RIJKSINSTITUUT VOOR VOLKSGEZONDHEID EN MILIEUHYGIENE
BILTHOVEN

Rapport nr. 723001007

De Rol van Gevoeligheidsanalyse
en Identificeerbaarheidsanalyse
in Modelcalibratie

P.H.M. Janssen, P.S.C. Heuberger

Maart 1992

Dit onderzoek werd verricht in opdracht en ten laste van de Stuurgroep Verzuring in
het kader van het Additioneel Programma Verzuring 3-de fase, project nr. 723001.



Verzendlijst

10.

11.

12

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

28.

29.

30.

. Stuurgroep Verzuring

. Directeur Generaal Milieubeheer

Plaatsvervangend Directeur Generaal Milieube-
heer

. Directeur Generaal van de Volksgezondheid
. Drs. H. Marseille (VROM)
5. Ir. G.J. Heij (RIVM)

. Dr. ir. F. Berendse (CABO)

Dr. ir. G.M.J. Mohren (De Dorschkamp)
Drs. J.R. van Veen (De Dorschkamp)
Dr. G.W. Heil (Resource Analysis)

Drs. H. Scholten (DIHO, Yerseke)

Dr. P. Herman (DIHO, Yerseke)

Ir. A.AM. Jansen (GLW, Wageningen)
Dr. M.J.W. Jansen (GLW, Wageningen)
Dr. H. van der Voet (GLW, Wageningen)
Ir. J. Taat (Grondmechanica Delft)

Drs. C.I. Bak-Eijsberg (Rijkswaterstaat,
DBW/RIZA, Lelystad)

Dr. ir. A.W. Heemink (Rijkswaterstaat, DGW-
Den Haag)

Ir. J.W. Pulles (Projectleider MANS, Rijkswater-
staat, Directie Noordzee; Rijswijk)

Dr. A. Breeuwsma (Staring Centrum)

Ir. J. Kros (Staring Centrum)

Drs. C. van der Salm (Staring Centrum)
Ir. W. de Vries (Staring Centrum)

Dr. C.F. de Valk (Waterloopkundig Lab)
Dr. D. Dee (Waterloopkundig Lab)

Ir. T. Schilperoort (Waterloopkundig Lab)
Dr. ir. J. van Schuppen (CWI-Amsterdam)
Prof. dr. ir. J. Grasman (LU Wageningen)
Drs. E.M.T. Hendrix (LU Wageningen)

Prof. dr. L. Hordijk (LU Wageningen)

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Dr. ir. K. Keesman (LU Wageningen)

Ir. S.L.J. Mous (LU Wageningen)

Prof. dr. G. van Straten (LU Wageningen)

Ir. L.G. Wesselink (LU Wageningen)

Dr. S.E.A.T.M. van der Zee (LU Wageningen)
Prof. dr. ir. drs. O.J. Vrieze (RU Limburg)

Depdt Nederlandse Publicaties en Nederlandse Bi-
bliografie

Directie RIVM

Prof. dr. ir. C. van der Akker
Ir. F. Langeweg

Dr. Th.G. Aalbers

Drs. T. Aldenberg

Drs. A.H. Bakema

Ir. R. v.d. Berg

Ing. G.P. Beugelink
Drs. R.O. Blaauboer

Ir. K.F. de Boer

Ir. G.M.F. Boermans
Dr. L.C. Braat

Drs. J.H. Canton

Dr. ir. R.F.M.J. Cleven
Dr. ir. H.J.G.M. Derks
Ir. G. van Drecht

Drs. H.C. Eerens

Drs. M.G.J. den Elzen
Drs. J.C.H. van Eijkeren
Ir. B. Fraters

Drs. A. van der Giessen
Dr. L.A. van Ginkel

Ir. P. Glasbergen

Drs. J. de Greef

Dr. ir. J.J.M. van Grinsven

Ir. B.J. de Haan



64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Ir. C. van Heerde 97.
Drs. O. van der Heijden 98.
Dr. J.-P. Hettelingh 99.

Drs. S.H. Heisterkamp 100.
Drs. J.A. Hoekstra 101.
Ir. R.T. Hoogenveen 102.
Dr. R. Hoogerbrugge 103.
Dr. J.C. Jager 104.
Dr. O. Klepper 105.
Drs. A.G.A.C. Knaap 106.
Ir. O.M. Knol 107.
Ir. J.M. Knoop 108.
Drs. L.H.M. Kohsiek 109.
Dr. ir. HW. Kdster 110.
Drs. P.R.G. Kramer 111
Ir. G.J.J. Kreileman 112
Dr. H.AM. de Kruijf 113.
Dr. ir. E. Lebret 114.
Dr. F.A.A.M. de Leeuw 115.
Ir. G.M.H. Laheij 116
Ir. A. Leijnse 117.
Dr. J.F.M.M. Lembrechts 118.
Ir. AM.A. van der Linden 119.
Ir. J.B.H.J. Linders 120.
Dr. ir. D. van Lith 121-126
Dr. ir. D. van der Meent 127.
Drs. R. Meijers 128.
Drs. A. Minderhoud 129.

130-135

Ir. J. van Minnen

Ir. J.H.C. Miilschlegel
Drs. A.C.M. de Nijs
Drs. H. Noordijk

Drs. M.J. Postma

Dr. M.J.M. Pruppers "
Dr. ir. J. Rotmans

Ir. F.J. Sauter

Drs. R. Sanders

Drs. H.J. van Scheindelen
Prof. dr. H.J. Scholten
Dr. H. Slaper

Dr. W. Slob

Ing. J. Slootweg

Ir. A.F.M. Slot

Ir. F. Swartjes

Drs. A. Tiktak

Ir. C. Toet

Dr. ir. G.J.M. Uffink

. Dr. P.AM. Uyt de Haag

. Dr. E.J.M. Veling

Drs. K. van Velze
Drs. T.G. Vermeire

Dr. ir. C.W. Versluijs

. Dr. H.J.M. de Vries

Ir. H.J. van de Wiel

Drs. W.J. Willems

Drs. F.G. Wortelboer

Drs. M.Z. Zeilmaker

Auteurs

Hoofd Bureau Voorlichting en Public Relations
Bureau Projecten- en Rapportenregistratie
Bibliotheek RIVM

Reserve exemplaren



Inhoudsopgave
Verzendlijst
Inhoudsopgave
Abstract
Samenvatting
1 Inleiding
2 Model en identificatiecriterium
3 De rol van gevoeligheidsanalyse in calibratie

4 Identificeerbaarheidsanalyse van het identificatiecriterium
4.1 Inleiding . . .. .. .. .. ... ...
4.2 Identificeerbaarheid . . . . . . ... ...

5 Conclusies en aanbevelingen

Appendices

A Gevoeligheidsanalyse voor modelcalibratie . . .. ... ... ... ..
B Uitwerking van een methode voor identificeerbaarheidsanalyse

B Enkele opmerkingen over identificeerbaarheid . . . . .. .. ... ...

Referenties

i

i1i

iv

10

15
15
17

21

23
23
26
28

32



Abstract

Model calibration is usually an important part of the modelling process. Performing this
activity in an adequate way will increase the modelquality and renders useful informa-
tion for further model analyses (e.g. for uncertainty analysis with the software package
UNCSAM which has recently been released).

A well structured and directed approach, supported by general guidelines and tech-
niques, will be especially beneficial for practical calibration studies.

Particularly the study of the sensitivity and the identifiability of the parameters (e.g.
model coefficients, initial conditions) has to be a relevant part of model calibration. Such
a study can reveal potential problems already during the early stages of the model calibra-
tion process, and can offer useful suggestions to prevent their occurrence (fixing insensitive
parameters; additional data collection; improving the experimental design; model adapta-
tion, software improvement). It will also be useful in post-calibration studies, e.g. when
analysing the problems of unsuccessful calibration runs.

Several simple methods are suggested for performing these analyses for a general class
of calibration problems. The advantages and disadvantages of these methods are briefly
discussed. . In particular attention is given to the problem of local versus global analyses
in the parameter space. Currently much work is done in preparing these techniques for
application in various calibration studies.



Vv

Samenvatting

Modelcalibratie vormt in veel gevallen een belangrijk onderdeel van het modelleringspro-
ces. Een verantwoorde uitvoering van deze activiteit komt de kwaliteit van het verkregen
model ten goede, en draagt bovendien nuttige informatie aan voor verdere modelanalyses -
(bijv. voor onzekerheidsanalyse met het recentelijk beschikbaar gekomen programma-
pakket UNCSAM).

Bij het uitvoeren van modelcalibratie zal men, net als bij modelanalyse, veel baat
hebben bij een gestructureerde en gerichte aanpak, ondersteund door algemeen bruikbare
richtlijnen en technieken.

Met name zal het onderzoek naar de gevoeligheid en identificeerbaarheid van de pa-
rameters (bijv. modelcoéfficiénten, beginvoorwaarden) een belangrijk onderdeel van de
modelcalibratie dienen uit te maken. Reeds in een vroeg stadium kan zo’n onderzoek
informatie verschaffen over te verwachten problemen bij calibratie, en kunnen de bevin-
dingen suggesties aandragen om deze problemen te voorkomen (fixeren van ongevoelige
parameters; additionele data-verzameling; verbetering van experimenteel ontwerp; model-
aanpassing; software verbetering). Ook bewijst zo'n onderzoek zijn nut bij het analyseren
van de problemen bij niet succesrijke calibratie studies.

Enkele relatief eenvoudige methoden worden gesuggereerd die gebruikt kunnen worden
om deze analyses uit te voeren bij een grote klasse van calibratieproblemen. De voor- en
nadelen van deze methoden komen kort aan de orde. Met name wordt aandacht besteed
aan de problematiek van locale versus globale analyses in het parameterdomein. Aan de
operationalisering en het gebruik van deze technieken bij diverse calibratie-studies wordt
momenteel volop gewerkt.



1 Inleiding 1

1 Inleiding

Wiskundige modellering speelt tegenwoordig een belangrijke rol in veel toepassings-
gericht onderzoek. Enerzijds dwingt modelvorming de onderzoeker tot het structur-
eren van het onderzochte probleem en het maken van gerichte en expliciete keuzes
m.b.t. de belangrijke (deel)aspecten, tot het kwantificeren van relaties!, tot het
expliciet maken van veronderstellingen die anders vaag en verborgen blijven etc.
Anderzijds kunnen modellen bijdragen tot het kwantitatief beschrijven van situ-
aties, tot het verschaffen van dieper inzicht in een probleem, tot het verduidelijken
van (onvermoede) relaties tussen diverse aspecten etc. (beschrijving; diagnose).
Ook maakt het gebruik van modellen een onderzoek mogelijk naar de gevolgen van
eventuele ingrepen of maatregelen zonder dat deze nog daadwerkelijk in de praktijk
geactualiseerd zijn (prognose; simulatie; scenario-studies); bovendien kan worden
nagegaan welke maatregelen genomen dienen te worden om gewenste situaties te
bereiken (optimalisatie; regeling).

Bij het proces van modelvorming worden we geconfronteerd met het feit dat ten
gevolge van o.a. de complexiteit van het beschouwde probleem, de onvolledigheid
van onze kennis van de problematiek, de onvolledigheid en onnauwkeurigheid van
beschikbare meetgegevens, het onzekere c.q. variabele karakter van de bestudeerde
verschijnselen etc., enerzijds het model slechts een benaderende beschrijving van
de werkelijkheid kan geven, en dat anderzijds het model een aantal grootheden
bevat (bijv. beginvoorwaarden, modelcoéfficiénten) waarvan de waarden niet altijd
in voldoende mate bekend zijn?. Om toch tot voldoende nauwkeurige uitspraken
te komen, probeert men daarom instelwaarden c.q. ranges voor deze grootheden
te zoeken die ervoor zorgen dat de bijbehorende modeluitkomsten zoveel mogelijk
overeenkomen met de beschikbare meetgegevens®. Dit belangrijke onderdeel van het
modelleringsproces wordt vaak aangeduid met de term modelcalibratie®.

1Het behoeft natuurlijk geen betoog dat een kwantitatieve aanpak niet altijd adequaat zal zijn.
In diverse gevallen zal een kwantitatieve beschrijving onmogelijk zijn, c.q. slechts een magere
afspiegeling geven van het wezen van het bestudeerde verschijnsel. Wiskundige modellering is
in deze situaties vaak misplaatst (‘Beter geen model, dan een slecht model’, op basis waarvan
onverantwoorde conclusies getrokken worden).

?Bovendien kan ook nog de specifieke structuur van een model ter discussie staan.

3In dit kader is het bovendien van belang om een indicatie van de betrouwbaarheid van de
modelresultaten te kunnen geven, zeker in situaties waarin de onderliggende processen een grote
variabiliteit vertonen.

*Het proces van het vastleggen van het model in een meer definitieve vorm d.m.v. het afstemmen
van de modelresultaten op de meetgegevens, in het licht van de beoogde toepassing en op basis
van a priori kennis, wordt in de literatuur ook aangeduid met het begrip systeemidentificatie. Dit
proces heeft niet enkel betrekking op het kiezen/schatten van de onbekende parameterwaarden
en begintoestanden. Ook de keuze van modelstructuur ¢.q. modelparametrisatie en identificatie
criteria speelt een grote rol. Verder zijn ook experimenteel ontwerp en validatie onlosmakelijk
verbonden met syteemidentificatie.



2 Hoofdstuk 1

In de praktijk wordt een groot aantal methoden gebruikt voor modelcalibratie,
variérend van eenvoudige handmatige procedures tot geavanceerde geautomatiseerde
methoden. Gezien de nadelen die verbonden zijn aan handmatige procedures (sterk
subjectief karakter; moeilijk reproduceerbaar; bewerkelijk en complex indien het
aantal te calibreren parameters groot (> 2) is; niet voldoende kwantitatief inzicht in.-
de nauwkeurigheid van de geschatte parameters), zal het gebruik van systematische
en automatiseerbare procedures in veel gevallen de voorkeur verdienen. Dit zal zich
weerspiegelen in de diverse fasen die doorgaans deel uitmaken van modelcalibratie,
te weten

1. Probleemformulering:
Welke doelfunctie (identificatiecriterium) wordt gehanteerd om de discrepantie
(fit) tussen model en werkelijkheid c.q. data te meten, ook met het oog op
de later beoogde modeltoepassingen; welke modelgrootheden, c.q. resultaten,
worden bij de definitie van deze doelfunctie beschouwd, en hoe worden ze
meegewogen; hoe wordt vervolgens het calibratie-probleem gedefinieerd (bijv.
als optimalisatie van de doelfunctie), etc.

2. Data-acquisitie en -voorbewerking:
Wat, waar, wanneer en hoe meten (experimental design®)?; welke data worden
gebruikt voor calibratie c.q. validatie®?; het gebruik van data-filtering c.q.
-smoothing; detectie outliers etc.

3. Keuze van modelstructuur en parametrisatie:
In welke modelset(s) wordt naar een adequaat model gezocht (type model,
bijv. deterministisch/stochastisch; dynamisch/statisch; lineair/niet-lineair;
etc.); hoe zijn deze modellen geparametriseerd; welke parameters dienen geschat-
te worden; welke beperkingen worden aan de parameters en de variabelen
opgelegd (constraints) etc.

4. Selectie van een geschikt model binnen de modelset(s):
Bijv. keuze van zoekalgoritme t.b.v. optimalisatie van doel-functie; keuze van

Hoewel het begrip modelcalibratie (ook wel aangeduid als model-ijking) in een aantal studies in
een nauwer verband gehanteerd wordt (enkel betrekking hebbend op het schatten van de parameters
c.q. de beginvoorwaarden), zullen we het in dit rapport in breder verband gebruiken, en het als
synoniem van het begrip systeemidentificatie opvatten.

®Soms is er van experimental design geen sprake en moet met de beschikbare data worden
volstaan. ’

60m een verantwoorde validatie van het gecalibreerd model te krijgen verdient het aanbeveling
om de data, indien mogelijk, te splitsen in een deel dat voor calibratie gebruikt wordt en een deel
dat voor validatie gebruikt wordt. Liefst dienen deze twee data-sets onafhankelijk van elkaar te
zijn (kruis-validatie). Het behoeft geen betoog dat dit slechts mogelijk is indien er ruimschoots
voldoende (representatieve) data beschikbaar zijn, een conditie die voor veel milieu- en volksge-
zondheidsstudies vaak niet opgaat.
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methode voor nauwkeurigheidsanalyse van geschatte parameters (betrouw-
baarheidsintervallen), uitvoeren van de optimalisatie, indicatie van de be-
trouwbaarheid van geschatte parameters’, etc.

5. Beoordeling (validatie) van gecalibreerd(e) model(len):
Bijv. residuen-test; lack of fit tests; betrouwbaarheidsintervallen; kruis-validatie;
etc.

Ten einde een meer gestructureerde en gerichte aanpak van modelcalibratie te
stimuleren binnen het volksgezondheid- en milieu onderzoek bij het RIVM, wordt
momenteel bij het CWM?® gewerkt aan het formuleren van richtlijnen en het opera-
tionaliseren van technieken die tijdens de diverse fasen van modelcalibratie nuttig
gebruikt kunnen worden. In dit kader wordt in dit rapport ingegaan op de rol die
gevoeligheidsanalyse en identificeerbaarheidsanalyse van parameters hierbij kunnen
spelen, met name m.b.t. de punten 1-3 in het bovenstaande. Deze analyses richten
zich o.a. op het schatbaar zijn van de parameters binnen de gegeven configuratie van
data, model en identificatiecriterium, en kunnen nuttige suggesties aandragen m.b.t.
de keuze van experimenteel ontwerp (data), modelparameters en identificatiecriteria.

We beperken ons tot modelcalibratie die verloopt via het optimaliseren van een
doelfunctie (identificatiecriterium), een formulering die veelvuldig gehanteerd wordt
bij calibratie (bijv. het bepalen van een model met de beste fit tot de data). In
hoofdstuk 2 wordt hiervoor de context geschetst. Daarna wordt in hoofdstuk 3 de
rol van gevoeligheidsanalyse besproken. Vervolgens komt in hoofdstuk 4 de iden-
tificeerbaarheidsanalyse aan de orde, waarbij een eenvoudige operationele definitie
van het begrip identificeerbaarheid wordt gehanteerd die samenhangt met het lo-
caal uniek zijn van de minima van het identificatiecriterium. In hoofdstuk 5 volgen
tenslotte de conclusies en aanbevelingen. De appendices hevatten enkele additionele
beschouwingen en uitwerkingen van het materiaal uit de hoofdtekst.

Onze uiteenzetting is voornamelijk methodologisch georiénteerd en geeft inzicht
in de aanpak die bij het ontwikkelen en operationaliseren van technieken voor
calibratie-studies zal worden toegepast. Een expliciete illustratie aan de hand van
praktijkvoorbeelden volgt in een later stadium, wanneer de geschetste methodieken
daadwerkelijk gebruikt gaan worden, bijv. bij modelcalibratie studies voor diverse
milieuthema’s (verzuring,vermesting etc.).

"Deze informatie is 0.a. van belang om (in een later stadium) de betrouwbaarheid /onzekerheid
van de modelresultaten te kunnen beoordelen. Hierbij kan nuttig gebruik worden gemaakt van het
recentelijk beschikbaar gekomen programmapakket UNCSAM (zic Janssen et al. [1991]).

8CWM=Centrum voor Wiskundige Methoden
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2 Model en identificatiecriterium

Vele soorten en vormen van wiskundige modellen worden gebruikt om diverse as-
pecten (bijv. toestand en gedrag) van velerlei processen en systemen te onderzoeken.
De specifieke keuze voor een bepaald model, c¢.q. voor een bepaalde klasse van mod-
ellen wordt bepaald door een groot aantal factoren, bijv.

e Het beoogde gebruik/toepassing van het model®.

e De beschikbare kennis over de processen en systemen.
o De beschikbare data.

e De beschikbaarheid van tijd en middelen.

e De ervaring van de modelleur(s).

e Extern opgelegde randvoorwaarden m.b.t. modelleren (bijv. model dient
gekoppeld te worden met andere modellen etc.; ondersteuning bij modelon-
twikkeling).

o De aanwezigheid van hardware en software faciliteiten (bijv. ‘modelbouw en
optimalisatie tools’).

¢ De persoonlijke voorkeuren van de modelleur(s).

Het behoeft geen betoog dat deze factoren niet alle een even grote rol zullen spelen
tijdens het modelleringsproces; helaas vindt in de praktijk hun onderlinge afweging
niet altijd op rationele en/of eigenlijke gronden plaats.

Zo zien we vaak dat er een grote onbalans kan optreden tussen de complexiteit van
een ontwikkeld model en de beschikbaarheid van data (meetgegevens). Vanuit bijv.
een streven naar wetenschappelijke volledigheid worden modellen op een veel dieper
detail-niveau ontwikkeld dan qua meetgegevens ooit kan worden ondersteund. Dit
heeft tot gevolg dat men over een groot aantal aspecten van het model kwantitatief in
het duister tast. hetgeen de voorspellingskracht van het model kan aantasten (grote
onzekerheid). Het is ons inziens zinvol om bij het modelleren terdege rekening te
houden met dit spannings-veld tussen modelcomplexiteit en data-beschikbaarheid,
en daarbij met name het beoogde gebruik van het model als leidraad te laten fun-
geren.

Zo zal het vaak veel verstandiger zijn om het model zo ‘grof’ (robuust) mogelijk
te houden (en daarmee het aantal parameters klein) en de aandacht te richten op de

°Dit hangt uiteraard nauw samen met de te beantwoorden vraagstelling. Daarbij dient onderk-
end te worden dat voor verschillende toepassingen ook vaak verschillende modellen gebruikt dienen
te worden. Zo zal een model dat ontworpen is om korte termijn voorspellingen te verrichten, niet
altijd geschikt zijn voor lange termijn predicties
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grootheden die voor de studie direct van belang zijn!%. Uiteraard zal e.e.a. gevolgen
hebben voor het gebruik en de interpretatie van de modelgrootheden: bij werken op
een ruw (hoog) aggregatieniveau dient men voorzichtig te zijn met het toekennen
van fysische betekenis aan bepaalde grootheden, zeker als ze worden gebruikt om
‘acceptabele’ waarden van parameters te definiéren!!.

Terwille van de discussie hierna presenteren we allereerst het model en het identifi-
catiecriterium in een meer expliciete vorm. We beperken ons bij de presentatie tot
deterministische modellen.

We veronderstellen dat de modeloutputs'? yp(-) gegeven zijn als functie'® van de
bekende c.q. gemeten modelinputs (external forcings) D,,,, de onbekende (te schat-
ten) parameters 6 (bijv. beginvoorwaarden, randvoorwaarden, model-coéfficiénten
etc.), en van additionele modelgrootheden a waarover in principe kennis/informatie
beschikbaar is (bijv. beginvoorwaarden, modelcoéfficiénten etc. waarvan de waarden
bekend zijn):

yM(z’e):H(g’a’DlnP(Z)) (7': l?vN) (21)

De index ¢ in bovenstaande vergelijking kan slaan op tijd en/of locatie en/of individu
waarop de modeloutput betrekking heeft. De grootheid D,,,(7) geeft de modelinput
weer, die betrekking heeft op de betreffende modeloutput yas(7;6). We nemen aan
dat deze grootheid bekend is c.q. gemeten kan worden. Verder veronderstellen
we dat de modeloutput yp(7;6) waarden aanneemt in R?, d.w.z. yp is een g¢-
dimensionaal signaal (multi-signaal modeloutput; bijv. concentratie metingen van
diverse stoffen), en dat de parameter vector § waarden in R? kan aannemen. Evenzo

kunnen we veronderstellen dat de modelinputs D,,,(¢), respectievelijk de grootheden

o waarden aannemen in R™ resp. R°. Dit is echter voor de verdere discussie
niet wezenlijk van belang. Bovendien zullen we voor de notationele eenvoud de

afhankelijkheid van yp(-;0) voor a, D;,,(¢) niet expliciet weergeven.

Verder nemen we aan dat er van bovenstaande modeloutputs N metingen!?
beschikbaar zijn:

y(2) (t=1,---,N) (2.2)

1%Indien men bijv. uitspraken dient te doen over jaargemiddelde lange termijn verwachtingen,
dan is het i.h.a. zinvoller om te werken met jaargemiddelden i.p.v. daggemiddelden. Dit ‘filter-
effect’ voorkomt dat er allerlei extra onzekerheden geintroduceerd worden door op een overbodig
detail-niveau te werken.

11Wat is bijv. de betekenis van een ‘karakteristieke’ diffusie-coéfficiént, reactieconstante etc.,
en kan deze in de praktijk wel direct gemeten worden? Vergelijk het verwante probleem van het
opschalen van laboratoriumresultaten naar een veldsituatie.

12Modelgrootheden die corresponderen met observeerbare/meetbare uitgangssignalen van het
bestudeerde systeem, bijv. concentraties, hoeveelheden, fluxen, temperaturen etc.

13De preciese vorm van dit functionele verband laten we in het midden. Het model kan bijv.
gegeven zijn in de vorm van een stelsel differentiaalvergelijkingen, algebraische vergelijkingen etc.

1Dit kunnen ook literatuurgegevens zijn of data/resultaten van referentie modellen.
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Modelcalibratie vindt plaats door de modelresultaten yar(¢; 0) te vergelijken met de
meetresultaten y(z), en door een parameterwaarde 6 te zoeken die een optimale, c.q.
acceptabele fit geeft tussen model en meetresultaten.

In het algemeen wordt deze fit in een criterium uitgedrukt dat de discrepantie
tussen data en model weergeeft. De keuze/vorm van dit criterium dient zoveel
mogelijk de beoogde modeltoepassing'® te weerspiegelen (bijv. via de keuze en de
weging van modeloutputs die een rol spelen). We geven ten behoeve van de verdere
discussie het criterium weer als een specifieke functie F(-,-) van de data y(-) en de
modeloutputs ya(-;0):

C(0) = F(y(), y(:0)) (2.3)
waarbij we door C(-) als functie van 6 te schrijven aangeven dat het criterium een
functie is van de modelparameters 8 (indirect via yp(-;6)'®). Ook hier laten we
de athankelijkheid van het criterium voor de modelinput-data (D,,,), en voor de a
priori gegevens («) terwille van de notationele eenvoud achterwege.

Een gangbaar voorbeeld van een criterium is het gewogen kwadraten-som criterium!’
van de vorm:

C(0) = > _w(@) - ly(i) = ym (5 0)II3 (2.4)
=1
waarbij voor x € RY
lefg = 70« (2.5)

een (gewogen) maat is voor de lengte/grootte van x (z7 duidt op de getransponeerde
vector = (rijvector)). Hierbij is £ een ¢ x ¢ dimensionale symmetrische positief-
definiete matrix (weegmatrix); w(i) > 0 is een weegfactor die het belang van de
diverse metingen y(7) aangeeft.

Calibratie (parameter-schatting) komt nu vaak neer op het minimaliseren van
het criterium over de parameter-set © (ruimte van acceptabele parameter waarden),

die een deel is van RP (© C RP):

) = arg mi 2.
0 = arg 1(}&1(})10(0) (2.6)

15Uiteraard kan de beschikbaarheid en representativiteit van de meetgegevens (van de modelin-
puts en outputs) hierbij een belangrijke beperkende factor vormen. Indien deze data niet voldoende
representatief zijn om de hele range van het systeemgedrag adequaat te karakteriseren (de meet-
data bestrijken bijv. slechts een klein deel van de hele model input-output ruimte), dan kan dit
tot gevolg hebben dat het gecalibreerde model bij het doorrekenen van geheel nieuwe, nog niet
opgetreden situaties, grote fouten/onzekerheden kan geven. Het is daarom van groot belang om
aan te geven wat een adequate toepassingsrange voor het gecalibreerde model is. Met name bij
toekomstverkenningen studies zullen deze zaken een grote rol spelen.

18We kunnen deze beschouwing eenvoudig uitbreiden tot de situatie waarbij C' ook nog direct
van 0 afhangt [C(8) = F(y(-), yam(-;6),8)]. Dit kan bijv. optreden in situaties waarbij a priori
informatie over de onbekende parameters expliciet in het criterium wordt opgenomen.

17Dit criterium behoort tot de klasse van output-error criteria, omdat het gesteld is in termen
van de ‘modeloutput errors’ y(i) — yas(7;0).
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d.w.z. het zoeken van het model met de beste fit (volgens C(-)!®) op de data.

Voor het zoeken van de modelparameter § die de beste fit geeft, wordt veelal
gebruik gemaakt van numerieke optimalisatie routines. Indien de functie C(0) als
functie van 4 voldoende glad is, dan zijn met name optimalisatie methoden te prefer-
eren die gebruik maken van informatie over de eerste c.q. tweede afgeleiden van C(8) .
naar §. Deze methoden zullen in het algemeen sneller naar een (locaal) minimum
convergeren dan methoden die slechts gebruik maken van informatie over C(8) zelf.
Ook spelen de eerste en tweede afgeleiden een rol bij de operationele identificeer-
baarheidsdefinitie die in hoofdstuk 4 gehanteerd zal worden. We werken daarom
tot slot de uitdrukkingen voor deze afgeleiden uit voor het gewogen kwadraten-som
criterium uit (2.4). Hierbij nemen we aan dat de afgeleiden die in de uitdrukkingen
voorkomen alle bestaan (d.w.z. de modeloutput yas(z;0) is voldoende vaak differen-
tieerbaar naar ).

Onder deze aanname blijkt dat de eerste orde afgeleide van C'(0) naar de j-de
component §; van de parametervector 6 gelijk is aan:

aC (0 1,0 ‘
G = 2wl (o) - g7 @ ) (27)

1=1

Al Aym(i; 0
= —2-> w(i)-trace [Q- M Sy () — ya(z;0)7T (2.8)
=1 do]
waarbij de trace-operator van een ¢ x g-matrix A gelijk is aan de som van zijn
diagonaal-elementen:

q
trace (A) 1= Y _ Ay (2.9)
We werken tot slot de uitdrukking voor de tweede orde afgeleiden 56_—5%) (Hessi-
aan) uit:
d*C(0) al Qym(i:0) 7 - Oym(i;0)
— 9. . ’
80,00, ; W) () 0 a0,
N :
. . . " )2yM(2' 0)
—92. . — (i ONT Q I ym\nY) .
;w(l) (y(2) = yar(2;0)) 90,00, (2.10)

De eerste term van het rechter-lid in deze formule kan ook geschreven worden als
H(O)(H) waarbij de p x p matrix H(®)(0) gedefinieerd is als:

HC =2 [X(0))"- Q- X(0) (2.11)

18We veronderstellen dat C(6) inderdaad een minimum aanneemt over ©.
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met X(6) een matrix die is samengesteld uit de eerste orde afgeleiden van mode-
loutput yas:

dynm(1;6)  dym(:6) . Sym(1;6)
T 50, 5,
Iym(2:6)  Sym(%6) . Byar(2;9)
09 a9 20 5 191
X(0) = '1 '2 o (2.12)
dym(N;0)  Bym(Ni8) . Bym(IN;0)
ETA TS a6,

en waarbij Q) een (¢ - N) x (¢ N) blok-diagonaal matrix is gevuld met de weegfac-
toren/matrices:

wy - 0 0 0
0 wye - .- 0
Q= . . . . (2.13)
0 0 w0

X(8) wordt ook wel de gevoeligheidsmatriz van yp(-,0) genoemd.

Opmerking 2-1 X(8) wordt gevoeligheidsmatrix genoemd omdat hij is uitgedrukt in termen
van de parti€le afgeleiden %ﬁz. Deze grootheden staan ook bekend als gevoeligheidsfunciies, en
vormen in feite een maat voor de gevoeligheid van yar(7; 8) voor variaties in §;. Immers, indien de
grootheid yar(i;0) t.g.v. een variatie Ad; in 6; een variatie vertoont van Ay (7; 6), dan is —Ay—AA”‘}(]iﬂ
een maat voor hoe gevoelig yar op Af; reageert. In de limiet Af; — 0 wordt deze grootheid gelijk
aan de eerste orde afgeleide %"%(f;@.

We kunnen de matrix H{®) ook nog op een andere wijze schrijven, namelijk als:

H® =2 (X)) X(0) (2.14)
waarbij
dum(1:8)  dgm(18) . Fum(1;0)
390, ETS a0,
N dym(2:9)  Igm(2,0) . 9yn(2:6)
Xo= = " (2:15)
BiM(NG)  Dn(N®) | (V)
BTN 50, a0,

de gevoeligheidsmatrix is in termen van de getransformeerde (c.q. gewogen) mode-
loutputs §as(7; 0):

gM(Zag) :\/EZRZ//VI(l’O) (Z:LvN) (216)

Hierbij is R een ¢ x ¢g-matrix, verkregen door decompositie van € (bijv. Cholesky
decompositie; zie Golub en van Loan [1989]):

Q=RT-R (2.17)
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Bovenstaande afleidingen zullen ook een rol spelen in de identificeerbaarheidsbeschouwin-
gen die in hoofdstuk 4 aan de orde komen. We merken tenslotte op dat men in de
praktijk bij veel toepassingen in het algemeen niet in staat zal zijn de Hessiaan en

de gevoeligheidsmatrices ezact te bepalen. Voor hun berekening zal men toeviucht
dienen te zoeken tot benaderende methoden. Zie hiervoor de volgende opmerking:

Opmerking 2-2 Er bestaan diverse methoden om de elementen van de gevoeligheids-matrix
X () te bepalen. We noemen er een viertal op (zie ook Yeh [1986]):

1. Influence coefficient method: De eerste orde partiéle afgeleiden worden benaderd middels

numerieke discretisatie, bijv. ag(f) ~ f(x+m’,))__’;(“”_‘”) voor een functie van een scalaire
variabele . Zie ook Gill et al. [1981].

2. Local sensiuwity analysis: Indien men de parameters allereerst (locaal) simultaan varieert
rondom een instelpunt 6*, vervolgens de bijbehorende modeluitkomsten simuleert, en deze
tenslotte via een eenvoudig lineair regressiemodel relateert aan de gevarieerde parameters:

P
ys (i:0) = Bo+ > B - 1, (2.18)
=1
dan zullen de geschatte regressie-coéflicienten 3 benaderingen zijn voor de parti€le afgeleiden
dym(iif)
20,

3. Sensitivily equation method: Via oplossing van de gevoeligheidsvergelijkingen, d.w.z. het
stelsel vergelijkingen waaraan de gevoeligheidscoéfficiénten (ayg—g(»;a)) voldoen. Zie bijv.

Caracotsios en Stewart [1985], Janssen et al. [1990], voorbeeld 1271,

4. Variational method; adjoint state method: Via het gebruik van een zogenaamd geadjungeerd
model, dat sterk gelieerd is aan het oorspronkelijk model. De gevoeligheidscoéfficienten
kunnen nu uit de combinatie van het oorspronkelijke model met het geadjungeerde model
worden opgelost. Zie Sun en Yeh [1990a], Yeh en Sun [1990] voor een toepassing hiervan bij
grondwater-stromings en transport modellen.

De eerste twee methoden zijn i.h.a. minder nauwkeurig. Het additionele werk wat ervoor verricht
hoeft te worden is echter gering, dit in tegenstelling tot de andere methoden die vereisen dat er ex-
tra stelsels vergelijkingen worden opgesteld en opgelost. Bij de derde methode kan in veel gevallen
dankbaar gebruik worden gemaakt van de specifieke {d.w.z. lineaire) structuur van de gevoe-
ligheidsvergelijkingen. De vierde methode resulteert vaak in het oplossen van een kleiner stelsel
vergelijkingen dan de derde methode. Echter het opstellen (en oplossen) van deze vergelijkingen
kan ingewikkeld zijn, met name bij gecompliceerde modellen.

De uiteindelijke keuze tussen deze methoden zal afhangen van een groot aantal factoren
(vereiste nauwkeurigheid, vertrouwdheid met de methodiek, gecompliceerdheid van het ocorspronke-
lijk model, vorm waarin het model beschikbaar is, ontwikkeltijd, rekentijd, aantal meetpunten,
aantal parameters, verder gebruik van de informatie uit de gevoeligheidscoéfficiénten etc.). Op
deze zaken zullen we hier niet nader ingaan.
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3 De rol van gevoeligheidsanalyse in calibratie

Gevoeligheidsanalyse is gericht op het bestuderen van de vraag hoe modeloutputs
(of functies daarvan) reageren op variaties in parameters, beginvoorwaarden, inputs
etc.; zie ook Janssen et al. [1990]. Deze vraag is met name van belang in situaties -
waarin deze grootheden niet exact bekend zijn, c.q. niet rechtstreeks bepaald kunnen
worden!®.

Bij calibratie toepassingen is een dergelijke situatie aan de orde. Gevoeligheids-
analyse kan dan op een aantal punten een rol spelen:

1. Inzicht verschaffen in de keuze van het experimenteel ontwerp (d.w.z. wat,
waar, wanneer, en hoe te experimenteren en meten).

2. Inzicht leveren in de keuze van modeloutputs, en het identificatie-criterium?®.

3. Inzicht geven in de keuze van de te schatten parameters.

4. Inzicht verschaffen in de gevolgen van misspecificatie van a priori gegevens
(over bijv. inputs, parameters, etc.) voor model- en calibratie berekeningen.

5. Inzicht geven in de performance van de uitgevoerde calibratie studie (post-
calibratie studie), en suggesties leveren voor verbetering.

Gebruik makend van de geschetste achtergrond uit hoofdstuk 2 bespreken we boven-
staande items in meer detail:

ad item 1: De resultaten van een gevoeligheidsanalyse kunnen op een eenvoudige
en voor de hand liggende manier gebruikt worden t.b.v. het experimenteel
ontwerp. Het is intuitief duidelijk dat metingen van grootheden op tijdstippen
en/of locaties waarop de parametergevoeligheden aanzienlijk zijn in het alge-
meen de meeste informatie over deze parameters zullen bevatten. Zie Beck

[1987], Gentil [1982], Knopman en Voss [1987, 1988].

Naast deze heuristische techniek bestaan er ook diverse andere, meer formele
aanpakken voor experimenteel ontwerp die gebaseerd zijn op het optimaliseren
van een criterium. Dit criterium meet de performance van het experimenteel
ontwerp m.b.t. een specifiek doel, bijv. model-discriminatie, parameter-
schatting (nauwkeurigheid), model toepassing (predictie, monitoring, regeling).

1900k speelt gevoeligheidsanalyse een rol in situaties waarin men via manipulatie/maatregelen
de ingestelde waarden wil veranderen om het gedrag van het gemodelleerde proces/systeem te
beinvloeden.

20In veel gevallen verloopt calibratie aan de hand van een criterium dat de fit/discrepantie
beschrijft tussen meetdata en modelberekeningen. Calibratie wordt geformuleerd als het zoeken van
het model met een ‘acceptabele’ fit (in het algemeen zoekt men naar de beste fit, via minimalisatie
van het criterium). Zie ook hoofdstuk 2.
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Voor een recent overzicht zie Walter en Pronzato [1990]. Zie ook Sun en Yeh
[1990b], Knopman en Voss [1989], Knopman et al. [1991]. In veel gevallen
is het te optimaliseren criterium een functie van de gevoeligheidsfuncties van
de modeloutputs (d.w.z. de partiéle afgeleiden %2&4; zie opmerking 2.1). Hi-
ermee wordt in feite een expliciet verband gelegd tussen gevoeligheidsanalyse
en experimenteel ontwerp.

ad item 2: Hoewel de keuze van het criterium voor een groot deel door het beoogde
doel bepaald dient te worden tegen de achtergrond van de beschikbaarheid en
nauwkeurigheid van meetdata en/of a priori kennis (bijv. welke modeloutputs
moeten t.b.v. de toepassing goed gemodelleerd te worden, en hoe is hun on-
derling belang (weging)?), kan een gevoeligheidsanalyse als nuttige leidraad
dienen bij het maken van deze keuze. Immers, de resultaten verschaffen in-
formatie over de gevoeligheid van de diverse modeloutputs voor variaties in
parameters etc. en verhelderen aldus of het voor calibratie van de modelpa-
rameters zinvol is om bepaalde modeloutputs (gewogen) mee te nemen.

ad item 3: Indien de gevoeligheid van de modeluitkomsten, c.q. het identificatie-
criterium, gering is voor de variaties in bepaalde parameters, dan kunnen
we verwachten dat deze parameters moeilijk te identificeren zijn (d.w.z. on-
nauwkeurig). Anderzijds zal het fixeren van deze ongevoelige parameters op
een zelfgekozen vaste instel-waarde de schattingsresultaten vermoedelijk niet
drastisch beinvloeden (de fit zal hierdoor niet veel verslechteren). Op deze
wijze kan door het vooraf fixeren van ongevoelige parameters het aantal te
schatten parameters aanzienlijk worden ingeperkt.

Gevoeligheidsanalyse?! verschaft dus vooraf al een idee over de identificeer-
baarheid van sommige parameters (nl. de ongevoelige parameters zullen slecht-
identificeerbaar zijn). Omgekeerd is het echter niet zo dat gevoelige parame-
ters per sé goed schatbaar zullen zijn! Er kunnen namelijk allerlei interacties
c.q. compensaties met andere parameters optreden die het schatten moeilijk
maken. Denk bijv. aan het ‘model’ ypr = 6,-05. 0; en 0, kunnen niet simultaan
geschat worden, hoewel hun gevoeligheid [d.w.z. dypr /00, = 02, respectievelijk
Oyar /002 = 0,] aanzienlijk kan zijn.

Dit eenvoudige voorbeeld maakt duidelijk dat een gevoeligheidsanalyse nog
geen volledig beeld verschaft van de identificeerbaarheids problemen die er bij
schatting kunnen optreden. Een afzonderlijke identificeerbaarheidsanalyse bli-
jft dus gewenst. In het volgende hoofdstuk zal hierop nader worden ingegaan,
en zal het verband tussen gevoeligheidsanalyse en identificeerbaarheidsanalyse-

2In appendix A wordt in meer detail ingegaan op de mogelijkheden en complicaties van gevoe-
ligheidsanalyse t.b.v. modelcalibratie. Met name blijkt het vaak problematisch te zijn om een
uitspraak te doen over de gevoeligheid van de parameters die betrekking heeft op de gehele pa-
rameter range (globale analyse versus locale analyse).
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explicieter aan de orde komen.

ad item 4: Om de modeloutputs ya(z,8) te berekenen als functie van de onbek-
ende parameters 6 zijn gegevens vereist over bijv. modelinputs D;,,(z), mod-
elcoéfficiénten, beginvoorwaarden (a) etc. Deze gegevens zijn in de praktijk
vaak niet exact bekend. De vraag dringt zich nu op hoe gevoelig de modeluit-
komsten, en uiteindelijk ook de schattingsresultaten zijn voor misspecificaties,
c.q. (meet)fouten in deze grootheden.

De gevoeligheid /robuustheid van de modeluitkomsten voor fouten in deze a
priori kennis kan in het algemeen worden vastgesteld door de grootheden «, en
eventueel D;,,(¢7) mee te nemen in een gevoeligheidsanalyse??. Een dergelijke
analyse zal inzicht geven in de vraag hoe verkeerd men kan zitten met de
modelberekeningen indien men verkeerd zit in bijv. de specificatie van a en

Dinp(2)-

Een analyse van de gevoeligheid/robuustheid van de schattingsresultaten voor
misspecificatie in D,,,(2) en « is daarentegen aanzienlijk bewerkelijker dan een
analoge analyse van de modeluitkomsten. Immers wil men dit goed doen, dan
dient men telkens (d.w.z. voor elk van de beschouwde variaties in D,,,(¢) en
a) een modelcalibratie te laten plaatsvinden, resulterend in een schatting 6.
Vervolgens kan men dan de gevoeligheid hiervan evalueren. In veel gevallen zal
zo’n complete analyse teveel rekentijd en menskracht vergen. In de praktijk
beperkt mmen zich daarom hooguit tot een studie van de schattingsresultaten
bij een gering aantal alternatieve instellingen van D;,,(7) en a om een ruw
beeld van de robuustheid voor misspecificaties te krijgen.

Natuurlijk kan men ook overwegen om, in plaats van de gevoeligheid van het ..
optimum, 0 te bestuderen, de gevoeligheid van het identificatie-criterium C(6)
zelf te evalueren (voor variaties in D,,,(¢) en «). De waarde van zo'n analyse is
echter beperkt, omdat uitspraken over de gevoeligheid van het criterium C(0)
voor variaties/misspecificaties in D;,,(7) en a, niet rechtstreeks kunnen/mogen
worden doorvertaald naar uitspraken over de gevoeligheid van 0 hiervoor. Een
eenvoudig voorbeeld kan dit verduidelijken. Veronderstel dat het criterium er
uitziet als

0(9,04)=ﬂo+51'9+ﬂ2'a+/31,1'02+ﬁ1,2‘0‘a+/52,2'02 (3.1)

[Veronderstel dat 0, « reeéle getallen zijn; 51, > 0; C(-) is expliciet als func-
tie van 0 en « geschreven]. Bij vaste o wordt het minimum van C(-,a)

22We dienen hierbij de kanttekening te maken dat het meenemen van D;.»(2) in zo’n analyse
vaak op praktische problemen kan stuiten, omdat dit de dimensionaliteit van een volledige gevoe-
ligheidsanalyse sterk kan opblazen, met name indien de modelinputs van de tijd en/of de locatie
kunnen afhangen.
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aangenomen in (d.w.z. los $&& =0 op):

_51 + iz«

0=
2P

(3.2)
Hieruit blijkt eenvoudig dat de gevoeligheid van het optimum § voor variaties
in a gelijk is aan
W __ B2
001 2 . ,3171

Merk verder op dat de gevoeligheid van het criterium C(-,-) voor variaties in
a gelijk is aan:

(3.3)

oC
—— =B+ P12 0+2: Bag- (3.4)
g6
Dit verduidelijkt dat de gevoeligheden van het optimum 6 en van het criterium
C(-,-) voor variaties in « niet gerelateerd hoeven te zijn: de ene kan groot zijn,

terwijl de andere klein is, en omgekeerd.

Opmerking 3-1 Het aspect van robuustheid voor misspecificaties in a, Dj,,(i) komt
in de literatuur over calibratie toepassingen niet of nauwelijks ter sprake. Vaak wordt er
gehandeld alsof de (model)ingangen exact gemeten zijn, zonder het waarheidsgehalte en de
consequentie van deze aanname te toetsen.

Een aspect dat veel meer aandacht krijgt is de consequentie van misspecificatie/fouten in
de output data y(i) voor de schattingsresultaten. Dit aspect is sterk gekoppeld met het
vraagstuk van neuwkeurigheid/precisie (betrouwbaarheidsgebieden) van de geschatte pa-
rameters en zal op deze plaats verder niet besproken worden. We merken slechts op dat dit
ten nauwste samenhangt met de vraag hoe sterk de geschatte parameters zullen veranderen
indien men een andere realisatie van de experimentele data beschikbaar zou hebben.

ad item 5: Gevoeligheidsanalyse kan, tezamen met identificeerbaarheidsanalyse (zie
volgend hoofdstuk), nuttig gebruikt worden om reeds uitgevoerde calibraties
aan een nauwkeuriger onderzoek te onderwerpen (post-calibratie studie*®). Op
deze wijze verkrijgt men inzicht in het gedrag en de gevoeligheid van het cri-
terium rond de gecalibreerde parameter-waarden (bijv. via een locale gevoe-
ligheidsanalyse). Enerzijds maakt dit een grondige vergelijking van diverse

Z3Uiteraard heeft een post-calibratie studie ook baat bij het maken van contourplots c.q. ‘sur-
faceplots’ van het criterium. Deze plots hebben echter tot nadeel dat ze eigenlijk slechts zin hebben
indien we de parameters twee aan twee bekijken, terwijl de andere op een constante waarde wor-
den gezet. Interacties in hoger dimensionale ruimtes kunnen dus niet gemakkelijk ontdekt wor-
den. Verder vergt het maken van deze plots vaak veel criterium evaluaties, en gaat het aantal te
beschouwen plots sterk omhoog met het aantal gecalibreerde parameters.
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criteria mogelijk, anderzijds kan dit dienen om aspecten als locale minima,
gladheids-problemen (smoothness), slechte identificeerbaarheid etc. op te sporen.
De aard van de interacties tussen de parameters kan bestudeerd worden, en
er kan gechecked worden of dit overeenkomt met het begrip dat men van
de achterliggende fysische aspecten heeft. Op deze wijze verkrijgt men meer -
vertrouwen in de geschatte parameters, of kunnen nuttige suggesties worden
aangedragen voor verbetering van niet succesrijk uitgevoerde calibratie stud-
ies (bijv. door herparametrisatie, fixatie van modelparameters op een vaste
waarde, additionele metingen, modelaanpassing etc.). Zie ook Sorooshian en

Arfi [1982], Sorooshian en Gupta [1985].
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4 Identificeerbaarheidsanalyse van het identifi-
catiecriterium

4.1 Inleiding

In het voorgaande hoofdstuk werd de rol van gevoeligheidsanalyse in calibraties-
tudies verduidelijkt. Met name kunnen de resultaten uit een gevoeligheidsanalyse
nuttige aanwijzingen geven over welke parameters niet per sé meegenomen hoeven
te worden bij calibratie: parameters waarvoor het criterium ongevoelig is kunnen
zonder bezwaar op een vastgekozen waarde gefixeerd worden!. Dit is van weinig
invloed op de fit tussen het model en de data. In veel gevallen wordt hiermee reeds
een aanzienlijke reductie verkregen van het aantal te calibreren parameters. Het is
echter nog geen garantie dat de calibratie probleemloos zal verlopen.

De overgebleven onbekende modelparameters worden i.h.a. geschat door te
zoeken naar het punt in de parameter-ruimte waarin het criterium zijn minimale
waarde aanneemt (beste fit op data). Om dit minimale punt te bepalen wordt i.h.a.
de toevlucht genomen tot numerieke optimalisatie technieken. Enkele belangrijke
aspecten hierbij zijn (zie figuur 4.1-1):

1. Heeft het critertum meerdere minima (multimodaliteit)?
In dit geval loopt men de kans dat het verkregen optimum slechts een locaal
minimum is, en niet een globaal.

2. Zijn de minima van het criterium geisoleerd (locale uniciteit), d.w.z. komen
er in'de omgeving van zo’n minimum enkel punten voor waarin het criterium
strikt hogere waarden aanneemt (het minimum is locaal uniek)?

Indien dit niet zo is dan kan men in de praktijk convergentie- en stabiliteit-
sproblemen verwachten bij gebruik van de gangbare numerieke optimalisatie-
algoritmes.

Bovendien zijn de parameters dan niet eenduidig bepaalbaar (identificeer-
baarheidsproblemen). Er zijn immers diverse parametercombinaties die dezelfde
minimale fit geven. Welke zou men dan moeten kiezen voor de model-toepassing?

3. Zijn de minima van het criterium geprononceerd (goed-gesteldheid)?
Indien het criterium in de buurt van het minimum in sommige richtingen
tamelijk vlak is (valleien), dan treden ook problemen op met het identificeren
van de parameters. Deze kunnen dan niet nauwkeurig bepaald worden (slechte

1Strikt genomen geldt dit natuurlijk slechts voor de calibratie. Bij verdere modeltoepassingen
c.q. voorspellingen kunnen die ongevoelige parameters eventueel wel een rol spelen, met name
als de bestudeerde situatie sterk afwijkt van de situatie waarop de calibratie betrekking heeft.
In zo’n geval zijn de resultaten van de calibratie natuurlijk onvoldoende representatief voor het
systeemgedrag over een bredere toepassingsrange.
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identificeerbaarheid ten gevolge van een slecht geconditioneerd minimalisatie
probleem; precisie verlies).

sssssssssss

E

Figuur 4.1-1: Diverse aspecten van een identificatiecriterium:
multimodaliteit (a); locale uniciteit (b); goed-gesteldheid (c)

We richten ons in dit hoofdstuk voornamelijk op het tweede punt, de kwestie
van de identificeerbaarheid van de parameters’. Alvorens de parameters daadw-
erkelijk te gaan schatten is het wenselijk om een idee te hebben of ze iiberhaupt
schatbaar/identificeerbaar zijn, en van welke factoren hun identificeerbaarheid kan
athangen. In het voorgaande hoofdstuk zagen we dat gevoeligheidsanalyse hierover
geen uitsluitsel geeft (immers gevoelige parameters bleken niet per sé identificeerbaar
te zijn). Een identificeerbaarheidsanalyse zal een noodzakelijk aanvulling vormen op
eerder uitgevoerde gevoeligheidsanalyses. De resultaten van een identificeerbaarhei-
dsanalyse kunnen vervolgens weer leiden tot betere suggesties voor experimenteel
ontwerp, data-verzameling, her-parametrisatie, fixatie van waarden van parameters
(mede op basis van de uitkomsten van vooraf uitgevoerde gevoeligheids-analyses).

In de volgende sectie zullen we een definitie van identificeerbaarheid presenteren
die in de praktijk nuttig gebruikt kan worden om te beoordelen of parameters (of
parametercombinaties) goed schatbaar zullen zijn. Deze definitie zal een locaal
karakter hebben (d.w.z. enkel betrekking hebben op één specifiek punt in de pa-
rameter ruimte, bijv. de beginschatting c.q. eindschatting), en kan voor een groot
aantal toepassingen eenvoudig worden uitgewerkt tot een operationele methode voor
identificeerbaarheidsanalyse. Een voorbeeld hiervan is te vinden in Mous [1991]. Zie
ook Sorooshian en Gupta [1985] voor een specifieke toepassing.

?Hoewel we ons voornamelijk op dit aspect richten, zullen de in dit hoofdstuk behandelde zaken
ook sterk betrekking hebben op het derde punt (operationele problemen bij minimalisatie t.g.v.
slecht geconditioneerdheid). Zie ook opmerking 4.2-3(b).



4.2 Identificeerbaarheid 17

4.2 Identificeerbaarheid

Het identificeerbaarheids-vraagstuk heeft in de literatuur veel aandacht gekregen.
Diverse definities voor identificeerbaarheid worden hierbij gehanteerd en vele resul-
taten zijn afgeleid voor allerlei modellen (zie bijv. Walter [1982, 1987]; Godfrey en
Chapman [1990]; Godfrey en DiStefano III [1987]; Chavent [1987,1991]; Sun en Yeh
[1990b]).

Wij zullen onze aandacht richten op een eenvoudige identificeerbaarheids-definitie
die met name zinvol is bij identificatie middels het minimaliseren van het criterium
C(0), dat in hoofdstuk 2 geintroduceerd werd. Parameter-schatting komt in deze
context neer op het zoeken van de parameter 0 uit de parameter-set ©@ C RP
(ruimte van acceptabele parameter waarden), waarin het criterium C(6) zijn mini-
male waarde aanneemt: A

0 = arg 1&1(})10(0) (4.2—-1)

De vraag naar de identificeerbaarheid van de parameters hangt in deze context
samen met de vraag of de oplossing van het minimalisatie probleem eenduidigis. Het
is in het algemeen uiterst moeilijk om vooraf te bewijzen of het minimum eenduidig
is over de gehele parameter-ruimte © (d.w.z. globale identificeerbaarheid; zie Walter
[1982, 1987]). Daarom wordt veelal gekeken naar locale identificeerbaarheid: ‘Indien
C(0) in 6* € RP een minimum aanneemt, is dit minimum dan in een omgeving van
0" eenduidig?’

Om dit tot een hanteerbare definitie voor identificeerbaarheid om te smeden vo-
eren we het volgende gedachten-experiment uit. We veronderstellen dat de meetdata
afkomstig zijn van het achterliggend model met parameter-waarden 6* € ©, d.w.z.:

De vraag is nu of het model aan de hand van het criterium teruggeschat kan worden
uit deze data (d.w.z. is het model in staat om zichzelf terug te vinden m.b.v. het
criterium).

In analogie met Bellman & Astrom [1970], definiéren we:

Definitie 4.2-1 Laat het model gegeven zijn door de vergelijkingen die leiden tot
yum (zie formule (2.1)), en veronderstel dat we het criterium C(8) uit (2.3) gebruiken
ten behoeve van de parameter-schatting.

Het model heet dan locaal identificeerbaar in het parameter punt 6* indien de
functie?®

V(0) = Flym(-,07),ym(-,0)) (42 -3)

in de omgeving van 0* een eenduidig minimum heeft, dat in 8* wordt aangenomen.

26F(-,-) is de in (2.3) gedefinieerde specifieke functie van de data en de modeloutputs. Met hier
als speciale toepassing dat de synthetische dataset yp (-, 0*) als data gebruikt wordt.
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Nadeel van deze identificeerbaarheidsdefinitie is zijn locale karakter: enerzijds heeft
de definitie betrekking op één specifieke parameter punt 0* € ©; anderzijds wordt
de studie beperkt tot een locale omgeving?” van dit punt 6*.

Omdat op voorhand niet bekend is waar het uiteindelijke optimale parameter
punt zal liggen, is men met name geinteresseerd in de vraag of bovenstaande eigen-
schap van locale identificeerbaarheid geldig is voor bijna alle’® parameter punten
0" € © (zogenaamde structurele locale identificeerbaarheid; zie Walter [1982]). Bij
praktische toepassingen is echter een waterdichte beantwoording van deze vraag
meestal moeilijk en tijdrovend. Daarom volstaat men in de praktijk meestal met
het onderzoeken van de identificeerbaarheid rondom een nominaal punt 6* in de
parameter-ruimte, hierbij hopend dat deze eigenschap ook in andere parameter pun-
ten overeenkomstig zal gelden. Als nominaal punt kan bijv. een initiéle schatting
8o gekozen worden, of (a posteriori, na uitvoering van de schatting) de geschatte
waarde 0 (zie Mous [1991]).

Opmerking 4.2-1 (a) Een aspect dat bij bovenstaande definitie niet expliciet aan de orde

(c)

(d)

kwam is de rol van de modelinputs D;,,(7). Uiteraard bepalen deze grootheden mede of het
model identificeerbaar is in #*. Indien de inputs bijv. niet voldoende ‘rijk’ c.q. representatief
zijn om sominige processen aan te sturen (te exciteren), dan zullen de onbekende parameters
die met deze processen samenhangen niet geldentificeerd kunnen worden. Dit maakt het
belang duidelijk van een goed experimenteel ontwerp. In veel praktische situaties zullen de
mogelijkheden voor het opzetten van experimenten echter beperkt zijn.

Merk op dat de functie V(6) ontstaan is uit het criterium C(8) door voor de ‘echte meet-
gegevens’ [y(-)] de modeloutputs in te vullen die gegenereerd zijn door het model met pa-
rameter 0* (gedachten-experiment). Op deze manier kan de identificeerbaarheid los van -
de ‘echte meetgegevens’ bestudeerd worden, en in willekeurige punten 6* van de parameter-
ruimte.

Bovenstaande definitie is algemener dan de definitie die in Mous [1991] gegeven wordt. Mous
[1991] beperkt zich tot ongewogen kwadraten-som criteria voor scalaire modeloutputs.

Het model kan om diverse redenen niet-identificeerbaar zijn. Twee belangrijke redenen zijn
onvoldoende representatieve input-gegevens (slecht experimenteel ontwerp) en overgeparametriseerde
modelstructuren (zie Mous [1991}, Ljung [1987]). Een identificeerbaarheidsanalyse verschaft

inzicht in de aard van deze problemen, en kan nuttige suggesties opleveren om de identi-
ficeerbaarheid te verbeteren. Zie o.a. Walter en Pronzato [1990] voor de relatie tussen
experimentcel ontwerp en identificeerbaarheid.

2"De grootte van die omgeving is op voorhand onbekend, en kan sterk variéren afhankelijk van

6*

28De eis dat locale identificeerbaarheid voor elk parameter punt dient te gelden is bij de meeste
toepassingen te zwaar. In het algemeen zullen er altijd punten in © voorkomen waarin niet aan
de locale identificeerbaarheids eis voldaan is. Dit is de reden dat we de eigenschap voor bijna alle
punten eisen (d.w.z. de punten waarin de eigenschap niet geldt hebben Lebesque maat 0).
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Indien de functie V() voldoende vaak differentieerbaar is naar § dan kan de
bovengenoemde locale identificeerbaarheid nader onderzocht worden aan de hand
van de gradiént (%V—g(-@) en de Hessiaan (%i:)) van V(6). Het nul zijn van de
gradiént en het posii}ief definiet zijn van de Hessiaan in het parameter punt 6*
vormen tezamen voldoende voorwaarden voor locale identificeerbaarheid (volgens
bovenstaande definitie) van het model in 6.

We werken dit nader uit voor het gewogen kwadraten-som criterium C(6) uit
formule (2.4). De bijbehorende functie V(6) die voor het onderzoek naar locale

identificeerbaarlieid in §* gebruikt wordt, is dan gelijk aan:

V() = Z:w(i) Nlyaa(350%) — yar (4 0) |3 (4.2 —-4)

Er kan worden aangetoond dat de gradiént gelijk is aan:

av(o N ' ' Dy (i 0
aéj) = —?‘gw() (yM(ZQQ*)—ZIM(UO))TQ%Z) (4.2-5)
N ,
= 2 wli) - trace |0 POy ) (a0 |a.26)
=1 J

terwijl de Hessiaan gelijk is aan:

PV (h) Al 8yM( 0)\r o Gyml(s;0)
= 92.
86,,00; 2w oo ) © 20,

N
—_ . T
—2-) " w(i) - (ym(E;07) — ym(60))" Q 06,00,

(4.2-7)

Hieruit blijkt eenvoudig dat de gradiént van V(0) in 6= gelijk is aan nul, terwijl de
Hessiaan-matrix van V(6) in 6* gelijk is aan de matrix

H(67) [X ( NW-Q-X(07) (4
X

2-8)
)T - X(07) (4.2-9

)
waarbi] de betreffende matrices X(G*),Q,X(O*) gedefinieerd zijn in (2.12), (2.13)
n (2.15). De conditie dat de Hessiaan H(6*) positief definiet is komt overeen met
het volle rang?® zijn van de gevoeligheidsmatrix3® X (6*), c.q. de gevoeligheidsmatrix

X(67). In de praktijk zullen deze matrices slechts met eindige precisie berekend kun-
nen worden, t.g.v afbreek- en afrondfouten (zie ook opmerking 2.2). Dientengevolge

[\3 l\D

2%De rang van een matrix is gelijk aan het maximale aantal onafhankelijke rijen c.q. kolommen
van de matrix.

39De rol van de gevoeligheidsmatrices verduidelijkt ook enigszins de relatie tussen gevoeligheid-
sanalyse en 1dentificeerbaarheidsanalyse.
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zullen deze berekende matrices bijna altijd (d.w.z. generiek) volle rang hebben, ook
al hebben hun exacte analoga niet-volle rang. Om in deze context toch nog zinvolle
(numerieke) uitspraken over de rang te doen, verdient het aanbeveling om de sin-
guliere waarden decompositie (SVD; singular value decomposition; zie bijv. Press
et al. [1986], Golub en van Loan [1989]) van de matrix te berekenen. Dit wordt in

appendix B verder uitgewerkt. In appendix C worden vervolgens enkele aspecten -

van de voorgestelde benadering in meer detail besproken.

Ons inziens is bovengeschetste, en in appendix B uitgewerkte, methode om de iden-
tificeerbaarheid van parameters te analyseren een nuttig hulpmiddel in modelcali-
bratie. Enerzijds kan zij in een vroeg stadium van de calibratie gebruikt worden,
bijv. om op identificeerbaarheidsproblemen te anticiperen nog lang voordat men de
parameters daadwerkelijk gaat schatten. De analyse zal dan veelal plaatsvinden in
de buurt van de initiéle parameterschatting 6y (d.w.z. 0* = 0y). Anderzijds kan
men deze analyse ook laten plaatsvinden nadat men de parameters geschat heeft
(post-calibratie studie) om inzicht te krijgen in mogelijke parameter-interacties c.q.
1dentificeerbaarheidsproblemen etc. In dat geval zal de analyse plaatsvinden rond
de geschatte waarde 6 (d.w.z. 6* = §)3'.

Behalve voor het beoordelen van de identificeerbaarheid van de parameters is
de voorgestelde methode ook bruikbaar om de performance van een experimenteel
ontwerp te beoordelen, t.a.v. schatbaarheid van de parameters c.q. nauwkeurigheid
van de schattingen (zie Mous [1991]).

Bij het bovenstaande behoort de kanttekening gemaakt te worden dat de beoordeling
van de locale identificeerbaarheid via de studie van de gradiént en de Hessiaan
slechts mogelijk is indien deze grootheden bestaan, d.w.z. indien V() voldoende -
vaak differentieerbaar is in een omgeving van 0. In situaties waarbij dit niet zo is, -
bijv. bij het gebruik van ‘min-max’ criteria of ‘absolute-waarden-som’ criteria i.p.v.
het kwadraten-som criteria, kan de analyse aanzienlijk gecompliceerder worden. Dit
wordt in opmerking C-2 van appendix C nader belicht.

31Uiteraard is het ook nuttig om tijdens de calibratie mogelijke identificeerbaarheidsproblemen te
anticiperen/detecteren. Bovengenoemde methode is dan echter minder goed bruikbaar; men heeft
in dit geval veeleer baat bij een methode die het optimalisatieproces on-line volgt, bijv. middels

- het-monitoren van het zogeheten conditie-getal van de (benaderde) Hessiaan.
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5 Conclusies en aanbevelingen

De rol en het nut van gevoeligheidsanalyses en identificeerbaarheidsanalyses binnen
modelcalibratie kwamen in het voorgaande duidelijk naar voren:

e Een gevoeligheidsanalyse kan reeds in een vroeg stadium duidelijkheid ver-
schaffen over het modelgedrag, en over het belang van de diverse parameters
voor dat gedrag. Op deze wijze kunnen suggesties verkregen worden t.b.v.
experimenteel ontwerp, keuze van identificatiecriterium en de keuze van pa- -
rameters die gecalibreerd dienen te worden. Ook kan een gevoeligheidsanalyse
een nuttig instrument zijn in post-calibratie studies, en enig inzicht verschaffen
in de gevolgen van misspecificatie van (a priori) gegevens die vereist zijn om
modelberekeningen uit te voeren.

Het verdient aanbeveling om de gevoeligheidsanalyse allereerst op het model
(de modeloutputs) zelf toe te passen. Vervolgens kan de gevoeligheidsanalyse
van het criterium aan de orde komen. Met name in het laatste geval zal men in
het algemeen toevlucht moeten nemen tot ingewikkeldere regressiemodellen die
ook niet-lineaire functies van de parameters bevatten, om zinvolle uitspraken
af te leiden. Het is echter niet altijd mogelijk om één geschikt regressiemodel
te vinden dat als basis kan dienen voor gevoeligheids uitspraken over de hele
parameter-ruimte (d.w.z. globale gevoeligheidsanalyse). Veelal zullen dan
diverse locale analyses nodig zijn om tot betrouwbare uitspraken te komen
over de totale gevoeligheid. De vraag hoeveel van dergelijke locale analyses
dienen te worden uitgevoerd, en in welk gebied van de parameter-ruimte deze
plaats dienen te vinden kan complex zijn, met name als het een parameter-
ruimte betreft van grote dimensie en/of van gecompliceerde vorm.

Voor het daadwerkelijk uitvoeren van gevoeligheidsanalyse kan nuttig gebruik
worden gemaakt van het software pakket UNCSAM (zie Janssen et al. [1991]).
Hiermee kunnen allereerst parametertrekkingen worden verricht die de vari-
aties in de parameters weerspiegelen; na de bijbehorende modeloutputs ges-
imuleerd te hebben kan vervolgens lineaire regressie worden toegepast m.b.t.
de getrokken parameters. Mocht lineaire regressie niet adequaat zijn, dan di-
ent men zelf, bijv. via gebruik van statistische pakketen (GENSTAT, SAS),
ingewikkeldere regressiemodellen te proberen.

e De resultaten uit de gevoeligheidsanalyses geven echter nog geen volledige
garantie dat het calibreren van de parameters zonder identificeerbaarheid-
sproblemen zal verlopen. Daartoe zal additioneel onderzoek nodig zijn, in-de
vorm van een identificeerbaarheidsanalyse die uitsluitsel geeft over het iden-
tificeerbaar zijn van de parameters (d.w.z. zijn de minima van het identifi-
catiecriterium locaal uniek). Zo’n analyse is in het algemeen moeilijk globaal
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(over de hele parameterruimte) uit te voeren. In de praktijk wordt daarom
meestal volstaan met het verrichten van een locale analyse in de omgeving
van een nominaal parameter punt (bijv. de (a priori) beginschatting, of de (a
posteriori) eindschatting), hierbij hopend dat de resultaten ook voor andere
parameter punten geldig zullen zijn.

De methode die in sectie 4.2 werd voorgesteld om identificeerbaarheid te
checken kan voor toepassingen waarbij het identificatiecriterium voldoende
glad®? is, eenvoudig operationeel gemaakt worden. Dit werd nader uitgewerkt
voor een gewogen kwadraten-som criterium, en resulteerde in een methode
die (via singuliere waarde decompositie) checkt of de bij het model horende
gevoeligheidsmatrices volle (numerieke) rang hebben (zie appendix B).

Toepassing van de voorgestelde identificeerbaarheidsanalyse methode kan lei-
den tot nuttige suggesties voor verbetering van de identificeerbaarheidseigen-
schappen via additionele experimenten/metingen en her-parametrisatie van
het model.

Dit alles maakt duidelijk dat het aanbeveling verdient om dergelijk gevoeligheids- en
identificeerbaarheids onderzoek als essentieel onderdeel in de calibratie activiteiten
op te nemen, niet alleen voordat men daadwerkelijk parameters gaat schatten, maar
ook tijdens, en na afloop van het calibratie proces. De zo verkregen informatie kan
nuttig gebruikt worden bij verdere modelontwikkeling, dataverzameling en verbe-
terde calibratie.

Hoewel het gepresenteerde materiaal voornamelijk een methodologisch karakter
had, zijn de-voorgestelde methodieken en technieken in de praktijk veelal relatief.-
eenvoudig toepasbaar. Ze zullen in de nabije toekomst dan ook daadwerkelijk ge--
bruikt worden bij diverse calibratie studies®®. Dit geldt al op korte termijn in het
bijzonder bij modelonderzoek voor diverse milieuthema’s. Met de op deze wijze
opgedane ervaring hopen we verder vorm te kunnen geven aan een meer systema-
tische aanpak van modelcalibratie, uiteindelijk resulterend in kwaliteitsverbetering
van de modelvorming in verantwoorde afstemming met experimenteel onderzoek.

32Indien het criterium niet glad is, dan kan een identificeerbaarheidsanalyse aanzienlijk gecom-
pliceerder worden.

33Een recente illustratie van het gebruik van gevoeligheidsanalyses bij modelcalibratie staat in
Koopmans [1992].
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Appendix A: Gevoeligheidsanalyse voor model-
calibratie

Gevoeligheidsanalyse voor modelcalibratie kan betrekking hebben op een tweetal
aspecten:

(a) Gevoeligheidsanalyse van het identificatiecriterium (C(6)).
(b) Gevoeligheidsanalyse van het model (c.q. de modeloutputs yas(-;8)).
De voor- en nadelen van deze analyses zullen we vervolgens nader bespreken:

ad (a): De gevoeligheidsanalyse van C'(0) ligt uiteraard het dichtste bij de calibratie
zelf: enerzijds worden de meetdata van de modeloutputs in de beschouwing
betrokken, anderzijds levert de analyse direct informatie op over het te opti-
maliseren criterium. Nadeel bij deze gevoeligheidsanalyse is echter wel dat het
vaak moeilijk is om tot algemene uitspraken over de gevoeligheid van de diverse
parameters te komen, vooral als de analyse betrekking heeft op parametervari-
aties die de hele parameterruimte kunnen bestrijken (globale gevoeligheidsanal-

yse).

Immers, omdat het criterium i.h.a. een extra niet-lineariteit introduceert (bijv.
kwadraten som), zullen de gangbare gevoeligheidsmaten (zie Janssen et al.
[1990]) die gebaseerd zijn op lineaire regressie van C(6) op de parameters 6
weinig zin hebben omdat de fit van het lineaire regressiemodel

C(a)f@ﬁo-l'Zﬁz'@l (A-1)

=1

vaak slecht zal zijn (d.w.z. een lage R?), indien deze betrekking heeft op het
hele parametergebied © (globale gevoeligheidsanalyse)™.

Bij locale gevoeligheidsanalyses zal dit minder zwaar wegen, omdat C(8) lo-
caal vaak redelijk goed benaderd kan worden door een lineair model. Dit
geldt meestal echter niet in de buurt van de minima (c.q. maxima) van C(6),
waarden waarin we bij calibratie met name geinteresseerd zijn.

Een en ander heeft dus als consequentie dat het aanbeveling verdient om enerz- -
ijds de parameter ruimte a priori zo klein mogelijk te kiezen, en dat anderzijds

34Een gevoeligheidsmaat die ook bij een slechte lineaire fit bruikbaar is, is de Kolmogorov Smirnov
statistic (zie Janssen et al. [1990]). Nadeel van deze maat is echter zijn heuristisch karakter; in feite
zegt deze maat nog niets over de gevoeligheid van het criterium nabij het optimum. Scatterplots
van het criterium naar de parameters kunnen behulpzaam zijn om het belang van de betreffende
parameters beter in te schatten.
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het gebruik van ingewikkeldere regressiemodellen veelal noodzakelijk zal zijn,
met name bij globale gevoeligheidsanalyses. -

Een kwadratische benadering

C(O)%604"2’):51“914‘225]*'9]‘-9;; (A-—2)
=1

i=1 k>j

zal vaak beter op zijn plaats zijn dan een lineaire (tenminste locaal, in de buurt
van een optimum bij continu differentieerbare criteria)®s. Vergelijk Kohberger -

et al. [1978].

Zo’n kwadratische benadering levert tevens (benaderde) informatie over de
92C(9)
59,96
in de context van minimalisatie van C'(0). Terwijl de (eerste-orde) gevoelighe-

Hessiaan (tweede orde afgeleide

). Deze grootheid speelt een cruciale rol

den 8g—6(,92 enkel iets vertellen over de veranderingen in C'(#) bij variaties in
0;, verschaft de Hessiaan direct informatie over de mogelijkheid om het opti-
mum te bereiken (convergentie snelheid; geconditioneerdheid; invloed afrond-
fouten; precisie/nauwkeurigheid; parameteridentificeerbaarheid). Zie ook het
volgende hoofdstuk en de referenties Bard [1974], Sorooshian en Arfi [1982],
Sorooshian en Gupta [1985], Thacker [1989)].

Het voorgaande laat zien dat het aanbeveling verdient om bij gevoeligheids-
analyse van het criterium gebruik te maken van ingewikkeldere regressiemod-
ellen (bijv. (A.2)). Dit zal echter in een aantal gevallen niet eenvoudig zijn.
Het oorspronkelijk criterium C'(8) kan er bij diverse toepassingen/modellen
gecompliceerd uitzien, met name indien het op de gehele parameter-ruimte ©
beschouwd wordt (bijv. meerdere minima/maxima; sterke niet-lineariteiten;
plaatselijk niet differentieerbaar etc.). Een globale gevoeligheidsanalyse zal
dan ook vaak niet goed mogelijk zijn (slechte fit, ondanks de keuze van een
meer geavanceerd regressie model). Noodgedwongen zal men toevlucht moeten
nemen tot diverse locale gevoeligheidsanalyses op gedeeltes van de parameter-
ruimte. De gecombineerde resultaten van deze analyses kunnen vaak alsnog
een beeld geven van de globale gevoeligheden. We merken echter op dat de
vraag in welke locale gebieden van © deze analyses plaats dienen te vinden,
complex kan zijn, met name als de parameter-ruimte een hoge dimensie en/of
een gecompliceerde vorm heeft. Fysisch inzicht in het karakter van de param-
eters en ervaringen met reeds eerder uitgevoerde analyses (bijv. gevoeligheid-

35Het is duidelijk dat het bepalen van een kwadratische benadering problemen kan opleveren
bij grote aantallen parameters. Er zijn veel meer runs nodig om, via regressie-analyse, naast
ook nog alle §; 1, te schatten. Op zijn minst zijn hiervoor p + 1 + (p+,)1)"’ runs nodig; d.w.z. bij
40 parameters al meer dan 860 runs, bij 100 parameters al meer dan 5150 runs. Het zal dus
noodzakelijk zijn om het aantal parameters waarvoor kwadratische relaties worden beschouwd op
-voorhand zo veel mogelijk te beperken.
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sanalyses; scatterplots) kunnen bij beantwoording van deze vraag behulpzaam
zijn.

ad (b): Een gevoeligheidsanalyse van de modeloutputs yas(+; ) levert vaak minder
complicaties op dan een gevoeligheidsanalyse van het criterium C(6)%*. Dit
is te danken aan het feit dat we in dat geval geen last hebben van de extra
niet-lineariteit die door het criterium geintroduceerd wordt. In veel gevallen
kan bij zo’n analyse van de modeloutputs, met name indien een locale analyse
wordt uitgevoerd, volstaan worden met een simpel lineair regressiemodel en
kunnen de gangbare maten uit Janssen et al. [1990] gebruikt worden om de
gevoeligheid in uit te drukken®’.

De uitspraken over de gevoeligheden hebben uiteraard direct betrekking op
de grootheden yps(2;0),2 = 1,---, N, en niet zozeer op het criterium C(6)
zelf. Deze uitspraken kunnen zinvolle informatie verschaffen over wat, waar en
wanneer gemeten dient te worden. Bovendien leveren ze informatie over de pa-
rameters etc. waarop we ons bij verder onderzoek/dataverzameling/calibratie
moeten richten om betrouwbaardere resultaten te krijgen.

Indirect kunnen deze uitspraken natuurlijk ook iets zeggen over de gevoeligheid
van het criterium C(0) voor bepaalde parameters. C(#) is immers een func-
tie van ya(-;0), en als zodanig is de kans groot dat het criterium ongevoelig
zal zijn voor parameters waarvoor ook alle yp(7;0) ongevoelig zijn. Absolute
zekerheid hierover is er echter niet. Dit zal toch o.a. athangen hoe het model
zich t.o.v. de data gedraagt. Dit kan deels geillustreerd worden aan de uit-
drukkingen uit (2.7) en (2.8). Hanteren we namelijk de eerste orde afgeleide

Q%Jﬁ) als (eerste orde) gevoeligheidscoéfficiént van C' voor variaties in §;, dan
leveren (2.7) en (2.8) een uitdrukking van %}—@ op in termen van de gevoe-
ligheidscoéfficiénten ay—géf;—el van yas. Merk echter op dat ook de output-errors
(y(2) — yar(2;0)) een belangrijke rol in deze relatie spelen. Die zouden er bijv.
voor kunnen zorgen dat kleine gevoeligheden in yas (in termen van @%Lo%lﬁ)
toch nog ‘opgeblazen’ worden tot grote gevoeligheden in C(-) (in termen van
%%JQ). Dit aspect, waar we niet verder op zullen ingaan, illustreert nog eens
het belang van de kwaliteit van de meetgegevens.

36Gevoeligheidsanalyse op de modeloutputs is echter i.h.a. bewerkelijker dan een gevoeligheids-
analyse op het critertum. Men dient immers in feite voor elke yas(7; 6) een analyse te verrichten.

37Indien we echter ook te maken hebben met modellen waarin de relatie tussen yar(-;0) en 6 € ©
een sterk niet-lineair karakter heeft, dan zullen we onze toevlucht moeten zoeken tot ingewikkeldere
regressiemodellen. Uiteraard komen we dan analoge complicaties tegen als bij de analyse van C(8).
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Appendix B: Uitwerking van een methode voor
identificeerbaarheidsanalyse

Uit hoofdstuk 4 kwam naar voren dat voor het kwadraten-som criterium C(6) uit
formule (2.4), het checken van identificeerbaarheid neerkwam op het checken van
het volle rang zijn van de gevoeligheidsmatrix X(6*), c.q. de gevoeligheidsmatrix
X(H*). De praktische uitvoering hiervan verloopt via het gebruik van de singuliere
waarden decompositie (SVD; singular value decomposition; zie bijv. Press et al.-
[1986], Golub en van Loan [1989]) van de gevoeligheidsmatrix:

Stelling B-1 Singular Value Decomposition (SVD)
Als A een reéle m x n matrix is, dan bestaan er orthogonale®® matrices:

U = [u - uy € R™™ (B-1)
‘/ o [vl e . ’Un] E RTLXTL (B—Q)
zodat
A=U -2 VT (B-3)
waarbij3®
Y = diag(oq,---,0,) € ™" p = min(m, n). (B—-14)
met 0y > 0y--- 2 0, > 0.
|

De o; zijn de singuliere waarden van A en de vectoren u; en v; zijn respectievelijk de
i-de linker singuliere vector (left singular vector) en de i-de rechter singuliere vector
(right singular vector). Aan de hand van de singuliere waarden kan een gefundeerde
uitspraak gedaan worden over de rang van een matrix. Wiskundig gezien is de
rang namelijk gelijk aan het aantal singuliere waarden dat ongelijk is aan nul. In
de praktijk is t.g.v. afbreek- en afrondfouten (bij het berekenen van de SVD) en
t.g.v. onnauwkeurige data (bij het samenstellen c.q. representeren van de matrix
A) een exacte bepaling van de rang vaak moeilijk. In deze context wordt veelal een
alternatief begrip gehanteerd, namelijk de e-rang van een matrix (numerieke rang,
zie Golub en van Loan [1989], sectie 2.5.4 en sectic 5.5.8):

Definitie B-2 Laat A een reéele m x n matrix zijn, en laat ¢ > 0. De e-rang
(numerieke rang) van matrix A wordt gedefinieerd als*®

rang(A,e¢) = min rang(B B-5
g(A, )= min rang(B) (B-9)
38Fen n x n reéele matrix W is orthogonaal indien W - W7T = [,,.
3°De notatie ¥ = diag(oy, - - -,0p) voor een m x n-matrix duidt er op dat ¥ = (0y;), waarbij
o5 =0alsi#j eno;j =0;alsi=j, voori=1,---, p, waarbij p = min(m, n).
4De || - ||2 norm voor matrices is de norm die geinduceerd is door de Euclidische norm ({3-norm)

op de vectoren in de domein- en beeld ruimte. Zie Golub en van Loan [1989].
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Deze grootheid geeft weer wat de minimale rang is van een matrix die ‘in de buurt’
(d.w.z. in een e-omgeving) van de matrix A ligt. Ook de ‘numericke rang’ van
een matrix kan eenvoudig worden afgeleid uit de SVD. Immers, indien de singuliere
waarden geordend zijn als oy,---0,, dan is r, := rang(A,¢) gelijk aan het aantal
singuliere waarden dat groter is dan ¢ (d.w.z. o,, > € > 0, _,,).

Bij gebruik van het begrip ‘numerieke rang’ zal de keuze van de tolerantie ¢
een belangrijke rol spelen. Deze keuze dient de nauwkeurigheid te weerspiege-
len waarmee de matrix A verkregen is, c.q. verder verwerkt (d.w.z. berekend)
wordt. Dit betekent dat de tolerantie ¢ in ieder geval consistent dient te zijn met
de machine-nauwkeurigheid?!, bijv.1? ¢ = u||A||~. Als echter het algemene niveau
van nauwkeurigheid waarmee A verkregen is (d.w.z. onnauwkeurigheid in de data)
hoger is dan u, dan dient ¢ dienovereenkomstig groter gekozen te worden, bijv.
¢ = 107?||A||c indien de elementen van A slechts op twee cijfers correct zijn.

Passen we het begrip ‘numerieke rang’ toe op de gevoeligheidsmatrices X (6*), re-
spectievelijk X (6) uit (2.12) en (2.15), dan weerspiegelt 7 (voor adequate keuze van
€) in feite het aantal parameters dat geschat kan worden. Indien dit aantal kleiner
is dan het totaal aantal te schatten parameters, dan is het model numeriek niet
locaal identificeerbaar in het parameter punt *. Op deze wijze kunnen gefundeerde
uitspraken over de identificeerbaarheid van de parameters gedaan worden. Vergelijk
de aanpak die in Mous [1991] beschreven is.

41Als maat voo: de machine-precisie wordt de grootheid u gehanteerd. u is de unit roundoff
die gedefinieerd is als +3'~% indien afrond-aritinethiek gebruikt wordt, en als ' ~* indien afbreek-
arithmetiek gehanteer& wordt. Hierbij is 8 de machine basis, en t de precisie (bijv. § = 16,t = 14
voor IBM370 lange precisie berekeningen). Zie Golub en van Loan [1989].

42De matrix.norm ||Allc is gedefinieerd als max; Z;zl la;;| voor m x n matrices A.
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Appendix C: Enkele opmerkingen over identificeer-
baarheid

In deze appendix gaan we middels enkele opmerkingen nader in op de identificeer-
baarheidsdefinitie die in sectie 4.2 voorgesteld werd:

Opmerking C-1  -a- In wezen checkt de definitie 4.2-1 een tweetal aspecten:

1. Wordt de ‘echte’ modelparameter % die ten grondslag ligt aan de (synthetische) data
inderdaad teruggevonden door minimalisatie van het critertum V(0) (consistentie-
eigenschap)?

2. Is de via minimalisatie van V(8) verkregen parameter locaal eenduidig (uniciteits-
eigenschap)?

Deze aspecten hebben betrekking op een geidealiseerde situatie waarbij de (output) data in
wezen ‘synthetische data’ (yar (-, 0*)) zijn die afkomistig zijn van het model.

In de praktijk hebben we natuurlijk te maken met echte data, die meetfouten bevatten.
Bovendien zal het model de werkelijkheid niet exact beschrijven (modelfouten). Tegen
deze achtergrond betoogt Chavent [1987] dat een alternatieve identificeerbaarheidsdefinitie
adequater is. Hij stelt naast uniciteit, ook nog het aspect van goed-gesteldheid van het min-
imalisatie probleem uit (4.2-1) aan de orde (d.w.z. hangt de gevonden optimale parameter
f ‘continu’ af van de data y(-)?). Deze eigenschap is 0.a. nuttig om convergentie- en sta-
biliteitsproblemen te voorkomen indien men het criterium gaat minimaliseren met gangbare
numerieke optimalisatieprocedures zoals gradiént methodes.

Een andere benadering van identificeerbaarheid, die ook toelaat dat er een bepaalde mate
van niet-uniciteit in de te schatten parameters mag optreden (Interval Identificeerbaarheid),
wordt gehanteerd door Sun en Yeh [1990b] (vergelijk ook Godfrey en DiStefano, Il [1987]).
Daarnaast behandelen Sun en Yeh {1990b] ook nog identificeerbaarheidsdefinities die sterk
gekoppeld zijn aan het gebruik van het gecalibreerde model (t.b.v. predictie- c.q. manage-
ment toepassingen). Deze alternatieve definities laten we buiten beschouwing.

-b- De praktische uitwerking van de identificeerbaarheidsdefinitie 4.2-1 resulteerde voor het

kwadraten-som criterium uit formule (2.4) uiteindelijk in het bepalen van de ‘numerieke
rang’ van de gevoeligheidsmatrix X (6*), respectievelijk X (6~), via gebruik van de SVD (zie
appendix B).
Uit deze SVD kan tevens nuttige informatie verkregen worden over het minimaliseren van het
criterium V' (8) in de buurt van 8*. De goed-gesteldheid van dit minimalisatie probleem wordt
immers bepaald door het conditie-getal van de Hessiaan H(6*), terwijl een eigenwaarden-
eigenvector decompositie van H (8"} inzicht in de nauwkeurigheid van de verkregen schat-
tingen levert. [Voor uitgebreidere informatie hierover zie met name Gill et al. [1981], secties
8.2.2 en 8.3.3; vergelijk ook Press et al. [1986], secties 14.4 en 14.5; Thacker [1989].] Nu
volgt uit (4.2-9) eenvoudig dat de SVD van de matrix X (6*) rechtstreeks bruikbaar is om
deze informatie over H(8*) te verkrijgen: immers indien de SVD van X(8*) gelijk is aan:

X )y=uvuzvT (C—1)
dan 1s
H(6") =2vETovT (C~2)

een eigenwaarden-eigenvector decompositie van H(6*).
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Het voorgaande maakt duidelijk dat de hier gehanteerde identificeerbaarheids-definitie, die
met name gericht was op het tweede aspect (locale uniciteit) uit sectie 4.1, ook sterk be-
trekking heeft op het derde aspect (goed-gesteldheid) uit sectie 4.1. Bovendien brengt boven-
staande redenering onze definitie in verband met de definitie gegeven in Chavent [1987] (zie
opmerking (a) hierboven).

Onze definitie van identificeerbaarheid was gebaseerd op een gedachten-experiment waarbij -
de meetdata exact verondersteld werden, en afkomstig waren van het achterliggende model
met parameter-waarden *. Dit resulteerde in een nadere studie van het minimalisatieprob-
leem voor het ( kunstmatige) criterium V().

Indien we daadwerkelijk met calibratie bezig gaan hebben we echter niet met het criterium -
V(8) te maken, maar met het criterium C(8) dat gebaseerd is op echte meetdata. De vraag
is nu gerechtigd wat onze beschouwingen op basis van V() vertellen over de te verwachten
identificeerbaarheidsproblemen bij het minimaliseren van C(9).

Om hierover enig licht te doen schijnen werken we de relatie tussen de gradiént en Hessiaan

van V(6) en C(8) uit:

ac(e) _ av(o)
80; 00,
25 uli) (o) — w0 e (©3)
i=1
8°C(0)  9?V(0)
30,06, 00,00,
o yat (i:0)
-2 Zw i) — ym (3:07))" Q 90,00, (C-4)

Noemen we de tweede term in het rechterlid van de vergelijkingen (C.3) en (C.4) respec-
tievelijk 7, en ry, dan kan worden aangetoond dat voor grote N (asymptotische anal-
yse), de bijdrage r;/N en ro/N in veel gevallen naar nul zal tenderen indien de residuen
y(?) — yam(i;6*) als onderling onafhankelijk en identiek verdeeld beschouwd kunnen wor-
den. Dit maakt aannemelijk dat de identificeerbaarheidsbeschouwingen op basis van V (6)
rechtstreeks bruikbaar zijn voor het criterium C(8).

Om de invloed van herparametrisatie na te gaan op de identificeerbaarheid, veronderstellen
we dat de getransformeerde parameter-vector gegeven wordt door 6 = g(0), waarbij g : R? —
RP een voldoend gladde één-één transformatie is. Laat h : R? — RP de corresponderende
inverse transformatie zijn (d.w.z. 6 = h(0)), dan kan via de ketting-regel worden afgeleid
dat de Hessiaan van V(h(8)) in §*(= g(0*)) gelijk is aan:

__ | a7 (0)
" a6

2V (h(9))
Lk

oV, [ahT(é)]T i (C—5)

NTE o6

Beperken we ons nader tot het gewogen kwadraten-som criterium uit (2.4), dan kan een
alternatieve uitdrukking worden afgeleid: Geheel in analogie met de uitdrukkingen (4.2-8)
n (4.2-9) kan de Hessiaan van V(h(#)) in §* uitgedrukt worden in termen van de eerste

T (7.8 ~
orde afgeleide a—y—"g—g’—’j—) m.b.t. de getransformeerde parametervector 8. Via de ketting-regel
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kan worden afgeleid dat deze grootheid gelijk is aan:

dyke(is0) _ | 0hT(0)| Bukz(i;0) _
00 "[ o0 ] a6 ©-9

Bovenstaande transformatie-formules vormen de ingrediénten om te onderzoeken hoe de.
identificeerbaarheid beinvloed wordt via herparametrisatie (zie Sorooshian en Gupta [1985]).

-e- Sorooshian en Gupta [1985] gebruiken de Hessiaan H(6*) ook als uitgangspunt voor hun
identificeerbaarheidsanalyse. Voor elke afzonderlijke parameter worden een tweetal ge-
ometrische grootheden gedefinieerd waarvan de ratio als maat wordt gehanteerd voor de
mogelijke effecten van parameter-interactie en compensatie op de identificeerbaarheid van
deze parameter.

De uitwerking die in appendix B gegeven werd van de identificeerbaarheids definitie
had betrekking op kwadraten-som criteria die aanleiding gaven tot een voldoend
gladde geassocieerde functie V(). Locale uniciteit van het minimum #* kon onder-
zocht worden op basis van het positief zijn van de Hessiaan. In situaties waarin V()
niet voldoende glad is kan deze benadering niet rechtstreeks gehanteerd worden. In
de nu volgende opmerking gaan we in op de mogelijkheden die we dan hebben.

Opmerking C-2 Het locaal uniek zijn van een continue functie V(0) in de buurt van het pa-
rameterpunt #* kan onderzocht worden door vanuit 8* in een willekeurige richting, gekarakteriseerd
door de ‘richtingsvector’ ¢ € RP, te ‘vertrekken’ en door de onderzoeken hoe de functie langs die
richting verandert. Definieer daartoe de continue functie:

Vo(h) := V(0" + h¢) (C-1)

waarbij A > 0 de stapgrootte in de richting ¢ weergeeft. Indien de eerste twee afgeleiden V/(h)
en V!'(h) voor 0 < h < § bestaan, en indien tevens hun limieten bestaan voor h | 0, dan zal de
functiewaarde V(-) toenemen ‘lopend’ in de richting ¢ (vanuit 6*), als er voldaan wordt aan de
volgende (voldoende) voorwaarde(n):

o )
%%WW)> 0 (C-8)

of (C-9)
limV/(h)=0 A limV/(h)>0
h10 hl0

Indien deze eigenschap voor willekeurige richtingen ¢ € RP geldt, dan zal #* een locaal uniek
minimum van V(#) zijn. Het checken van deze voorwaarde kan voor speciale situaties vereenvoudigd
worden tot:

e Voor functies V(8) die tweemaal continu differenticerbaar zijn in een omgeving van 6* kan
eenvoudig worden aangetoond dat bovenstaande eisen overeenkomen met het nul zijn van
de gradiént en het positief definiet zijn van de Hessiaan in 6*. Dit resulteert in wezen in de
procedure die in de hoofdtekst werd gepresenteerd.
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e Indien echter de eerste en tweede afgeleiden van V(0) in de omgeving van 0* bestaan*?, maar

niet continu zijn in #*, dan kunnen de bovenstaande voorwaarden in veel gevallen nader
uitgewerkt te worden tot een set eenvoudiger condities. Dit kan evenwel een bewerkelijke
taak zijn.

Als bovenstaande vereenvoudigingen niet haalbaar/geldig zijn, dan dienen alternatieve wegen be-
wandeld te worden om de locale uniciteit van een minimum aan te tonen. Indien kan worden.
aangetoond dat minimalisatie van V() in de buurt van 6* theoretisch gezien neer komt op het
minimaliseren van een andere functie W (6) in de buurt van 6%, dan kan een studie van de locale
uniciteit van het minimum van W () uitsluitsel geven over V (). Met name indien W (6) tweemaal
continu differentieerbaar is, dan kan dit onderzocht worden op basis van de gradiént en Hessiaan
van W(8) in 6*.

Deze techniek kan bijv. worden toegepast voor de niet-gladde ‘min-max’ (I;-norm) en ‘ab-
solute waarden-som’ (lo,-norm) criteria (zie Gill et al. [1981], sectie 4.2.3). Minimalisatie van
de bijbehorende V() zal i.h.a. theoretisch** gezien equivalent zijn met de minimalisatie van een
kwadraten-som criterium, zodat de theoretische identificeerbaarheidsbeschouwingen aan de hand
van gradiént en Hessiaan van dit kwadraten-som criterium kunnen plaats vinden.

43Uitgezonderd in 0~ zelf.
44Dit betekent evenwel niet dat de praktische aspecten van het daadwerkelijk optimaliseren van
het ‘min-max’ of ‘absolute waarden-som’ criterium ook equivalent zullen zijn met het geassocieerde
kwadraten-som criterium. Veelal zullen er andere numerieke procedures nodig zijn, en zal ook de
- geconditioneerdheid van het optimalisatieprobleem verschillen.
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