 milieufactoren excl. veg.structuur/successiestadium; ca. 3 klassen per milieufactor; zie tabel 3). In de toepassing verschillen de modellen: NTM wordt gebruikt om direct een natuurwaarde toe te kennen aan een standplaatsstyp, terwijl het ecotopensysteem wordt gebruikt om veranderingen in soortenkaart per soortengroep te voorspellen, al dan niet gevolgd door een natuurwaardering.

Aktie (B6): Nagegaan zou moeten worden of in dit stadium de twee modellen consistent te maken zijn qua milieufactoren (n.b. vegetatie-structuur), en klassenindeling van milieufactoren en toedeling van soorten. De afstemming in natuurwaardering wordt besproken onder bouwsteen 4. Betrokkenen: CML, LUW, IBN-DLO.
Tabel 3. Overzicht van kenmerken in verschillende (biotische) bouwstenen.

Ecotopen-	voedsel-	zuurgraad	chloriniteit	veg-struct.	dynamiek
systeem	rijkeldom			successiën	
Ecotopen-	4 kl.	3 kl.	3 kl.	7 kl. 1)	4 kl. 2)
systeem					
NTM	4 kl.	3 kl.	3 kl.	-	2 kl. 3)
MOVE	continu	continu	continu	2 kl. 4)	-

1) 10 klassen wanneer ook onderverdelingen binnen graslanden s.l. en stuweelen worden meegeteld (grasland s.s., dwergruweel, mosvlakte, laag en hoog stuweel).
2) Stuvend, geroerd, betreden, periodiek droogvallend. Kenmerk werkt slechts binnen een beperkt aantal terrestrische ecotooptypen onderscheidend.
3) Op basis van IR (Ca/Cl verhouding) en EGV worden twee kenmerkklassen voor bufferend vermogen van de standplaats onderscheiden: dit leidt tot wel/geen effecten op gevoelige soorten ('midy-haters').
4) Daarnaast wordt in de bodemmodule SMART gekoppeld aan MOVE, met 5 structuur klassen gerekend; bij de combinatie SMART/GREINS wordt met 18 klassen gewerkt.

Voor de bepaling van het optimum van soorten langs een milieu-as, wordt zowel bij MOVE als bij het CML-ecotopensysteem gebruik gemaakt van bestanden met vegetatieopnamen. Ook het NTM maakt gebruik van vegetatieopnamen bij de ikking van standplaatsen. Het is gewenst consensus te hebben over de ecologische optima (inclusief de ecologische amplitudo's) van soorten. Er wordt gewerkt aan een voorstel om te komen tot een vegetatie-bestand dat door de verschillende modellen (MOVE, DEMNAT en NTM) gebruikt zou kunnen worden om consistentie te verkrijgen in de ecologische responsdefinitie (zie figuur 3). MOVE maakt gebruik van de dataset van het IBN-DLO voor Herziening Nederlandse Plantengemeenschappen (Schaminée) om de ecologische respons van soorten af te kunnen leiden. Dit bestand zou ten behoeve van de modellering van het landelijk gebied uitgebreid kunnen worden met aanvullende opnamen uit het 'boerenland'. Gestreefd wordt naar een zo compleet mogelijk bestand, ook voor zoutvegetaties. Gevoeligheid van de optima voor uitbreiding van het databestand wordt in eerste instantie verkend in reeds lopend MOVE-onderzoek op basis van IBN-DLO opnamen. Mogelijk relevante opnamen zijn o.a. gemaakt door verschillende provincies en de Landinrichtingsdienst. Het CML heeft in de loop van verschillende projecten dergelijke bestanden al eens gebruikt. Waarschijnlijk kunnen de (huidige, geactualiseerde) bestanden van Gelderland (30.000 opn.), Utrecht (1000 opn.), Groningen (1200 opn.), Noord-Brabant (3500 opn.), Beefink (NIOO-CEMO, voorheen Delta instituut Ierseke; 5000 opn.) en van de LBL (waaronder opdrachten AB-DLO, voorheen CABO: 500+1000 opn.) gebruikt worden. Wellicht dat Zuid-Holland ook opnamen beschikbaar wil stellen. Daarnaast heeft het CML een aantal kleinere bestanden (ca 200 per bestand). Andere relevante bestanden liggen o.a. bij de STOWA en bij KIWA. Er is nog geen uitgewerkte planning en begroting.
Figuur 3 Schematische weergave van het gebruik van een gemeenschappelijk vegetatie-opnamenbestand voor de bepaling van optimum/tolerantie (MOVE), bijstelling NTM en een herziening van de indeling in ecologische soortengroepen (ecotopensysteem).

Aktie (A3): Omdat planning en begroting nogal afhankelijk zijn van de aard van de te gebruiken opnamenbestanden, de controles, de conversies en de uit te voeren analyses, dient eerst een verkennende studie (fase 0) uitgevoerd te worden, waarin:

- bepaald wordt welke bestanden gebruikt kunnen worden, wat de aard van de gegevens is, en wat de kosten zijn (verwerking en eventueel aanschaf gegevens);
- wordt gespecificeerd welke analyses worden uitgevoerd en welke programmatuur daarbij wordt gebruikt;
- de taken onderling worden verdeeld.

Binnen het MOVE-project is reeds programmatuur voor multiple logit regressie ontwikkeld. Aangezien het nieuwe MOVE voor de MV97 gereed moet komen zijn de regressies voorzien in 1995. Voorgesteld wordt om parallel met planning van het MOVE-project de bovengenoemde definitie studie (fase 0) uit te voeren opdat zo snel mogelijk duidelijk wordt of deze extra bestanden meegenomen kunnen worden in MOVE en wat dit voor consequenties heeft voor de onderzoeksprogrammering c.q. financiën. Betrokkenen: RIVM, CML en IBN-DLO.

De opbouw van een gemeenschappelijk vegetatie-opnamen bestand vormt een belangrijk onderdeel bij het opstellen van een vegetatie-respons module, maar is op zichzelf nog niet
voldoende. Naast een relatieve rangschikking van soorten naar milieufactoren/typen is het ook nodig deze milieufactoren/typen teijken aan meetbare standplaatsfactoren. Zo kan bijvoorbeeld de trofiegraad van een standplaats worden gerelateerd aan de jaarlijkse droge stof produktie, of aan de beschikbaarheid van bepaalde nutriënten. Een absolute koppeling van milieufactoren/typen aan meetbare standplaatsfactoren is noodzakelijk voor een koppeling van de vegetatierespons aan abiotische standplaatsmodellen. Gegeven de kostbaarheid van dergelijke metingen en de noodzakelijke omvang is het wenselijk dat een ijkingsbestand gemeenschappelijk wordt opgesteld. In dit bestand moeten naast het voorkomen van plantesoorten en/of vegetatieopnamen ook gemeten standplaatsfactoren zijn opgenomen.

Akte (B7): In het kader van een pilotstudie dient te worden onderzocht hoe een dergelijk calibratie-bestand zou moeten worden opgesteld, wat de eisen ten aanzien van kwaliteit en representativiteit dienen te zijn, hoe het kan worden onderhouden, wat de gebruiksvoorwaarden (auteur!), en wat de kosten zijn. In het kader van SMART/MOVE is al gewerkt aan het opbouwen van een ijkingsbestand. Verder is er in het kader van het NOV thema 7 project ook een verkenning gemaakt naar het voorkomen en de beschikbaarheid van ijkingsbestanden. Betrokkenen: RIVM, IBN-DLO, KIWA, AB-DLO, KUN, RUU, RIZA, CML, e.a.

In de nu gebruikte calibratie bestanden zijn pH-metingen ruim voorhanden. Metingen aan nutriënten en grondwaterpeil zijn schaars. Nutriëntbepaling is sowieso een probleem, omdat veel discussie bestaat hoe dit het beste te meten is. Het meest informatief zijn waarschijnlijk of incubatieproeven met organisch materiaal om mineralisatie te meten of productiviteitsproeven met een indicatorsoort (bioassay/phytometer) om bovengrondse biomassa dan wel opgenomen nutriënten te meten. Deze metingen zijn nog slechts in geringe mate uitgevoerd. Veel meer consensus is er over metingen van grondwaterpeil; het is echter tijdrovend onderzoek vooral als gestreefd wordt naar meerjarige, 14 daagse meetreeksen. Momenteel liggen er dergelijke gegevens van het INDIC project die met relatieve geringe inspanning bruikbaar gemaakt kunnen worden. Voor de drogere proefvlakken is nadere analyse m.b.v. een vochtleverantie model van belang.

Akte (A4): Opbouw van data bestand vegetatie-hydrologie uitgaande van de gegevens van Runhaar en Wiertz. Op korte termijn kan worden gestart met de ontsluiting van meetgegevens van ca. 65 buizen uit het INDIC-bestand, controle, vergelijking met maaiaveldgegevens en berekening van gemiddelden. Toevoeging van grondwater-onafhankelijke proefvlakken. RIVM, IBN-DLO, CML, LUW, RIZA.

3.5 Natuurwaardering (4)

In veel gevallen zal men eventuele veranderingen in de vegetatie willen wegen naar de betekenis van die veranderingen voor het natuurbehoud in Nederland. Het is daarvoor nodig de ecologische veranderingen te koppelen aan een natuurwaarderingssysteem. Dit
natuurwaarderingssysteem kan worden uitgewerkt op het niveau van soorten en op het niveau van ecosysteemtypen. Natuurwaarde kan worden afgeleid van factoren zoals: omvang van het ecosysteem, bedreigdheid, nationale en/of internationale zeldzaamheid (van het systeem en/of de soorten waaruit het is opgebouwd), biodiversiteit, ‘representativiteit’, ‘natuurlijkheid’, etc.

Het is wenselijk dat er consensus ontstaat over de wijze (d.w.z. de te hanteren concepten), waarop de natuurwaarde berekend dient te worden. Het mag niet zo zijn dat het ene ecologische model blauwgraslanden zeer hoog waardereert terwijl dit in een ander model juist niet het geval is. Consensus over de te hanteren concepten bij natuurwaardering komt ook de vergelijkbaarheid van de modellen ten goede. Op dit moment beschikken DEMNAT en het NTM (in het GREINS-model) over een natuurwaarderingssysteem per ecosysteemtype dan wel standplaats type. Ten behoeve van de IKC-natuurdoeltypen zijn doelsoorten afgeleid, die beschouwd kunnen worden als een natuurwaardering per soort. SMART/MOVE is gericht op deze IKC-natuurdoeltypen, maar is overigens vrij flexibel ten aanzien van andere oplossingen mits uitgevoerd kan worden van fysiologische processen. Verder bestaan er methoden waarbij de natuurwaarde is opgesteld op de schaal van vegetatieopnamen, de schaal van parcellen en kleine natuurgebieden. De verschillende natuurwaardingsmethoden die de laatste jaren zijn ontwikkeld, worden in het kader van de GREINS-onderzoeksprogramma Natuurontwikkeling met elkaar worden vergeleken (zie ook van der Hoek & Witte, 1994).

Akte(B8): Voorgesteld wordt de werkzaamheden die worden uitgevoerd door het IKC (de natuurdoeltypen), door LUW o.a. in het kader van DEMNAT, het IBN-DLO o.a. via het deelprogramma Natuurstudie (vergelijkende studie natuurwaardingsmethoden) en mogelijk ook NOV thema 8 (vergelijkende studie NTM en DEMNAT door Van Wirndt) op elkaar af te stemmen. Deze akte moet leiden tot consensus omtrent de te hanteren concepten bij natuurwaardering voor afzonderlijke soorten, vegetatie-opnamen, natuurgebieden, natuurdoeltypen en ecotooptypen/groepen. Betrokkene: IKC, LUW, CML, RIVM, IBN-DLO.

3.6 Vergelijking van modellen overall, en per bouwsteen

Modellen op dezelfde schaal en met ongeveer dezelfde beleidsdoelstelling dienen in principe dezelfde uitkomsten te geven in termen van het verdwijnen en verschijnen van soorten, natuurwaarden, e.d. Voor dergelijke situaties is een overall-vergelijking van de modellen DEMNAT, SMART/MOVE en eventueel ook het GREINS-model belangrijk. Eventueel verschillen in uitkomst kunnen sturend zijn voor verder onderzoek op onderdelen van de modellen. De vergelijking moet toegepast worden in hetzelfde studiegebied, bij voorkeur nationaal (b.v. het LGM-gebied). Eventueel kan ook overwogen worden dit te doen in een kleiner gebied b.v. het Drentsche Aa gebied aangezien dan gebruik gemaakt kan worden van de grote hoeveelheid bestaande kennis van dat gebied en aangezien dan ook het GREINS-model in de vergelijking kan worden betrokken.
Opgemerkt dient dan te worden dat de uitkomst van het GREINS-model altijd meervoudig is, want het voorspelt de situatie op drie verschillende tijdstippen (10, 30, 100 jaar of korte, middellange en lange termijn). Binnen het domein van het GREINS-model kan dan nagegaan worden hoe belangrijk dit is voor de eindwaardering of beleidsbeslissing. Het betrekken van DEMNAT en MOVE in deze vergelijking moet nader inzicht geven in de vraag of de aannemer 'constantie in beheer' sterk onderscheidend zal werken voor beleidskeuzes. Terzijde kan opgemerkt worden dat het SMART/MOVE model deze structuurreeksen niet automatisch levert, maar die situatie wel net zo kan doorrekenen indien de betreffende tijdstippen en structuurtypen opgegeven worden.

Behalve primaire of elementaire bouwstenen (tabel 2) zijn er ook bouwstenen te onderscheiden van wat hogere orde. Daardoor zijn de modelconcepten niet steeds op hetzelfde aggregatienniveau zijn te vergelijken. Zo gebruikt b.v. DEMNAT dosis-effect relaties (GEVOEL) waarbij de verandering in de bodem niet expliciet onderscheiden wordt van de vegetatieverandering. Het is gewenst dat de dosis-effect relaties gedefinieerd in DEMNAT consistent zijn met de vergelijkbare uitkomsten (verdwijnen van soorten, natuurwaarden, e.d.) van SMART/MOVE en van het GREINS-model. Voorafgaand aan deze vergelijking dient men eenduidigheid na te streven m.b.t. de ecologische karakterisering van soorten. Verschillen in uitkomsten zijn dan beter te interpreteren (bodem-effecten of -minder waarschijnlijk- in de veranderingsdynamiek van de vegetatie).

Het NOV project thema 5 zou voor deze akties een mogelijkheid kunnen bieden.

Aktie (B9): Een vergelijkende studie van DEMNAT en SMART/MOVE - overall en op onderdelen als GEVOEL- is wenselijk (wordt aangemeld bij NOV in het kader van thema 5. Planning en inzet (personeel/financieel) worden in het projectplan aldaar uitgevoerd).

RIVM, RIZA, CML, LUW, SC-DLO.
4 SAMENVATTEND OVERZICHT VAN AKTIES

Hierina is een samenvatting gegeven in de vorm van een tabel met de hiervoor genoemde acties. Daarbij is aangegeven of de actie een belangrijk knelpunt of zwakke schakel in de modellering kan ondervangen ('knelpunt'). Ook is aangegeven wat bij benadering de kosten zullen zijn (in kiloflorijnen) en bij wie het initiatief ligt om tot actie komen. Dit impliceert niet dat de initiatiefnemer (alle) kosten moet dragen. De score in de kolom afstemming geeft aan of de actie in belangrijke mate bijdraagt tot de strategie om tot afstemming van modellijnen te komen.

Tabel 4. Overzicht van te ondernemen acties.

A1	digitale natuurgebieden krt.	++	>100	RIVM	22
A2	kwantitatieve kwelkrt. LGM W- en Z-Ned. + randen	++	pm	RIZA/RIVM	23
A3	multiple regressie soorten	<100	++	RIVM	33
A4	aanvullen metingen aan grondwater voor calibratie	<100	+	RIVM	34
B1	verbetering kwalitatieve kwelkrt.	++	pm	RIVM	23
B2	pilot aanvulling WIS kleine wateren	<100		RIZA	24
B3	actualisering Gt-kaarten	++	4500	SC	24
B4	Harmonisatie abiot. gebiedsschematisatie	<100	++	RIZA	26
B5	Koppeling MOZART en SMART	<100	++	RIZA	29
B6	Consistentie milieufactoren DEMNAT NTM	<100		IBN	31
B7	Opbouw data-bestand tvb calibratie/ijking	<100	++	RIVM	34
B8	Harmonisatie natuurwaarderingen (NOV)	<100	+	IBN	35
B9	Vergelijking DEMNAT MOVE GREINS	>100	++	RIVM	36
C1	Modellering interface hydrologie-standplaats	++	>200	IBN	23

toelichting:
knelpunt bij modellering:
+ knelpunt of zeer zwakke schakel
++ ernstig knelpunt
kosten actie:
<100 minder dan f 100.000,-
>100 meer dan f 100.000,-
>200 meer dan f 200.000,-
bevordering afstemming tussen modellijnen:
+ duidelijk bevorderend
++ sterk bevorderend
5. REFERENTIES

Linden, M. van der, J. Runhaar & M. van 't Zelfde, 1992. Effecten van ingrepen in de waterhuishouding op vegetaties van natte en vochtige standplaatsen. ontwikkeling van dosis-effectfuncties ten behoeve van DEMNAT-2. Rapport nr. 7. RIVM/RIZA, Bilthoven/Lelystad.

Wirdum, G. van, 1981. Linking up the natec subsystem in models for the watermanagement. CHO/TNO, Rapporten en Nota’s 5: 118-143.

BIJLAGE I VERKLARING VAN DE BELANGRIJKE AFKORTINGEN

AB-DLO Agro-biologisch onderzoeksinstituut
ABIOFLOR Voorspellingsmodel voor aquatische flora gebaseerd op het onderzoek van Lyon & Roelofs 1986.
CML Centrum voor Milieukunde Leiden (Rijksuniversiteit Leiden).
CUWVO Commissie Uitvoering Wet Verontreiniging Oppervlaktewater.
DEMAQUA voorspellingsmodel voor het aquatische milieu volgens DEMNAT concept.
DEMNAT Dosis effect model voor de terrestrische natuur.
DLO Directie Landbouwkundig Onderzoek.
DM Districten Model; PAWN-model van RIZA waarmee de verdeling van water binnen de rijkswateren mee wordt gemodelleerd.
ECAM Regionaal voorspellingsmodel voor vegetatie(typen) van de RUG.
EMISSIE PAWN-model waarmee de totale belasting op het regionale watersysteem en de rijkswateren wordt berekend. Het gaat hierbij onder andere om nutrienten en zout vanuit diverse bronnen.
GEVOEL Programma waarmee de doseffect-functies worden opgesteld t.b.v. DEMNAT.
FLORBASE Database met waarnemingen van plantensoorten per gridcell in beheer bij Rijksherbarium en de stichting Floristisch Onderzoek Nederland (FLORON).
GIS Geografisch Informatie Systeem.
GVG Gemiddelde Voorjaars Grondwaterstand (volgens STIBOKA).
HYVEG Hydro-ecologisch model voor duinen (Meyendorf; Noest 1994)
HYFY Kaartvlak gekenmerkt door hydrologie/fysiotoop (uit GREINS-studie).
IBN-DLO Instituut voor Bos- en Natuuronderzoek
ICHORS Voorspellingsmodel voor (semi)aquatische vegetatie van RUW Milieukunde.
INDIC Data bestand met bodem- en soortgegevens verzameld door Wiertz & Reijnders (IBN-
DLO).
IKC-N Informatie en Kennis Centrum Natuur (Ministerie van LNV).
TNO-GG TNO-Grondwater en Geo-Energie.
IR Ionen Ratio (Ca/CI verhouding) volgens Van Wirdum 1981.
ITORS Voorspellingsmodel voor terrestrische vegetatie van RUW Milieukunde.
KIWA Keurings instituut voor Waren; onderzoeksinstituut van de verenigde waterleidingbedrijven.
LGN Landelijk gegevensbestand van grondgebruik in Nederland.
LGM Landelijk Grondwatermodel Nederland; Hydrologisch model van RIVM voor de verzadigde zone
LKN Landschapsecologische Kartering Nederland, onderzoek i.o.v. o.a. RPD.
LKN-IPIECO LKN-data bestand van begroeiingstypen (IPI's) gekarakteriseerd naar standplaatsfactoren als zuurgraad, vocht, nutrienten e.d. afgeleid uit een koppeling van floristische gegevens en de cml-ecotooptypologie
LUW Landbouw Universiteit Wageningen (merendeels is de vakgr. hydrologie bedoeld).
MER-DIV Milieu effect rapport Structuurschema Drink- en Industriewatervoorziening.
MOVEAQUA versie van MOVE voor aquatische milieu.
MOZART Hydrologisch model van RIZA voor de onverzadigde zone (vervanging van o.a. DEM-
GEN).
MV Milieuverkenningen.
NAGROM Nationaal GRondwater Model; Hydrologisch model van RIZA voor de verzadigde zone.
NBP Natuur Beleidsplan; ook in de zin van NBP-onderzoeksprogramma Natuurontwikkeling.
Nota WHH Nota Waterhuishouding.
MTM Nota technisch model; ontwikkeld in het kader van SWNBL.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVIEW</td>
<td>RIZA Expert system on Validated Input and Emissions into Water, PAWN-model wat gegevens verwerkt van puntbronnen en doorlevert aan EMISSIE. Het systeem zal aan het WIS worden gekoppeld.</td>
</tr>
<tr>
<td>RIVM</td>
<td>Rijksinstituut voor Volksgezondheid en Milieu.</td>
</tr>
<tr>
<td>RIZA</td>
<td>Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling.</td>
</tr>
<tr>
<td>RUG</td>
<td>Rijksuniversiteit Groningen, meestal in de zin van de vakgroep Plantenecologie.</td>
</tr>
<tr>
<td>SC-DLO</td>
<td>Staring centrum.</td>
</tr>
<tr>
<td>SIMGRO</td>
<td>Regionaal hydrologisch model van SC-DLO voor de verzadigde -en onverzadigde zone.</td>
</tr>
<tr>
<td>SMART-MOVE</td>
<td>Combinatie van de bodemmodule SMART2 en de vegetatiemodule MOVE.</td>
</tr>
<tr>
<td>SWNBL</td>
<td>Studiecommissie Waterbeheer Natuur, Bos en Landschap.</td>
</tr>
<tr>
<td>SSM</td>
<td>Stofstromen Model; PAWN-model van RIZA waarmee de waterkwaliteit van de rijkswateren mee wordt gemodelleerd.</td>
</tr>
<tr>
<td>STONE</td>
<td>Samen Te Ontwikkelen Nutriënten ModE!; Een nog te bouwen model van SC, RIVM en RIZA waarmee de uitspoeling van nutriënten naar het oppervlakte water kan worden gemodelleerd.</td>
</tr>
<tr>
<td>WAFLO</td>
<td>Water en flora; (regionaal) voorspellingsmodel voor de effecten grondwaterstandsduing op de soortensamenstelling.</td>
</tr>
<tr>
<td>WHP</td>
<td>Waterhuishouding plan.</td>
</tr>
<tr>
<td>WIS</td>
<td>Waterstaatskundig Informatie Systeem. De waterstaatskaart in een GIS.</td>
</tr>
<tr>
<td>WSN</td>
<td>Waterhuishouding/Standplaats/Natuurwaarde; complex modelleninstrumentarium ontwikkeld in het SWBNL met o.a. WATBAL/SWATRE, ECONUM, EPIDIM en NTM.</td>
</tr>
<tr>
<td>WSV</td>
<td>Watersysteem verkenningen.</td>
</tr>
</tbody>
</table>