

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Probit function technical support document

Date:4 May 2018Document id:20180504-Nitrogen dioxide-INTERIMStatus:interimAuthor:L. Geraets (RIVM)

substance name	CAS number
Nitrogen dioxide	10102-44-0

This document describes the derivation of a probit function for application in a quantitative risk analysis (QRA). The probit function has been derived according to the methodology described in RIVM report 2015-0102.

This document has been checked for completeness by the Netherlands' National Institute of Public Health and the Environment (RIVM). The contents of this document, including the probit function, has been approved by the Dutch Expert Panel on Probit Functions on scientific grounds. External parties have had the opportunity to comment on the derivation of the proposed probit function. The status of this document has now been raised to "interim", pending a decision on its formal implementation.

The decision on actual implementation depends on the results of a further consequence analysis.

Detailed information on the procedures for the derivation, evaluation and formalization of probit functions is available at http://www.rivm.nl/en/Topics/P/Probit_functions

1 ว

Technical support document Nitrogen dioxide

2 3

1. Substance identification

4	CAS-number:	10102-44-0
5	IUPAC name:	nitrogen dioxide
6	Synonyms:	nitrogen(IV) oxide
7	Molecular formula:	NO ₂
8	Molecular weight:	46.0 g/mol
9	Physical state:	liquid (at 20°C and 101.3 kPa)
10	Boiling point:	21°C (at 101.3 kPa)
11	Vapour pressure:	96 kPa (at 20°C)
12	Saturated vapor conc:	960000 ppm = 1836 g/m ³ (at 20°C)
13	Conversion factor:	$1 \text{ mg/m}^3 = 0.523 \text{ ppm}$ (at 20°C and 101.3 kPa)
14		1 ppm = 1.913 mg/m ³ (at 20°C and 101.3 kPa)
15	Labelling:	H314-H330

16 17

18 2. Mechanism of action and toxicological effects following

19 acute exposure¹

Acute effects: NO_2 is an irritant to the mucous membranes and might cause 20 coughing and dysphoea during exposure. After less severe exposure, symptoms might 21 22 persist for several hours before subsiding. With more severe exposure, pulmonary 23 oedema ensues with signs of chest pain, cough, dyspnoea, cyanosis and moist rales 24 heard on auscultation. Lethality results from bronchospasm and pulmonary oedema in 25 association with hypoxemia and respiratory acidosis, metabolic acidosis, shift of the 26 oxyhaemoglobin dissociation curve to the left, and arterial hypotension. A 27 characteristic of NO_2 intoxication after the acute phase is a period of apparent 28 recovery followed by late-onset bronchiolar injury that manifests as bronchiolitis 29 fibrosa obliterans as long-term effect. 30 Long-term effects: Epidemiology studies on the long-term effects of elevated 31 concentrations of NO₂ are conflicting. It is likely that increases in respiratory illnesses 32 are from NO₂ in combination with other pollutants and that short-term peak

- 33 concentrations are more detrimental than chronic, low-level exposures.
- 34 35

36 3. Human toxicity data

According to AEGL (2012), exposure to NO₂ at >15 ppm (29 mg/m³) causes immediate irritation with pulmonary oedema followed by a latent period of apparent recovery in healthy individuals. A second phase of symptoms can occur after several hours or days, which include fever with progressively more severe dyspnea, cyanosis, and cough, and inspiratory and expiratory rales. The concentration causing death in humans is approximately \geq 150 ppm (\geq 287 mg/m³), but no duration of exposure was presented.

- 44 Most case reports do not present information on exposure concentrations or
- 45 durations; however, welders exposed to 30 and 90 ppm (57 and 172 mg/m³) for 40
- 46 min experienced varying degrees of dyspnea, cough, headache, chest tightness,
- 47 nausea, and cyanosis, and hospitalization was required for pulmonary edema at the
- 48 higher concentration (AEGL, 2012).
- 49

50 In a human volunteer study, healthy adults (n=10-14/group) were exposed for 2h to 51 0.5-30 ppm (0.96-57 mg/m³) nitrogen dioxide (Henschler et al., 1960). They reported 52 that a 2-h exposure to NO₂ at 20 ppm (38 mg/m³) did not cause any irritation when 53 preceded by several exposures to lower concentrations during the preceding days; 54 however, exposure at 30 ppm (57 mg/m³) for 2h caused definite discomfort. Three

¹ AEGL (2012)

- 1 individuals exposed to NO_2 at 30 ppm (57 mg/m³) for 2h perceived an intense odour
- 2 on entering the chamber; odour detection quickly diminished and was completely
- absent after 25-40 min. One individual experienced a slight tickling of the nose and
- 4 throat mucous membranes after 30 min, and the others after 40 min. All subjects
- experienced a burning sensation after 70 min and an increasingly severe cough for
 the next 10-20 min, but coughing decreased after 100 min. However, the burning
- refer to the next 10-20 min, but coughing decreased after 100 min. However, the burning
 sensation continued and moved into the lower sections of the airways and was finally
- 8 felt deep in the chest. At that time, marked sputum secretion and dyspnea were
- 9 noted. Toward the end of the exposure, the subjects reported the exposure conditions
- 10 to be bothersome and barely tolerable. A sensation of pressure and increased sputum
- 11 secretion continued for several hours after cessation of exposure.
- 12 The following effects were noted:
- 13 0.5 ppm (0.96 mg/m³): metallic taste
- 14 1.5 ppm (2.9 mg/m³): dryness of the throat
- 15 4 ppm (7.7 mg/m³): sensation of constriction
- 16 25 ppm (48 mg/m³): prickling of the nose
- 17 30 ppm (57 mg/m³): burning sensation in nose and chest, cough, dyspnea, sputum 18 production
- 18 production
- 20

30

31

32

34

35

21 **4. Animal acute toxicity data**

- During the literature search the following technical support documents and databaseswere consulted:
- AEGL final TSD, ERPG document and EU RAR and reference database for nitrogen dioxide, covering references before and including 1995.
- An additional search covering publications from 1980 onwards was performed in
 HSDB, MEDline/PubMed, Toxcenter, IUCLID, ECHA, RTECS, IRIS and ToxNet with
 the following search terms:
 - Substance name and synonyms
 - CAS number
 - lethal*
 - mortal*
- 33 fatal*
 - LC₅₀, LC
 - probit
- 36 3. Unpublished data were sought through networks of toxicological scientists. 37

Animal lethal toxicity data focused on acute exposure are described in Appendix 1. A total of 9 studies were identified -with 19 datasets for 6 species- with data on lethality following acute inhalation exposure. Five datasets were assigned status A for deriving the human probit function, no datasets were assigned status B and 14 were assessed to be unfit (status C) for human probit function derivation.

44 Sensory irritation

- 45 No studies on sensory irritation were found.
- 46

43

47

48 5. Probit functions from individual studies

- 49 All available acute lethality data on nitrogen dioxide are displayed in Figure 1.
- 50

Figure 1 All available acute lethality data for nitrogen dioxide.

5 The data that were selected for initial analysis of the animal probit function are
6 presented in Table 1 and Figure 2.
7

8 All B2 studies were selected for derivation of the animal probit function for nitrogen9 dioxide.

10

1 2

3 4

11 Probit functions have been calculated and reported in Appendix 1 for each of the 12 reported studies. The results of the calculations are presented in Table 1.

- 13
- 14

Table 1 Data selected for initial analysis of the animal probit function of nitrogen dioxide.

Study ID	Species	Probit (C in mg/m ³ , t in min)	LC ₅₀ , 30 minutes (mg/m ³) 95% C.I. <u>(underline italic for</u> <u>scaled values)</u>	n-value 95% C.I.
B2.1	Rat	-20.5 + 3.97×Inc + 1.04×Int	254 (228-280)	3.81 (3.10-4.52)
B2.2	Mouse	-36.5 + 6.76×Inc + 1.53×Int	214 (201-227)	4.41 (3.84-4.99)
B2.3	Guinea pig	-11.2 + 2.64×Inc + 0.686×Int	186 (144-238)	3.85 (2.05-5.66)
B2.4	Rabbit	-10.3 + 2.23×Inc + 0.658×Int	355 (285-587)	3.39 (2.10-4.68)
B2.5	Dog	-28.9 + 5.31×Inc + 1.18×Int	278 (172-369)	4.50 (1.83-7.16)

17

18 The data of the rat B2.1, mouse B2.2, guinea pig B2.3, rabbit B2.4 and dog B2.5

19 studies are presented graphically below.

Figure 2 Data selected for the initial analysis for the derivation of the animal probit function of nitrogen dioxide.

1 2

Based on criteria outlined in the guideline the data from the rat B2.1, mouse B2.2,
guinea pig B2.3, rabbit B2.4 and dog B2.5 studies were selected for the final dataset
for the derivation of the animal probit function. The reason for including these studies
is that the studies are considered to be of sufficient quality, including sufficient C x t
combinations.
Figure 3 provides an overview of LC₅₀ values and LC₅₀-time relationships for all
studies in the final analysis. The data that were selected for final analysis of the

13 animal probit function are presented in Table 2 and Figure 4.

14

15 The final data eligible for calculating the animal probit function contains 5 datasets

- 16 from one study and includes data from 5 animal species.
- 17

Table 2Data selected for the derivation of the animal probit function of nitrogen
dioxide (identical to table 1).

Study ID	Species	Probit (C in mg/m ³ , t in min)	LC ₅₀ , 30 minutes (mg/m ³) 95% C.I. <u>(underline italic for</u> <u>scaled values)</u>	n-value 95% C.I.
B2.1	Rat	-20.5 + 3.97×Inc + 1.04×Int	254 (228-280)	3.81 (3.10-4.52)
B2.2	Mouse	-36.5 + 6.76×Inc + 1.53×Int	214 (201-227)	4.41 (3.84-4.99)
B2.3	Guinea pig	-11.2 + 2.64×Inc + 0.686×Int	186 (144-238)	3.85 (2.05-5.66)
B2.4	Rabbit	-10.3 + 2.23×Inc + 0.658×Int	355 (285-587)	3.39 (2.10-4.68)
B2.5	Dog	-28.9 + 5.31×Inc + 1.18×Int	278 (172-369)	4.50 (1.83-7.16)

The data of the selected datasets are presented graphically below.

Figure 4 Final data selected for derivation of the animal probit function of nitrogen dioxide (identical to figure 2).

6. Derivation of the human probit function

8 To derive the human probit function the results from the rat B2.1, mouse B2.2,
9 guinea pig B2.3, rabbit B2.4 and dog B2.5 studies have been used to derive a point of
10 departure as outlined above.

The arithmetic mean n-value was calculated from the rat B2.1, mouse B2.2, guinea pig B2.3, rabbit B2.4 and dog B2.5 studies. The species-specific n-value was 3.81 for the rat, 4.41 for the mouse, 3.85 for the guinea pig, 3.39 for the rabbit, and 4.50 for the dog. The arithmetic mean n-value across species is the arithmetic mean of the species-specific mean n-values, without weight and was calculated to be 3.99.

17

11

2 3

4

5 6 7

The species-specific LC₅₀-values, calculated for a common exposure duration of 30 minutes, were 254 mg/m³ for the rat (study B2.1), 214 mg/m³ for the mouse (study B2.2), 186 mg/m³ for the guinea pig (study B2.3), 355 mg/m³ for the rabbit (study B2.4) and 278 mg/m³ for the dog (study B2.5). From these, a geometric mean overall LC₅₀-value of 251 mg/m³ was calculated from the available LC₅₀ values (one per species) according to the general formula for the geometric mean of time-scaled LC₅₀values below:

25

$$\overline{LC_{50}} = \left[\prod_{j=1}^{s} LC_{50,j}\right]^{(1/s)}$$

26

27	With	$\overline{LC_{50}}$ = geometric mean LC ₅₀ -value across species
28		$LC_{50,i} = LC_{50}$ -value of species j.
29		s = number of species for which LC_{50} -values are pooled (j = 1s).
30		
31	Hence,	the Point of Departure for the human probit function is a 30-minute geometric
32	mean ai	nimal LC ₅₀ value of 251 mg/m ³ and an arithmetic mean n-value of 3.99 .

Application of an overall assessment factor of 3 (determined by an interspecies factor 1 of 3) would result in a 60-min LC_{01} of 22 mg/m³ (corresponding probit function and 2 resultant LC-values not shown), which is in conflict with human data. Henschler et al. 3 4 (1960) performed several experiments on healthy, male volunteers. They reported that a 2-h exposure to NO_2 at 20 ppm (38 mg/m³) did not cause any irritation when 5 preceded by several exposures to lower concentrations during the preceding days. 6 7 Exposure to 57 mg/m³ for 2 h resulted in marked irritation, discomfort and 8 respiratory effects (burning sensation in nose and chest, cough, dysphoea, sputum 9 production). See section 3 of this TSD for details on this human volunteer study. 10 Therefore, the interspecies assessment factor is lowered to 1, resulting in LC-values that are less conflicting with these human data. 11 12 13 Further, species variability has been summarized by AEGL (2012) as follows: 14 "Several studies indicate that there is a size-dependent species sensitivity to NO₂; larger animals are apparently less sensitive than smaller animals. Dogs showed only 15 16 mild signs of irritation at concentrations that caused pulmonary edema in rats (Carson et al. 1962). Dogs also survived exposures to NO₂ at 1,000 ppm (1913 mg/m³) for 17 136 min and at 5,000 ppm (9565 mg/m^3) for up to 22 min (Greenbaum et al. 1967) 18 19 and sheep survived exposure at 500 ppm (957 mg/m^3) for 15-20 min (Januszkiewicz 20 and Mayorga 1994). In contrast, 15-min and 1-h LC₅₀ values in the rat were 201-420 $(385-803 \text{ mg/m}^3)$ and 115-168 ppm $(220-321 \text{ mg/m}^3)$, respectively (Gray et al. 21 1954; Carson et al. 1962). On the basis of the available data, humans are not more 22 23 sensitive than larger laboratory animals. For example, irritation was reported for 24 humans exposed to NO₂ at 30 ppm (57 mg/m³) for 2 h (Henschler et al. 1960), dogs exposed at 20 ppm (38 mg/m³) for 24 h (Hine et al. 1970), and monkeys exposed at 25 35 ppm (70 mg/m^3) for 2 h (Henry et al. 1969). 26 Elsayed et al. (2002) examined species variability to NO_2 through dosimetry; the 27 28 calculated total inspired dose from experimental measurements in rats and sheep was

compared with the theoretical dose of an average human. Whether normalized for

- body weight, lung volume, or alveolar surface area, the total effective dose was
 greater in rats then sheep then humans. Taking physiologic and anatomical factors
 into consideration, rats had a much higher effective dose than the larger animals. The
 authors concluded that NO₂ toxicity is associated with inhaled-dose distribution per
 unit lung volume or lung surface rather than per unit body mass (Elsayed et al.
 2002)."
- 35 2 36
- 30 37

The human equivalent LC₅₀ was calculated by applying the following assessment factors:

- 40
- 41 **Table 3** Rationale for the applied assessment factors.

Assessment factor for:	Factor	Rationale
Animal to human extrapolation:	1	Default value of 3 was reduced to 1, see text above
Nominal concentration	1	B2-studies with analytically determined concentrations; however, only target concentrations presented
Adequacy of database:	1	The database consists of one well-performed B2 study with 5 datasets

42

43 The estimated human equivalent 30-minute LC_{50} value is 251 / 1 = **251 mg/m³**. 44

45 The experimentally determined n-value was **3.99** (arithmetic mean of the rat B2.1,

46 mouse B2.2, guinea pig B2.3, rabbit B2.4 and dog B2.5 studies). Assuming a

1 regression coefficient (b×n) of 2 for the slope of the curve, the b-value can be 2 calculated as 2 / n = 0.50.

3

7

The human probit function is then calculated on the human equivalent 30 min LC_{50} using the above parameters to solve the following equation to obtain the a-value (the

6 intercept): $5 = a + 0.50 \times \ln (251^{3.99} \times 30)$ resulting in the a-value of **-7.76**.

8 Pr = -7.76 + 0.50 × In (C $^{3.99}$ × t) with C in mg/m³ and t in min.

The derived human probit function has a scientifically sound basis. The probit function
is based on five datasets (derived from one study) with B2 quality (rat, mouse,
guinea pig, rabbit, dog), including in total 102 C x t combinations, and lethality in the
range of 0-100%.

14

The calculated human 60 min $LC_{0.1}$ (Pr = 1.91) calculated with this probit equation is 46 mg/m³ and the calculated human 60 min LC_1 (Pr = 2.67) is 67 mg/m³.

17

18

Table 4 LC-vales calculated with the derived probit function compared with existing
 acute inhalation exposure guidelines.

Estimated level	30 min (mg/m ³)	60 min (mg/m ³)
0.1% lethality, this probit	54	46
1% lethality, this probit	79	67
AEGL-3 ² (2012, final)	48	38
ERPG-3 ² (2003)	-	57
LBW (2016)	150	120

21

22 Compared with equivalent (inter)national guideline levels as presented in the table

above, the lethal levels derived with this probit function are approximately identical,

24 except for the LBW which is higher.

25 It is noted that the available animal data (including non-human primate data) indicate

that the derived probit function may overestimate the human lethality.

 $^{^{2}}$ AEGL and ERPG values were converted from ppm to mg/m³ with the conversion factor calculated in section 1. Therefore, the AEGL and ERPG values in mg/m³ can deviate slightly from those reported in the AEGL and ERPG TSDs.

Animal experimental research Appendix 1 1

2

Study ID: B2.1 3

4

Author, year: Hine et al, 1970

5 6 Substance: Nitrogen dioxide

Species, strain, sex: rat, Long-Evans, males

- 7 Number/sex/concentration group: variable number/group (range: 4-31) 8
- Age and weight: No information available on age of the animals; 200±50 g 9
- 10 Observation period: varying from 30 to 360 days
- 11

Evaluation of study quality 12

Criteria	Comment
Study carried out according to GLP	GLP did not exist at the time
Study carried out according to OECD 403 guideline(s)	OECD guideline 403 did not exist at the time
Stability of test compound in test atmosphere	The temperature of the hood (in which the delivery apparatus for the gas mixture was enclosed) was maintained at 30°C in order to prevent NO ₂ in the reservoir from condensing. No further information provided.
Use of vehicle (other than air)	N/A
Whole body / nose-only (incl. head/nose-only) exposure	Whole body
Type of restrainer	N/A
Pressure distribution	To protect the experimenters from accidental leaks, the delivery apparatus was enclosed in a separately ventilated hood with a sliding glass front. The temperature of the hood was maintained at approximately 30°C in order to prevent the NO ₂ in the reservoir from condensing, giving uneven concentrations or causing mechanical difficulties by plugging of the line.
Homogeneity of test atmosphere in breathing zone of animals	Test atmosphere was generated by mixing NO ₂ with air drawn from the room. Adequate mixing of chamber air was obtained by baffle plates and circulating fans.
Number of air changes per hour	5-20 air changes/hour. Exposures were carried out in chambers of 200, 1000 and 10,000 liter capacity; not specified which chamber volume was used for which species. It is however stated that the animal volume to chamber volume ratio never exceeded 1:50.
Equilibration time (t95)	Insufficient information to calculate t95
Start of exposure relative to equilibration	No information

Actual concentration measurement	NO ₂ was determined spectrophotometrically. Once an equilibrium state was reached the concentrations were monitored with a frequency commensurate with the duration of exposure, generally hourly.
Particle size distribution measurement in breathing zone of the animals in case of aerosol exposure	N/A
Assessment of Reliability	B2 Well-performed study, including multiple concentration-time combinations. However, only the target concentrations were presented.

Additional remark:

The authors state that "Death generally occurred within 2 to 8 hours after the time of gassing, and the majority of deaths occurred within 24 hours". 3 4

5

6

7 Results

Species	Concentration (mg/m ³)		Exposure duration (min)	Lethality
	Target	Adjusted		Male
				Dead/tested
Rat	9.6	N/A	No deaths, time	e increments up to and
Rat	19	N/A	including 1440 mir	n. However no information
Rat	38	N/A	on total number of a	animals per group. In total
Rat	77	Ν/Δ	60	0/6
Rat	77	N/A	480	0/6
Rat	77	N/A	1440	0/10
Rat	96	N/A	60	0/17
Rat	96	N/A	120	0/12
Rat	96	N/A	240	0/12
Rat	96	N/A	480	0/12
Rat	96	N/A	1440	3/10
Rat	124	N/A	120	0/9
Rat	144	N/A	60	3/31
Rat	144	N/A	120	1/12
Rat	144	N/A	240	7/12
Rat	144	N/A	480	12/12
Rat	163	N/A	60	6/12
Rat	163	N/A	240	5/10
Rat	191	N/A	30	0/5
Rat	191	N/A	60	3/5
Rat	191	N/A	120	8/8
Rat	191	N/A	150	9/11
Rat	191	N/A	180	10/10
Rat	191	N/A	240	29/29
Rat	287	N/A	30	2/10
Rat	287	N/A	60	10/13
Rat	287	N/A	120	10/12

20180504-Nitrogen dioxide-INTERIM

Rat	287	N/A	240	4/4
Rat	383	N/A	5	6/12
Rat	383	N/A	10	8/12
Rat	383	N/A	20	5/5
Rat	383	N/A	30	4/4
Rat	459	N/A	20	4/4
Rat	478	N/A	5	2/4
Rat	478	N/A	10	2/4
Rat	478	N/A	20	4/4

1

2

3

4 Probit function

5 The probit function and associated LC-values have been calculated using the

6 DoseResp program (Wil ten Berge, 2016) as

7 $Pr = a + b \times InC + c \times Int$

8 with C for concentration in mg/m^3 , t for time in minutes. 9

Probit function	Species	а	b	С	n-value
	Rat	-20.5	3.97	1.04	3.810 (3.097-4.524)

10

1	1	

Duration (min.)	LC ₅₀ (mg/m ³) 95%-C.I. Male
10	338 (291-390)
30	254 (228-280)
60	211 (194-229)

12 13

14 A graphical overview of the data is presented below. Each concentration-time

15 combination (with 4-31 male animals) represents one point in the plot.

1 Study ID: B2.2

2

2

year: Hine et al, 1970

3 Author, year: Hii
4 Substance: Nitrogen dioxide

- 5 Species, strain, sex: mouse, Swiss-Webster, males
- 6 Number/sex/concentration group: variable number/group (range: 5-14)
- 7 Age and weight: age not specified ("young mice"); 20 ± 3 g
- 8 Observation period: varying from 30 to 360 days
- 9

Evaluation of study quality

Criteria	Comment
Study carried out according to GLP	GLP did not exist at the time
Study carried out according to OECD 403 guideline(s)	<i>OECD guideline 403 did not exist at the time</i>
Stability of test compound in test atmosphere	The temperature of the hood (in which the delivery apparatus for the gas mixture was enclosed) was maintained at 30°C in order to prevent NO ₂ in the reservoir from condensing. No further information provided.
Use of vehicle (other than air)	N/A
Whole body / nose-only (incl. head/nose-only) exposure	Whole body
Type of restrainer	N/A
Pressure distribution	To protect the experimenters from accidental leaks, the delivery apparatus was enclosed in a separately ventilated hood with a sliding glass front. The temperature of the hood was maintained at approximately 30°C in order to prevent the NO ₂ in the reservoir from condensing, giving uneven concentrations or causing mechanical difficulties by plugging of the line.
Homogeneity of test atmosphere in breathing zone of animals	Test atmosphere was generated by mixing NO ₂ with air drawn from the room. Adequate mixing of chamber air was obtained by baffle plates and circulating fans.
Number of air changes per hour	5-20 air changes/hour. Exposures were carried out in chambers of 200, 1000 and 10,000 liter capacity; not specified which chamber volume was used for which species. It is however stated that the animal volume to chamber volume ratio never exceeded 1:50. Insufficient information to calculate t95
Equilibration time (195)	No information
equilibration	

NO_2 was determined		
spectrophotometrically.		
Once an equilibrium state was reached		
the concentrations were monitored with		
a frequency commensurate with the		
duration of exposure, generally hourly.		
N/A		
B2		
Well-performed study, including		
multiple concentration-time		
combinations. However, only the target		
concentrations were presented.		

Additional remark:

The authors state that "Death generally occurred within 2 to 8 hours after the time of gassing, and the majority of deaths occurred within 24 hours".

3 4 5

6

7 Results

Species	Concentration (mg/m ³)		Exposure duration (min)	Lethality
	Target	Adjusted		Male
				Dead/tested
Mouse	9.6	N/A	No deaths, tim	e increments up to and
Mouse	19	N/A	including 1440 mi	n. However no information
Mouse	38	N/A	on total number	of animals per group. In
			total 52	2 mice exposed.
Mouse	77	N/A	60	0/13
Mouse	86	N/A	180	0/10
Mouse	96	N/A	60	0/5
Mouse	96	N/A	120	0/5
Mouse	96	N/A	240	0/5
Mouse	96	N/A	480	0/5
Mouse	96	N/A	1440	5/10
Mouse	144	N/A	60	1/6
Mouse	144	N/A	120	2/6
Mouse	144	N/A	240	5/6
Mouse	144	N/A	480	6/6
Mouse	191	N/A	30	2/10
Mouse	191	N/A	60	8/10
Mouse	191	N/A	120	13/14
Mouse	191	N/A	240	10/10
Mouse	191	N/A	480	10/10
Mouse	239	N/A	5	0/6
Mouse	239	N/A	30	4/6
Mouse	239	N/A	60	6/6
Mouse	239	N/A	240	6/6
Mouse	383	N/A	5	4/6
Mouse	383	N/A	10	6/6
Mouse	383	N/A	20	6/6

1 **Probit function**

- 2 The probit function and associated LC-values have been calculated using the
- 3 DoseResp program (Wil ten Berge, 2016) as
- 4 $Pr = a + b \times InC + c \times Int$
- 5 with C for concentration in mg/m^3 , t for time in minutes. 6

Probit function	Species	а	b	С	n-value
	Mouse	-36.5	6.76	1.53	4.414 (3.842-4.986)

7

Duration (min.)	LC ₅₀ (mg/m ³) 95%-C.I. Male
10	275 (252-299)
30	214 (201-227)
60	183 (173-192)

8 A graphical overview of the data is presented below. Each concentration-time

9 combination (with 5-14 male animals) represents one point in the plot.

10

Study ID: B2.3 1

2

3

Hine et al, 1970

Author, year: Hin Substance: Nitrogen dioxide 4

- 5 Species, strain, sex: guinea pig, strain not specified, male+female
- Number/sex/concentration group: variable number/group (range: 2-6) 6
- 7 Age and weight: No information available on age of the animals; 3.0±1.0 kg

8 Observation period: varying from 30 to 360 days

9

Evaluation of study quality

Criteria	Comment
Study carried out according to GLP	GLP did not exist at the time
Study carried out according to OECD 403 guideline(s)	OECD guideline 403 did not exist at the time
Stability of test compound in test atmosphere	The temperature of the hood (in which the delivery apparatus for the gas mixture was enclosed) was maintained at 30°C in order to prevent NO ₂ in the reservoir from condensing. No further information provided.
Use of vehicle (other than air)	N/A
Whole body / nose-only (incl. head/nose-only) exposure	Whole body
Type of restrainer	N/A
Pressure distribution	To protect the experimenters from accidental leaks, the delivery apparatus was enclosed in a separately ventilated hood with a sliding glass front. The temperature of the hood was maintained at approximately 30°C in order to prevent the NO ₂ in the reservoir from condensing, giving uneven concentrations or causing mechanical difficulties by plugging of the line.
Homogeneity of test atmosphere in breathing zone of animals	Test atmosphere was generated by mixing NO ₂ with air drawn from the room. Adequate mixing of chamber air was obtained by baffle plates and circulating fans.
Number of air changes per hour Equilibration time (t95)	5-20 air changes/hour. Exposures were carried out in chambers of 200, 1000 and 10,000 liter capacity; not specified which chamber volume was used for which species. It is however stated that the animal volume to chamber volume ratio never exceeded 1:50. Insufficient information to calculate t95
Start of exposure relative to	No information
equilibration	

Actual concentration measurement	NO ₂ was determined spectrophotometrically. Once an equilibrium state was reached the concentrations were monitored with a frequency commensurate with the duration of exposure, generally hourly.
Particle size distribution measurement in breathing zone of the animals in case of aerosol exposure	N/A
Assessment of Reliability	B2 Well-performed study, including multiple concentration-time combinations. However, only the target concentrations were presented.

Additional remark:

3 The authors state that "Death generally occurred within 2 to 8 hours after the time of

4 gassing, and the majority of deaths occurred within 24 hours".

5

6

7 Results

Species	Concentration (mg/m ³)		Exposure duration (min)	Lethality
	Target	Adjusted		Male+ female
				Dead/tested
Guinea pig	9.6	N/A	No deaths, time increments up to and includir	
Guinea pig	19	N/A	1440 min. However no information on total	
Guinea pig	38	N/A	number of animals pe	er group. In total 18 guinea
			pigs exposed.	
Guinea pig	77	N/A	60	0/6
Guinea pig	77	N/A	480	2/6
Guinea pig	96	N/A	60	1/6
Guinea pig	96	N/A	120	1/6
Guinea pig	96	N/A	480	4/6
Guinea pig	144	N/A	60	1/4
Guinea pig	144	N/A	120	3/4
Guinea pig	144	N/A	240	2/4
Guinea pig	144	N/A	480	4/4
Guinea pig	191	N/A	30	1/2
Guinea pig	191	N/A	60	2/2
Guinea pig	191	N/A	120	3/4
Guinea pig	287	N/A	30	3/4
Guinea pig	287	N/A	120	3/3
Guinea pig	383	N/A	5	2/2

8 9

10 Probit function

11 The probit function and associated LC-values have been calculated using the

12 DoseResp program (Wil ten Berge, 2016) as

- 13 $Pr = a + b \times InC + c \times Int$
- 14 with C for concentration in mg/m^3 , t for time in minutes.

Probit function Species a b c n-value	
---------------------------------------	--

Guinea	-11.2	2.64	0.686	3.854 (2.051-5.657)
pig				

Duration (min.)	LC ₅₀ (mg/m ³) 95%-C.I. Male+female
10	247 (169-359)
30	186 (144-238)
60	155 (129-186)

A graphical overview of the data is presented below. Each concentration-time combination (with 2-6 male and female animals) represents one point in the plot.

Study ID: B2.4 1

2

3

Hine et al, 1970

Author, year: Hin Substance: Nitrogen dioxide 4

- Species, strain, sex: rabbit, strain not specified, male+female 5
- Number/sex/concentration group: variable number/group (range: 2-8) 6
- 7 Age and weight: No information available on age of the animals; 2.5±0.5 kg

8 Observation period: varying from 30 to 360 days

9

Evaluation of study quality

10

Criteria	Comment
Study carried out according to GLP	GLP did not exist at the time
Study carried out according to OECD 403 guideline(s)	<i>OECD guideline 403 did not exist at the time</i>
Stability of test compound in test atmosphere	The temperature of the hood (in which the delivery apparatus for the gas mixture was enclosed) was maintained at 30°C in order to prevent NO ₂ in the reservoir from condensing. No further information provided.
Use of vehicle (other than air)	N/A
Whole body / nose-only (incl. head/nose-only) exposure	Whole body
Type of restrainer	N/A
Pressure distribution	To protect the experimenters from accidental leaks, the delivery apparatus was enclosed in a separately ventilated hood with a sliding glass front. The temperature of the hood was maintained at approximately 30°C in order to prevent the NO ₂ in the reservoir from condensing, giving uneven concentrations or causing mechanical difficulties by plugging of the line.
Homogeneity of test atmosphere in breathing zone of animals	Test atmosphere was generated by mixing NO ₂ with air drawn from the room. Adequate mixing of chamber air was obtained by baffle plates and circulating fans.
Number of air changes per hour	5-20 air changes/hour. Exposures were carried out in chambers of 200, 1000 and 10,000 liter capacity; not specified which chamber volume was used for which species. It is however stated that the animal volume to chamber volume ratio never exceeded 1:50.
Equilibration time (t95)	Insufficient information to calculate t95
equilibration	ινο ιπιοτπάτιοη

Actual concentration measurement	NO ₂ was determined spectrophotometrically. Once an equilibrium state was reached the concentrations were monitored with a frequency commensurate with the duration of exposure, generally hourly.
Particle size distribution measurement in breathing zone of the animals in case of aerosol exposure	N/A
Assessment of Reliability	B2 Well-performed study, including multiple concentration-time combinations. However, only the target concentrations were presented.

Additional remark:

3 The authors state that "Death generally occurred within 2 to 8 hours after the time of

4 gassing, and the majority of deaths occurred within 24 hours".

5

6

7 Results

Species	Concentration (mg/m ³)		Exposure duration (min)	Lethality
	Target	Adjusted		Male+ female
				Dead/tested
Rabbit	9.6	N/A	No deaths, time incre	ements up to and including
Rabbit	19	N/A	1440 min. Howeve	r no information on total
Rabbit	38	N/A	number of animal	s per group. In total 12
Rabbit	96	N/A	60	0/4
Rabbit	96	N/A	480	0/4
Rabbit	96	N/A	1440	0/4
Rabbit	144	N/A	60	1/8
Rabbit	144	N/A	120	0/6
Rabbit	144	N/A	240	2/8
Rabbit	144	N/A	480	6/8
Rabbit	191	N/A	30	1/3
Rabbit	191	N/A	60	0/4
Rabbit	191	N/A	120	2/4
Rabbit	191	N/A	240	3/4
Rabbit	287	N/A	5	0/2
Rabbit	287	N/A	60	1/6
Rabbit	287	N/A	240	3/4
Rabbit	383	N/A	5	0/2
Rabbit	383	N/A	10	1/2
Rabbit	383	N/A	20	2/4

8 9

10 Probit function

- 11 The probit function and associated LC-values have been calculated using the
- 12 DoseResp program (Wil ten Berge, 2016) as

13 $Pr = a + b \times InC + c \times Int$

- 14 with C for concentration in mg/m^3 , t for time in minutes.
- 15

Probit function	Species	а	b	С	n-value
	Rabbit	-10.3	2.23	0.658	3.390 (2.102-4.678)

Duration (min.)	LC ₅₀ (mg/m ³) 95%-C.I. Male+female
10	491 (358-940)
30	355 (285-587)
60	289 (243-442)

A graphical overview of the data is presented below. Each concentration-time combination (with 2-8 male and female animals) represents one point in the plot.

Study ID: B2.5 1

2

3

Hine et al, 1970

Author, year: Hin Substance: Nitrogen dioxide 4

5 Species, strain, sex: dog, strain not specified, male+female

Number/sex/concentration group: variable number/group (range: 1-4) 6

7 Age and weight: No information available on age of the animals; 10±4.0 kg

8 Observation period: varying from 30 to 360 days

9

Evaluation of study quality

Criteria	Comment
Study carried out according to GLP	GLP did not exist at the time
Study carried out according to OECD 403 guideline(s)	<i>OECD guideline 403 did not exist at the time</i>
Stability of test compound in test atmosphere	The temperature of the hood (in which the delivery apparatus for the gas mixture was enclosed) was maintained at 30°C in order to prevent NO ₂ in the reservoir from condensing. No further information provided.
Use of vehicle (other than air)	N/A
Whole body / nose-only (incl. head/nose-only) exposure	Whole body
Type of restrainer	N/A
Pressure distribution	To protect the experimenters from accidental leaks, the delivery apparatus was enclosed in a separately ventilated hood with a sliding glass front. The temperature of the hood was maintained at approximately 30°C in order to prevent the NO ₂ in the reservoir from condensing, giving uneven concentrations or causing mechanical difficulties by plugging of the line.
Homogeneity of test atmosphere in breathing zone of animals	Test atmosphere was generated by mixing NO_2 with air drawn from the room. Adequate mixing of chamber air was obtained by baffle plates and circulating fans.
Number of air changes per hour	5-20 air changes/hour. Exposures were carried out in chambers of 200, 1000 and 10,000 liter capacity; not specified which chamber volume was used for which species. It is however stated that the animal volume to chamber volume ratio never exceeded 1:50.
Equilibration time (195)	Insufficient information to calculate t95
Start of exposure relative to equilibration	NO INFORMATION

Actual concentration measurement	NO_2 was determined
	spectrophotometrically.
	Once an equilibrium state was reached
	the concentrations were monitored with
	a frequency commensurate with the
	duration of exposure, generally hourly.
Particle size distribution measurement	N/A
in breathing zone of the animals in case	
of aerosol exposure	
Assessment of Reliability	B2
	Well-performed study, including
	multiple concentration-time
	combinations. However, only the target
	concentrations were presented.

Additional remark:

3 The authors state that "Death generally occurred within 2 to 8 hours after the time of

4 gassing, and the majority of deaths occurred within 24 hours".

5

6

7 Results

Species	Concentration (mg/m ³)		Exposure duration (min)	Lethality	
	Target	Adjusted		Male+ female	
				Dead/tested	
Dog	9.6	N/A	No deaths, time increments up to and including		
Dog	19	N/A	1440 min. However no information on total		
Dog	38	N/A	number of animals per group. In total 4 dogs		
			exposed.		
Dog	77	N/A	480	0/3	
Dog	96	N/A	60 0/1		
Dog	96	N/A	120 0/2		
Dog	96	N/A	240 0/2		
Dog	96	N/A	480 0/2		
Dog	144	N/A	60 0/2		
Dog	144	N/A	120	0/2	
Dog	144	N/A	240	1/3	
Dog	144	N/A	480 1/4		
Dog	191	N/A	30 0/2		
Dog	191	N/A	120 1/3		
Dog	191	N/A	240 2/2		
Dog	287	N/A	60 2/3		
Dog	383	N/A	20	2/2	

8

9 10 **Probit function**

11 The probit function and associated LC-values have been calculated using the

12 DoseResp program (Wil ten Berge, 2016) as

13 $Pr = a + b \times InC + c \times Int$

14 with C for concentration in mg/m^3 , t for time in minutes.

15

Probit function	Species	а	b	С	n-value
	Dog	-28.9	5.31	1.18	4.495 (1.826-7.164)

20180504-Nitrogen dioxide-INTERIM

Duration (min.)	LC ₅₀ (mg/m ³) 95%-C.I. Male+female
10	354 (161-535)
30	278 (172-369)
60	238 (176-296)

A graphical overview of the data is presented below. Each concentration-time combination (with 1-4 male and female animals) represents one point in the plot.

Study ID: C studies

1 2 3

Steadman et al., 1966 exposed rats, guinea pigs, rabbits, monkeys and dogs for 8 4 5 hours to 123 mg/m³ nitrogen dioxide (whole-body, simultaneously). Signs of eye and 6 nose irritation were noted during the first hour of exposure, accompanied by anorexia 7 and lethargy. The dogs appeared to be the least affected. Lethality ratios after 20 8 days were 6/15 for rats, 13/15 for guinea pigs, 1/3 for rabbit, 2/2 for dog, 3/3 for monkey. All deaths occurred within the first 72 hours, where in total 3 animals died in 9 10 the 25-72hour time slot.

11

Carson et al. (1962) exposed rats, rabbits and dogs (strains not specified) whole-12 body to nitrogen dioxide for 5, 15, 30 and 60 minutes (concentrations not specified). 13 The authors reported LC_{50} values of 416 ppm (796 mg/m³; rats, 5-min), 201 ppm 14 (385 mg/m³; rats, 15-min), 315 ppm (603 mg/m³; rabbits, 15-min), 162 ppm (310 15 mg/m³; rats, 30-min), 115 ppm (220 mg/m³; rats, 60 min). As no full information on 16 the lethality (at each applied exposure concentration) was available, the quality of 17 these calculated LC₅₀-values could not be evaluated. 18

19

20 Gray et al. (1954) exposed albino rats to nitrogen dioxide whole body. The authors reported LC₅₀ values of 1445 ppm (2764 mg/m³, 2 min), 833 ppm (1594 mg/m³, 5 21 min), 420 ppm (803 mg/m³, 15 min), 174 ppm (333 mg/m³, 30 min), 168 ppm (321 22 mg/m³, 60 min), 88 ppm (168 mg/m³, 240 min). In addition, the effect of ambient 23 24 temperature on NO₂ toxicity was studied at 100 to 105F (38-41°C) for 30 minute 25 exposure duration. An LC₅₀ of 139 ppm (266 mg/m³) was reported for this temperature (i.e. 20°C above room temperature). As no full information on the 26 27 lethality (at each applied exposure concentration) was available, the quality of these 28 calculated LC₅₀-values could not be evaluated.

29

30 Greenbaum *et al.* (1967) exposed anaesthetized mongrel dogs (n = 1/concentration) 31 to NO₂ in two experiment. In experiment 1, dogs were exposed to 0.1% (1,000 ppm; 32 1913 mg/m³) for 136 min, 0.5% (5,000 ppm; 9565 mg/m³) for 35 min, or 2% 33 (20,000 ppm; 38260 mg/m³) for 15 min. During the latter two exposures, the dogs 34 were ventilated artificially. Those dogs that survived the exposure were sacrificed 35 before recovering from anaesthesia. In experiment 2, dogs were exposed to 0.5% (5,000 ppm; 9565 mg/m³) for 5-45 min. These animals were sacrificed within 1, 24 36 37 or 48 hours after exposure. The applied post-exposure observation period is 38 considered not sufficient to cover for possible delayed deaths (see also Steadman et 39 al., 1966). Therefore the true lethality incidence could not be ascertained.

40

41 Meulenbelt *et al.* (1992a) exposed female Wistar rats (n=6/group) nose-only to 42 nitrogen dioxide. The first experiment included exposure to 0, 25, 75 or 200 ppm nitrogen dioxide (corresponding to 48, 143 or 383 mg/m³) for 10 minutes. The 43 44 animals were observed during a post-exposure period of 24 h. The second experiment 45 included exposure to 175 ppm (335 mg/m³) for 10, 20 or 30 minutes, while exposure in the third experiment was 400 ppm (765 mg/m³) for 5, 10 or 20 minutes. A fourth 46 47 experiment was performed with rats exposed for 10 minutes to 175 ppm (335 48 mg/m³). Animals were observed for clinical effects during the next 24 hours. 49 The second experiment resulted in lethality in rats of the 20- and 30-min exposure 50 group (175 ppm, 35 mg/m³), i.e. 5/6 died in each group within 3-4 and 2-3 h of 51 exposure, respectively. The third experiment resulted in lethality in all rats of the 10-52 and 20 minute groups shortly after exposure. 53 The applied post-exposure observation period is considered not sufficient to cover for 54 possible delayed deaths (see also Steadman et al., 1966). Therefore the true lethality

- 55 incidence could not be ascertained.
- 56

- 1 Meulenbelt *et al.* (1992b) exposed female Wistar rats (n=6/group) nose-only to
- 2 nitrogen dioxide at concentrations of 0, 75, 125 or 175 ppm (0, 143, 239 or 335
- 3 mg/m³) during 10 minutes. Animals were divided in four groups with postexposure
- observation periods of 6h, 24h, 3d, or 7d. In the exposure group of 335 mg/m³, one
 rat died within 18 h of exposure; other animals survived.
- 6 The applied post-exposure observation period is not considered sufficient to cover for
- 7 possible delayed deaths for all exposure groups (see also Steadman et al., 1966).
- 8 Therefore the true lethality incidence could not be ascertained.
- 9

10 Meulenbelt *et al.* (1994) exposed female and male rabbits (sedated with midazolam)

11 nose-only to nitrogen dioxide. A low- and high concentration experiment and a

- confirmation experiment was performed. For the low exposure, the animals were
 exposed for 10 min to 0, 125, 175 or 250 ppm nitrogen dioxide (corresponding to 0,
- $14 = 239, 335, 478 \text{ mg/m}^3$). The high exposure group was exposed to 0, 250, 400, 600,
- 15 800 ppm (corresponding to 0, 478, 765, 1148, 1530 mg/m³) nitrogen dioxide. A post-
- 16 exposure observation period of 1 day was included for these two experiments. No
- 17 lethality was observed in the low-exposure group. In the high exposure group, 2/3
 18 animals died after exposure to 800 ppm (1530 mg/m³).
- A confirmation experiment was included in which rabbits were exposed to 0 and 600
- ppm NO₂ (0 and 1148 mg/m³) for 10 min and were autopsied at 1, 3 or 5 days
- 21 postexposure. Lethality was not observed in this experiment.
- The applied post-exposure observation period is considered not sufficient to cover for possible delayed deaths (see also Steadman et al., 1966). Therefore the true lethality
- 24 incidence could not be ascertained.
- 25

26 Stavert and Lehnert (1990) exposed male Fischer 344 rats to nitrogen dioxide.

- Groups of rats were exposed to 10, 25, 50 or 100 ppm NO₂ (corresponding to 19, 48,
- 28 96, 191 mg/m³) for durations of 5, 15, or 30 min. No rats died. A postexposure
- 29 observation period of 24 hours was included. No significant changes in lung weight
- 30 occurred in rats exposed at 10 ppm for 30 min or at 25-50 ppm for up to 15 min.
- 31 Significant increases in lung wet weight and right cranial-lobe dry weight were found
- 32 after exposure at 50 ppm for 30 min or at 100 ppm for 5 and 15 min. However,
- 33 histologic evidence of lung injury was seen in animals exposed at 25 ppm for 30 min,
- 50 ppm for \geq 5 min, and 100 ppm for 5 and 15 min. Findings included accumulation of
- 35 fibrin, increased numbers of polymorphonuclear neutrophils and macrophages,
- 36 extravasated erythrocytes, and type II pneumocyte hyperplasia, the severity of which 37 increased with concentration and duration of expecting
- 37 increased with concentration and duration of exposure.
- 38

1 Appendix 2 Reference list

AEGL. National Research Council. Acute Exposure Guideline Levels for Selected
Airborne Chemicals. Volume 11. Washington, DC. The National Academies Press,
2012.

6

Carson, T.R., M.S. Rosenholtz, F.T. Wilinski, and M.H. Weeks. 1962. The responses of
animals inhaling nitrogen dioxide for single, short-term exposures. Am. Ind. Hyg.
Assoc. J. 23:457-462.

- 10
- Chemiekaarten. Ed 32. Den Haag. TNO/SDU uitgevers, 2017.
- 13 ERPG. Emergency Response Planning Guideline; nitrogen dioxide. American Industrial14 Hygiene Association. 2003.
- 15

Gray, E.L., F.M. Patton, S.B. Goldberg, and E. Kaplan. 1954. Toxicity of the oxides of
nitrogen. II. Acute inhalation toxicity of nitrogen dioxide, red fuming nitric acid, and
white fuming nitric acid. AMA Arch. Ind. Health 10(5):418-422.

- 19
- Greenbaum R., Bay J., Hargreaves M.D., Kain M.L., Kelman G.R., Nunn J.F., PrysRoberts C., Siebold K. Effects of higher oxides of nitrogen on the anaesthetized dog.
 Brit J Anaesth 1967; 39: 393-404.
- 23

Henschler D., Stier A., Beck H., Neumann W. Geruchsschwellen einiger wichtiger
Reizgase (Schwefeldioxid, Ozon, Stickstoffdioxid) und Erscheinungen bei der
Einwirkung geringer Konzentrationen auf den Menschen. Arch Gewerbepath
Gewerbehyg 1960, 17:547-570.

28

Hine C.H., Meyers F.H., Wright R.W. Pulmonary changes in animals exposed to
nitrogen dioxide, effects of acute exposures. Tox Appl Pharmacol 1970; 16: 201-213.

Meulenbelt, J., J.A. Dormans, M. Marra, P.J. Rombout, and B. Sangster. 1992a. Rat model to investigate the treatment of acute nitrogen dioxide intoxication. Hum. Exp. Toxicol. 11(3):179-187.

35

Meulenbelt, J., L. van Bree, J.A.M.A. Dormans, A.B.T.J. Boink, B. Sangster. 1992b.
Biochemical and histological alterations in rats after acute nitrogen dioxide
intoxication. Hum. Exp. Toxicol. 11(3):189-200.

39

40 Meulenbelt, J., L. van Bree, J.A. Dormans, A.B. Boink, and B. Sangster. 1994.

- Development of a rabbit model to investigate the effects of acute nitrogen dioxide
 intoxication. Hum. Exp. Toxicol. 13(11):749-759.
- 4344 RIVM. Interventiewaarden gevaarlijke stoffen.
- 45 http://www.rivm.nl/rvs/Normen/Rampen_en_incidenten/Interventiewaarden
- 46

47 Ruijten M.W.M.M., J.H.E. Arts, P.J. Boogaard, P.M.J. Bos, H. Muijser, A. Wijbenga.
48 Methods for the derivation of probit functions to predict acute lethality following
49 inhalation of toxic substances. RIVM report 2015-0102. Bilthoven, RIVM, 2015.

50

Stavert, D.M., and B.E. Lehnert. 1990. Nitric oxide and nitrogen dioxide as inducers of
acute pulmonary injury when inhaled at relatively high concentrations for brief
periods. Inhal. Toxicol. 2(1):53-67.

54

Steadman B.L., R.A. Jones, D.E. Rector, J. Siegel. 1966. Effects on experimental
 animals of long-term continuous inhalation of nitrogen dioxide. Tox Appl Pharmacol 9,

56 animals of 57 160-170.