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1. INTRODUCTION

SimpleBox4nano (SB4n) is a multimedia environmental fate model that is developed for the
simulation of environmental fate and exposure of nanomaterials (Meesters, Koelmans et al. 2014).
SB4n‘s mass balance equations and algorithms that are specifically derived for materials in the nano-
or microform are embedded in the SimpleBox model, which is a nested multimedia environmental
fate model for chemicals in which the environmental compartments air, water, sediment and soil are
represented by boxes (Schoorl, Hollander et al. 2016). The user guide for the SimpleBox4.0 model
written by Schoorl, Hollander et al. (2016) is available in the online library of the RIVM (see
rivm.nl/simplebox), but does not yet include the extention for application to nanomateirals:
SimpleBox4nano. The SimpleBox model is developed for chemical substances that are in atomic, ionic
or molecular forms, dissolved in water or in the gas phase, whereas the specific SB4n module
considers substances that occur in solid forms, like micro-or nanocolloids. Unlike SimpleBox, SB4n
does not treat partitioning between dissolved and particulate forms of the chemical as equilibrium
speciation but as nonequilibrium colloidal behavior. Therefore, within each compartment the micro-
or nanomaterial can occur in different physical-chemical forms (species): (1) freely dispersed, (2)
heteroaggregated with natural colloidal particles (<450 nm), or (3) attached to larger natural particles
(>450nm) that are prone to gravitational forces in aqueous media. This guide provides instructions
for the specific use of SimpleBox4nano, which is the nano extention to the SimpleBox 4.0 model. The
model and manual can be downloaded from rivm.nl/simplebox4nano.



2. RUNNING THE MODEL

2.1. Model setup

After opening the MS Excel workbook called ‘SimpleBox4.01-nano’ the following sheet will appear
containing version details, contact information references and disclaimer (Figure 1)
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46 IMPORTANT NOTES:

47 Use dynamicR sheet with caution. Alternatively use dynamicR code from macro directly in R. For info see: "Running SimpleBox dynamicR.docx”

48 Contact Joris Quik for further information.

2a ~
> version | all species output | nano micro output | input | dynamicR | regional | continental | global | engine | substances | scemarios ] ¥

B - 1 + 100%

Figure 1. Opening sheet of SimpleBox4.0
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Figure 2. Go to the input sheet. Here you can select a predefined chemical, change the scenario or
predefined case. Based on these selections, the Lookup column is populated.



2.2. Physicochemical properties

To insert the physicochemical properties of the material in micro- or nanoform, scroll down to the
row called ‘engineered nanoparticle properties’. Here the radius, density and Hamaker constant of
the material can be inserted in the ‘user input’ column.

Size and density
The size and density of the material in a nano- or microform can be inserted in the SB4n model in the
‘user input’ column in the rows called ‘Radius primary ENP’ and ‘Density primary ENP’. By default the
substance is assumed to occur as a spherically shaped massive particle. In case the user sees it fit to
follow this assumption, the size of the material can be inserted as the radius (nm) of such a sphere in
the assigned user input cell. Following this assumption also means that the specific weight (kg.m™)
assigned to the elemental composition of the material can be inserted as the density of the particles
in the specific cell in the ‘user input’ column (Figure 4).
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Figure 4. User input to insert the micro- or nanomaterial’s size and density

However, there are more options for the user in case the assumption of the material occurring as
massive spherically shaped particles is not suitable for the model run. In these cases, the user should
estimate the representative spherical size and density of the material (Figure 5).
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Figure 5. Consistency between particle size and density for non-spherical shaped materials and
nanomaterial-homo-aggregates

For example, the environmental fate and exposure of non-spherical particles and homo-aggregates
of nanomaterials in water can be simulated with SB4n by inserting the hydrodynamic radius as user
input, but the material density (kg.m>) then refers to the weight of the particulate or homo-
aggregate itself plus the weight of the surrounding medium within the hydrodynamic volume (kg)
that is to be divided with the hydrodynamic volume (m?) (Figure 5).

Hamaker constant

The Hamaker constant is a physicochemical property of the material in micro- or nanoform that
expresses the coefficient that relates the interactive van der Waals energy to the distance of
separation between two molecules where the interactive force is pair-wise additive and independent
of the intervening media (Hamaker 1937). In SB4n, the Hamaker constant is required to determine
the Van der Waals attraction between the nano- or micromaterial and natural particles in the
environment. By default, the natural particles are characterized in SB4n as SiO,-particles with water
as the surrounding medium. Data on Hamaker constants can be collected from Bergstrom (1997),
Israelachvili (1991) and Lefevre and Jolivet (2009). Hamakers constants derived for molecules with
the same elemental composition in a vacuum can be recalculated for use within SB4n (Meesters,
Quik et al. 2016):

Ax,water,SiOZ = (\/A_x A Awater) ( ASiOZ A/ Awater)

(Equation 1)

Here, Ay water,sio, refers to the Hamaker constant between nano- or micromaterial with elemental
composition x and the natural particles that is to be inserted in SB4n, A, is the Hamaker constant of
material x in vacuum, A, is the Hamaker constant of water and Ao, is the Hamaker constant of
SiO,. The Hamaker constant of water is 3.7 10%° J according to Israelachvili (1991) and that of SiO.. is
7.59 10"°° J according to Bergstrom (1997). As such, the equation for deriving the Hamaker constant
for use in SB4n can be simplified to:

Aspwater,sio, = (vAx —/3710720) (/7,59 10-20 — /3.7 10-20)

(Equation 2)

This Hamaker constant can be inserted in SB4n the designated cell in the ‘user input’ column (Figure
6).
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Figure 6. User input to insert the Hamaker constant between the nano- or micromaterial and natural
particles.

2.3. Functional assays

Functional assays here refer to interactions between the material and the environment that are
characterized by physicochemical properties of the material. SB4n includes the attachment
efficiencies between the nano- or micromaterial and the natural particles in the environment as
functional assays and the dissolution rate constants in water bodies, sediments and soils (Meesters,
Koelmans et al. 2014). The characterization and where to find the input cells for these functional
assays are described below.

Attachment efficiencies with natural particles

Attachment efficiencies refer to the probability of two particles to stay attached to each other upon a
collision event. SBAN requires attachment efficiencies between the micro- or nanomaterial and
natural particles in the environment. The natural particles are divided into two size classes: natural
colloidal particles (< 450 nm) and natural coarse particles (> 450 nm) that are more prone to
gravitational forces in aqueous media (Meesters, Koelmans et al. 2014). It is preferred to obtain such
attachment efficiencies from experimental work, but suitable data in the scientific literature are
scarce and standardized technical guidance is yet to be developed. Moreover, experimental
attachment efficiencies should be obtained under realistic environmental conditions of pH, dissolved
organic carbon (DOC) concentrations and ionic strength.




In absence of experimental data on attachment efficiencies, the Derjaguin & Landau, Verwey, and
Overbeek (DLVO) theory can be applied to theoretically derive them (Derjaguin and Landau 1941,
Verwey and Overbeek 1948). However, many environmental conditions and nano- or micromaterial
properties influence attachment efficiencies, which generally results in behavior not taken into
account by the DLVO theory (non-DLVO). It is thus emphasized that experimentally derived
attachment efficiencies are preferred over DLVO derived attachment efficiencies for simulations with
SB4n (Meesters, Koelmans et al. 2014). Appendix tables 1-4 describe the outcomes of a DLVO
calculator developed for deriving attachment efficiencies for the use of SB4n as a function of the
material’s size (nm), Hamaker constant (J), and zeta potential (mV) for attachment efficiencies with
natural colloid and coarse particles in fresh water and soil.
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261 Attachment and aggregation efficiencies between ENPs and natural particles | Variable Name Unit User inputi LookUp | Default Used Notes
262 Attachment Efficiency of ENPs and lake water NCs (<450 nm) AtefSA.w0 3] 1.00€-02| 1.00E-01| 1.00E-02 -
263 Attachment Efficiency of ENPs and lake water SPM (>450 nm) AtefSP.wO [ 1.00E-02| 1.00E-01| 1.00E-02 -
264 Attachment Efficiency of ENPs and fresh water NCs (<450 nm) AtefSA.wl 5] 1.00E-02| 1.00E-01| 1.00E-02 -
265 Attachment Efficiency of ENPs and fresh water SPM (>450 nm) AtefSP.wl 8] 1.00E-02| 1.00E-01| 1.00E-02 -
266 Attachment Efficiency of ENPs and sea water NCs (<450 nm) AtefSA.w2 [ 1.00E+00| 1.00E+00( 1.00E+00 -
267 Attachment Efficiency of ENPs and sea water SPM (>450 nm) AtefSP.w2 8] 1.00E+00| 1.00E+00( 1.00E+00 -
268 Attachment Efficiency of ENPs and deep sea water NCs (<450 nm) AtefSA.w3 8} 1.00E+00| 1.00E+00( 1.00E+00 -
269 Attachment Efficiency of ENPs and deep sea water SPM (>450 nm) AtefSP.w3 8] 1.00E+00| 1.00E+00( 1.00E+00 -
270 Auacr{mem Efficiency of ENPs and natural soil NCs (<450 nm) JAtefsA.s1 (8] 1.02€-01| 1.00E-01| 1.026-01 -
271 Attachment Efficiency of ENPs and natural soil grains AtefSP.s1 H 1.02E-01| 1.00E-01| 1.02E-01 -
272 Attachment Efficiency of ENPs and agricultural soil NCs (<450 nm) AtefSA.s2 8] 1.026-01| 1.00E-01| 1.02E-01 -
273 Attachment Efficiency of ENPs and agricultural soil grains AtefSP.s2 8] 1.026-01| 1.00E-01| 1.02E-01 -
274 Attachment Efficiency of ENPs and other soil NCs (<450 nm) AtefSA.s3 8] 1.02E-01| 1.00E-01| 1.02E-01 -
275 Attachment Efficiency of ENPs and other soil grains AtefSP.s3 8] 1.02E-01| 1.00E-01| 1.02E-01 -
276 Attachment Efficiency of ENPs and lake sediment NCs (<450 nm) AtefSA.sd0 [ 1.00E-02| 1.00E-01| 1.00E-02 - Use same as for water
277 Attachment Efficiency of ENPs and lake sediment grains AtefSP.sd0 [ 1.00E-02| 1.00E-01| 1.00E-02 - Use same as for water
278 Attachment Efficiency of ENPs and fresh sediment NCs (<450 nm) AtefSA.sd1 [ 1.00E-02| 1.00E-01| 1.00E-02 - Use same as for water
279 Attachment Efficiency of ENPs and fresh sediment grains AtefSP.sd1 [ 1.00E-02| 1.00E-01| 1.00E-02 - Use same as for water
280 Attachment Efficiency of ENPs and marine sediment NCs (<450 nm) AtefSA.sd2 [ 1.00E+00( 1.00E+00| 1.00E+00 - Use same as for water
281 Attachment Efficiency of ENPs and marine sediment grains AtefSP.sd2 1 1.00E+00| 1.00E+00| 1.00E+00 - Use same as for water
282
283 ENP dissolution rates for different species in different agueous media Variable Name Unit User inputj LookUp | Default Used Notes
284 Dissolution rate of ENPs (S) in lake water kdis.wOS.w0D [s-1] 0.00E+00(0.00E+00 0.00E+00 s-1
285 Dissolution rate of h {f of ENPs and NCs (A) in lake water kdis.wOA.wOD [s-1] 0.00E+00|0.00E+00 0.00E+00 s-1
286 Dissolution rate of heteroagglomerates of ENPs and SPM (P) in lake water kdis.wOP.wOD [s-1] 0.00E+00|0.00E+00 0.00E+00 s-1 =
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Ready 250 @ 130% (- +
T

Figure 7. User inp.)at for attachment efficiencies.

The user has the possibility to insert values for attachment efficiencies between the nano- or
micromaterial and two size classes of natural particles within 10 different environmental
compartments (e.g. fresh water, sea water, agricultural soil, etc.). In practice however, a dataset with
these 20 different attachment efficiencies is rarely available for any nano- or micromaterial (calibrate
D6.3 report). It is therefore proposed to simplify the input for attachment efficiency where possible.
It is arguable to (i) use the same attachment efficiencies derived for water and sediment, (ii), use the
same attachment efficiencies in fresh and lake water (ii) use the same attachment efficiencies for
natural, agricultural and other soils, and (iii) assume an attachment efficiency of unity in the high
saline conditions in marine water and sediment. As such, the number of required attachment
efficiencies can be reduced to four, i.e. the attachment efficiency between the nano- or
micromaterial with natural particles that are for attachment to (i) natural colloidal particles (<450
nm) in fresh water,(ii) coarse suspended particles (> 450 nm) in fresh water, (iii) natural colloidal
particles in soil, and (iv) coarse soil grains. Estimates using DLVO theory for these four types of
attachment efficiencies at varying zeta potential, radius and Hamaker constant are presented in
Appendix 1.

Dissolution rate constants

The dissolution rate constant refers to how fast the material in nano- or microform dissolves into a
molecular or ionic form. Dissolution is included in SB4N as an environmental fate process that
transforms the nanomaterial into a molecular or ionic form (Meesters, Koelmans et al. 2014). As
such, it is best represented by the sum of the rate constants of the chemical reactions known to



drive such a transformation, e.g. oxidation, sulfidation, photolysis and spontaneous dissolution (Quik,
Vonk et al. 2011). Hence, the dissolution rate constant is a functional assay that depends on the
surface chemistry between the nanomaterial and the conditions of the surrounding medium such as
pH, ionic strength or the concentration of natural organic matter. Technical guidelines to derive the
specific dissolution rate constant for a specific nanomaterial within a specific environmental medium
is under development, but not yet available (OECD 2019). In absence of experimental data on the
specific dissolution rate constant, previously derived characteristic time frames of dissolution can be
applied (Garner and Keller 2014). These dissolution time frames are characterized from dissolution
experiments performed in agueous media representing marine water, freshwater (storm water) and
soil pore water, see Table 2. (Garner and Keller 2014).

Table 2. Timeframes for dissolution of nanomaterials

Material Cloud water Freshwater Groundwater Marine

Ag "within weeks" "within weeks" "within weeks" "within weeks"
Au "no sign. diss." "no sign. diss." "no sign. diss." "no sign. diss."
C "no sign. diss." "no sign. diss." "no sign. diss." "no sign. diss."
CeO2 "no sign. diss." "no sign. diss." "no sign. diss." "no sign. diss."
CuO "within weeks" "within weeks" "within months" "within months"
NiO "within months" "within weeks" "within months" "within weeks"
TiO2 "no sign. diss." "no sign. diss." "no sign. diss." "no sign. diss."
Zn0 "within weeks" "within days" "within weeks" "within hours"

These timeframes can be converted to dissolution rate constants that SB4n requires as input, see
Table 3.

Table 3. Dissolution rate constants calculated from characteristic dissolution timeframes (Table 2).
Dissolution timeframe  Dissolution rate
constant (s™)

“within hours” 1x10°
“within weeks” 4x107
“within months” 3x10°®
“no sign. diss. “ 0

The user has the possibility to insert values for the dissolution rate constants of a substance in the
nano- or microform in 10 different compartments for three different species, i.e. freely dispersed,
hetero-aggregated, attached to coarse particles (Figure 8). In practice however, a dataset with these
30 different dissolution rate constants is rarely available for any nano- or micromaterial (calibrate
D6.3 report). It is therefore proposed to simplify the input for dissolution rate constant where
possible. It is arguable to (i) use the same dissolution rate constant for all three particle species
within a compartment, (ii), use the same dissolution rate constant in fresh and lake water (ii) use the
same dissolution rate constants for natural, agricultural and other soils, and (iii) use the same
dissolution rate constants for water and sediment. As such the number of 30 different dissolution
rate constants can be reduced to three, i.e dissolution in (i) fresh and lake water and sediment, (ii)
marine water and sediment, (iii) soil.
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283 | ENP dissolution rates for different species in different aqueous media | Variable Name Unit User inpuf] LookUp | Default | used Notes

284 kdis.w0S.w0D [s-1] 0.00£+00(0.00€+00 0.00€+00 s-1

285 rate of of ENPs and NCs (A) in lake water kdis.w0A.W0D [s-1] 0.00£+00(0.00E+00 0.00E+00 s-1

286 rate of f ENPs and SPM (P) in lake water (s-1] 0.00£+00(0.00€+00 0.00E+00 5-1

287 Dissolution rate of ENPs (S) in fresh water (s-1] 0.00£+00(0.00E+00 0.00E+00 s-1

288 rate of of ENPs and NCs (A) in fresh water [s-1] 0.00E+00|0.00E+00 0.00E+00 s-1

289 rate of f ENPs and SPM (P) in fresh water [s-1] 0.00E+00(0.00€+00 0.00E400 s-1

290  Dissolution rate of ENPs (S) in sea water [s-1] 0.00E+400(0.00E+00 0.00E400 5-1

291 rate of f ENPs and NCs (A) in sea water [s-1] 0.00€+00(0.00€+00 0.00E+00 5-1

292 rate of f ENPs and SPM (P) in sea water [s-1) 0.00£+00(0.00€+00 0.00E+00 5-1

293 Dissolution rate of ENPs (S) in natural soil pore water kdis.s15.510 (s-1] 0.00E+00|0.00E+00 0.00E+00 s-1

294 rate of of ENPs and NCs (A) in natural soll pore water kdis.s1A.510 [s1) 0.00€+00|0.00E+00 0.00E+00 s-1

295 rate of f ENPs and FP (P) in natural soil [s-1) 0.00£+00(0.00€+00 0.00E400 s-1
29 rate of ENPs (S) in soil pore water . [s-1) 0.00E+00(0.00E+00 0.00E400 5-1

297 rate of  ENPs and NCs (A) in agricultural soil pore water [kdis.s2.520 ___ lis-1] 0.00£+00(0.00E400 |  0.00E+00 s-1

298 rate of f ENPs and FP (P) in agricultural soil 20,52 [s-1] 0.00E+00|0.00E+00 0.00E400 s-1

299 Dissolution rate of ENPs (S) in other soil pore water [s-1] 0.00£+00/0.00E+00 0.00E+00 s-1

300 rate of of ENPs and NCs (A) in other soil pore water (s-1] 0.00£+00(0.00E+00 0.00€+00 s-1

301 rate of f ENPs and FP (P) in other soil [s-1] 0.00€+00|0.00E+00 0.00E+00 5-1

302 Dissolution rate of ENPs (S) in lake sediment (s-1) 0.00£+00(0.00€+00 0.00€+00 s-1

303 rate of of ENPs and NCs (A) in lake sediment [s-1] 0.00E+00|0.00E+00 0.00E+00 s-1

304 rate of f ENPs and FP (P) in lake sediment [s1] 0.00E+00|0.00€+00 0.00E+00 s-1

305 Dissolution rate of ENPs () in fresh sediment [s-1) 0.00E+00(0.00E+00 0.00E+00 5-1

306 i rate of f ENPs and NCs (A) in fresh sediment (s1] 0.00€+00|0.00E+00 0.00E400 s-1

307 rate of f ENPs and FP (P) in fresh sediment [s-1] 0.00£+00(0.00€+00 0.00€+00 5-1

308 Dissolution rate of ENPs (S) in marine sediment (s-1] 0.00€+00|0.00E+00 0.00E+00 s-1 | |
309 rate of f ENPs and NCs (A) in marine sediment [s-1] 0.00E+00|0.00E+00 0.00E+00 s-1 ;
310 rate of f ENPs and FP (P) in marine sediment [s-1] 0.00E+00(0.00€+00 0.00€+00 s-1

311 Dissolution rate of ENPs (S) in deep sea water [s-1] 0.00E+00|0.00E+00 0.00E400 s-1

312 rate of f ENPs and NCs (A) in deep sea water kdis.w3A.w3D [s-1] 0.00E+00|0.00€+00 0.00€+00 5-1 &
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Figure 8. User input for dissolution rate constants

Degradation and transformation rate constants

Transformation or degradation can be included in the SB4N model as an environmental fate process
removing the material as emitted in nano- or microform. The model however does not perform
simulations of environmental fate and exposure of transformation products other than hetero-
aggregated or dissolved species. Transformation processes may include processes such as
biodegradation, photodegradation, physical break-up of nano or microparticles (i.e. microplastics).
The input sheet contains 33 cells in which rate constants for such environmental removal
mechanisms can be included in the environmental fate simulation (Figure 9).
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75 | ENP transformation/ tion rates for different species in different media | _Variable Name __Unit User inpuf] Lookup | Default | used Notes
77, Pristine ENPs:
78| Degradation rate constant of ENPs (5) in air kdeg.as [s1] 74308 0.00e400 | 410807 5-1
» of ENPs (5) kdegwos [s-1] 0.00£400 | 0.00€400 -1
80 of ENPs(S) kdeg.wis [s-1] 0.00€400 | 0.00€400 5-1
81 Degradation rate constant of ENPs (S) in sea water kdeg.w2s (s-1) 0.00€400 | 0.00€400 5-1
82 ENPs (S) kdeg:s1s fs-1) 0.00£400 | 0.00E400 -1
8 of ENPs (5) pore water kdeg.s25 [s1] 0.00£400 | 0.00E400 s-1 |
81 Degradation rate constant of ENPs (5) in other soll pore water kdeg.s3s Is1] 0.00£400 | 0.006400 51
85 of ENPs (5) kdeg.5d0s Is-11 0.006400 | 0.008400 5-1 ‘
86 of ENPs (5) kdegsdis [s-1] 0.00€400 | 0.00€400 5-1
87 ENPs (5) kdeg.sd2s [s-1) 0.00£400 | 0.006400 -1
88 ENPs (S) in deep kdeg.wis (s1) 0.00E400 | 0.00€400 5-1
89 Heteroaglomerates: Default: same as pristine ENP
% of ENPs and NCs (4) in lake water kdeg.aA [s-1] 0.00£400 | 0.00E400 5-1
9 of ENPs and SPM (P) In lake water kdegap [s-1] 0.00€400 | 0.00E400 5-1
2 of ENPs and NCs (4) In lake water kdeg.woA [s-1] 0.00£400 | 0.008400 -1
2 ENPs and SPM (P) in lake water kdeg.wop [s1) 0.00€+00 | 0.00E400 5-1
% of and NCs (&) in fresh water kdegwiA [s1) 0.00£400 |  0.00E400 s-1
5 of f ENPS and SPM (P) in fresh water kdeg.w1p Is1) 0.00£400 | 0.006400 51
% of ENPs and NCs (4) in sea water kdeg.w2A [s1] 0.00€400 | 0.00£400 5-1
97 ENPs and SPM (P) In sea water kdegw2p (11 0.00£400 | 0.00€400 -1
9 ENPs and NCs (4) in 1A [s1] 0.006400 | 0006400 -1
9 ENPs and FP (P) in natural soil kdegs1p [s1) 0.00£+00 |  0.00€400 51
100 of and NCs (8] i por kdeg 24 [s1] 0.00£400 |  0.00E400 5-1
101 ENPsand FP (P) in kdeg.s2p [s-1) 0.00£400 | 0.00E400 -1
102 ENPs and NCs (4) in other 538 [s-1] 0.00£400 | 0.00€400 5-1
103 ENPs and FP (P) in other soll kdegs3p (511 0.006400 | 0006400 5-1
104 ENPs and NCs (A) in lake sediment kdeg.sdoA s-11 0.00€+00 0.00€+00 5-1
105 of and £9 (P) in kdeg.sdop (s1) 0.00£400 | 0.00E400 s-1
106 ENPs and NCs (&) kdeg.sd1A (s1) 0.00£400 | 0.00E400 s-1
107 ENPsand FP (P) in fresh sediment  kdeg.sd1p [s-1] 0.00£400 |  0.00E400 -1
108 of ENPs and NCs () in marine sediment  kdeg sd2A [s1] 0.00£400 | 0.00E400 5-1
109 ENPs and #P (P) in kdeg.sd2p fs-1] 0.00£400 | 0.00€400 5-1
10 ENPs and NCs (A) in deep kdegwiA [s1] 0.00£+00 | 0.00€400 5-1
m ENPS and SPM (P) in deep kdegw3p (s1] 0.00£400 | 0008400 s-1
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FiguFe 9. U;er.inpdt for transformation and /or degradation rate constants



The user is able to specify the removal rate constant per environmental species and compartment,
because the 33 input cells refer to the species of the nano- or micromaterial as pristine solid (S),
hetero-aggregated with natural colloids (A) or attached to a natural coarse particle (P) within a
specific environmental compartment. The unit for such a rate constant is s™*. Furthermore, the user is
allowed to sum the rate constants of multiple environmental removal processes under the terms that
the processes do not intervene with each other and apply to the same material species and
environmental compartment. Such a sum of rate constants can be inserted in the formula bar. For
example a rate constant one removal process of “within weeks” can be summed with a second
removal process of “within months” as ‘4E-7 +3E-8’, see Figure 9. The defaults for the transformation
/ degradation rates are set to zero, so that the cells can be left empty in case the user has no
additional removal process to include in the environmental fate simulation with SB4n.

2.4. Emission rates

Scroll down until the row of ‘EMISSION RATES’ appears and then go to the table called ‘Solid species
ENPs (S)’' appears. Here the emission rates of materials in a micro- or nanoform can be inserted per
environmental compartment for every nested scale in the column called ‘user input’ in tons per year
(Figure 3).
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76 Degradation RATE CONSTANT of the dissolved species in standard sediment at 25 oC kdegD.sed is7] ‘ 1.005-20‘ 6.58£-10|  1.00€-20 s-1
77 Degradation RATE CONSTANT of the dissolved species in standard soil at 25 oC kdegD.soil 57 1.006-20| 6.58€-09|  1.00E-20 s-1
78
79 [EMISSION RATES | Variable Name Unit User input) LookUp _ Default __ Used Notes
111(_Solid species ENPs (5) |
112 REGIONAL SCALE Scales
113 EMISSION to air EaRS ftyr’] 2| 1.00e404|  131E02 mol.s-1
114 EMISSION to lake water EWORS [tyr’] 0.00E+00(  3.01E-03 mol.s-1
115 EMISSION to fresh water EwIRS ftyr’] 1.00€+04|  1.49E-01 mol.s-1
116 EMISSION to sea water Compartments Ew2RS [tyr?] 0.00E+00 mol.s-1
117 EMISSION to natural soil EsIRS [tyr?] 1.49E-02 mol.s-1
118 EMISSION to agricultural soil ES2RS [tyr’) 225601 mol.s-2
119 EMISSION to other soil Es3RS [tyr’] 553603 mol.s-1
120 ¢ SCALE Scales
121 EMISSION to air EaCs [tyr] 0.00E+00 mol.s-1
122 EMISSION to lake water EwOCS [tyr’] 0.00€+00 mol.s-2
123 EMISSION to fresh water Ew1CS [tyr’] 0.00€+00 mol.s-1
124 EMISSION to sea water Compartments Ew2CS [tyr?] 0.00E+00 mol.s-1
125 EMISSION to natural soil EsICS [tyr’] 0.00E+00 mol.s-1
126 EMISSION to agricultural soil Es2CS ftyr’] 0.00E+00 mol.s-1
127 EMISSION to other soil Es3CS ftyr®] 0.00E+00 mol.s-1
128 MODERATEZONE +———— Scales
129 EMISSION to air EaMs [tyr’] 0.00£+00| 0.00€+00|  0.00€400 mol.s-1
130 EMISSION to water Compartments Ew2MS [tyr’) 0.00£+00| 0.00€+00| 0.00£+00 mol.s-1
131 EMISSION to soil EsMS [tyr?) 0.00£+00| 0.00£+00|  0.00E+00 mol.s-1
132 ARCTIC ZONE Scales
133 EMISSION to air EaAS [tyr’) 0.00£+00| 0.00€+00|  0.00E400 mol.s-1
134 EMISSION to water Compartments Ew2AS [tyr?] ).00E+00| 0.00E+ 0.00E+00 mol.s-1
135 EMISSION to soil EsAS [tyr] 0.00E+00 mol.s-1
136 TROPICAL ZONE Scales
137 EMISSION to air EaTs [tyr’] 0.00E+00 mol.s-1
138 EMISSION to water } Compartments Ew2TS [tyr?] 0.00E+00 mol.s-1
139 EMISSION to soil EsTS tyr* 0.00E+00 0.00E+00 mol.s-1
12 [ty __
141 LANDSCAPE SETTINGS Variable Name Unit Userinput_LookUp _ Default __ Used Notes
142
143 REGIONAL SCALE
144 Arealand AREAland.R [km?] ‘ ‘ z.zsms] 2296411 m*
Ready Count: 30 | 8(CH (4] 130% (=)

Figure 3. Inserting emission rates under user input

The emission rates inserted in the ‘user input’ column override any defaults or lookups referring to
generic scenarios. In case there is no emission expected to a certain compartment within a certain
scale, the user should enter the value of 0 in the assigned ‘user input’ cell instead of leaving the cells
empty. This procedure ensures there are no emission rates simulated which are not intended by the
user. Note that it is silently assumed that the materials are released as a ‘freely dispersed’ species.



2.5. Mass balance equations engine

SB4n is a classical multimedia mass balance modeling system (“box model”) in which the masses, m
(kg) of the nano- or micromaterial in the various environmental compartments (air, water, soil, etc.)
are obtained as the steady-state solutions of the mass balance equations for all compartments:
m=-A"e

A represents the system matrix of rate constants (s-1), and e (kg's-1) is the vector of rates of
emission into the environment. The system matrix A holds (pseudo) first-order rate constants for (1)
transport between compartments, (2) removal by transport to outside the system, (3) the rates at
which the materials are taken up in aggregates or attach to the surfaces of larger particles, and (4)
the rates at which the nano- or micromaterial dissolved, and (5) the rate the nano- or micromaterial
may be subjected to removal processes such as degradation. SB4n’s fate matrix and emission vector
can be viewed under the sheet ‘engine’, the landscape settings and advective transport processes of
the environmental system are described in Schoorl, Hollander et al. (2016).



3. PREDICTED ENVIRONMENTAL CONCENTRATIONS

The SB4n model delivers two sheets of output containing predicted environmental concentrations
(PECs). The ‘nano micro output’ sheet displays the PECs for the solid nano- or micromaterials,
whereas the ‘all species output’ also displays other species that are dissolved in water or sorbed to
natural coarse particles or grains.

3.1. Nano- and micromaterial species

The PECs for nano- and micromaterials can be found under the tab ‘nano micro output’. The output
sheet delivers PECs across the different scales and environmental compartments included in the
SB4n model. Furthermore, the sheet delivers species concentrations of material in a nano- or
microform occurring as free solid species (S), the alternate species (A) that are in a nano- or
microform hetero-aggregated with natural colloid particles and the particulate species (P) that are in
a nano- or microform attached to a natural coarse particle (Figure 10).
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Regional Continental Moderate Arctic Tropical Regional Continenta Moderate Arctic Tropical |User defined cut-off
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Figur;: 10. SB4n’s prediéted environmental concentrations (PECs) material species in nano- or
microform.

The ‘nano micro output’ sheet also provides an input cell for the user to define below what size the
material is to be considered bioavailable. The predicted bioavailable concentrations relevant for the
specific model run are calculated as the sum of the nano- or micromaterial species concentrations
that are smaller than the user’s determined as cut-off diameter for bioavailability (Table 4).

Table 4. Summing of species concentrations relevant for bioavailability according to user
User defined cut-off diameter Bioavailable
concentration
User cut-off > Diameter P species PEC (S+A+P)
Diameter A species < User cut-off < Diameter P species PEC (S+A)
Diameter S species < User cut-off < Diameter A species PEC (S)
User cut-off < Diameter S species 0



In earlier publications of the SB4n model (Meesters, Quik et al. 2016, Meesters, Peijnenburg et al.
2019), the cut-off diameter is set to 450 nm, because in environmental risk regulations the
bioavailable fraction of a chemical or metal compound is arbitrary defined as the fraction that “is
able to pass through a filter of <0.45 um (ECHA, 2008). It is however uncertain whether the arbitrary
split of <0.45 pm applies to environmental exposure estimation and risk assessment of nanomaterials
(Koelmans, Diepens et al. 2015).

3.2. Other species

SB4n’s PECs for both dissolved and solid species can be viewed under the tab ‘all species output’
(Figure 11).
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Figure 11. SB4n’s pfédiéteél environmental concentrations (PECs) under all species output.

The ‘output’ sheet is arranged per environmental compartment, species (Column B) and scale
(Columns M-Q).

e

1. Total in water *i*'l"'l' o +® '|"—I
2. Dissolved (D) *ik'l'
3. Dissolved in water *#’

4. Dissolved and sorbed to solids ‘
) %°

5. Freely dispersed solid (S
6. Attached to NC (A) @
7. Attached to suspended particle (P)

Figure 11. Substance forms considered within SimpleBox4nano.

The output sheet presents seven different predicted environmental concentrations per
environmental compartment, one for each species considered in SB4n. The total concentration
includes all species. The total dissolved (2) concentration refers to sum of the mass concentrations of
the material that is dissolved into ions, atoms or molecules that is available for exposure or sorbed to



solid particles. This concentration is also referred to as the dissolved species (D). The dissolved in
water (3) refers to the dissolution products of the nano- or micromaterial that are available for
exposure, whereas the ‘dissolved and sorbed species’ (4) are considered not bioavailable as they are
sorbed to natural coarse particles. The freely dispersed solid species (S) refers to the parent nano- or
micromaterial that is not dissolved, aggregated or attached (5). The alternate species (A) here refer
to the species that are in a nano- or microform hetero-aggregated with natural colloid particles (6).
The particulate species (P) refers to the species that are in a nano- or microform attached to a
natural coarse particle (7). The relevant exposure concentration depends on the considerations of
the user.
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Appendix 1: Tables of DLVO derived attachment efficiencies

Annex | Table 1. DLVO derived attachment efficiencies between ENPs and natural colloids in fresh water

ENP Diameter (nm)
1 10 20 30 40 50 100
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-21 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.94 0.77 0.69 0.64 0.59 0.56 0.42
-20 0.88 0.55 0.39 0.27 0.19 0.13 | 2.80E-02
-30 0.83 0.38 0.18 0.08 0.036 0.017 | 9.50E-04
-40 0.78 0.25 0.075 0.021 0.0062 0.0021 | 3.40E-05
-50 0.74 0.17 0.031 0.0056 0.0012 0.00028 | 1.60E-06
Zeta (mV) 20 1 1 1 1 1 1 1| 5.00E-21 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.94 0.82 0.79 0.77 0.76 0.76 | 7.40E-01
-20 0.88 0.64 0.54 0.48 0.42 0.37 | 2.20E-01
-30 0.84 0.48 0.32 0.22 0.15 0.1 | 2.10E-02
-40 0.79 0.35 0.17 0.082 0.039 0.02 | 1.40E-03
-50 0.76 0.25 0.087 0.029 0.01 0.0038 | 1.07E-04
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-20 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.95 0.85 0.85 0.85 0.85 0.86 0.87
-20 0.89 0.7 0.66 0.63 0.62 0.6 0.55
-30 0.84 0.56 0.46 0.39 0.33 0.29 0.14
-40 0.8 0.43 0.29 0.19 0.13 0.09 0.018
-50 0.77 0.33 0.17 0.088 0.045 0.024 0.0021
Zeta (mV) 20 1 1 1 1 1 1 1| 5.00E-20 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.96 0.95 0.97 0.98 0.98 0.99 0.99
-20 0.92 0.89 0.93 0.95 0.96 0.97 | 9.90E-01
-30 0.88 0.83 0.88 0.92 0.94 0.95 | 9.80E-01
-40 0.85 0.77 0.83 0.87 0.9 0.92 | 9.60E-01
-50 0.82 0.71 0.77 0.82 0.85 0.88 | 9.40E-01
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-19 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.97 0.98 0.99 0.99 1 1 1
-20 0.93 0.96 0.98 0.99 0.99 1 1
-30 0.9 0.93 0.97 0.98 0.99 0.99 1
-40 0.88 0.91 0.96 0.98 0.99 0.99 1
-50 0.85 0.88 0.94 0.97 0.98 0.99 1




Annex | Table 2. DLVO derived attachment efficiencies between ENPs and natural suspended coarse particles in fresh water

Water
ENP Diameter (nm)
1 10 20 30 40 50 100
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-21 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 1 0.96 0.89 0.81 0.69 0.54 | 4.50E-02
-20 0.99 0.89 0.62 0.26 0.067 0.14 | 5.20E-06
-30 0.99 0.77 0.23 0.024 0.0018 0.00014 | 4.90E-10
-40 0.99 0.61 0.054 0.0017 | 5.20E-05 | 1.60E-06 | 7.70E-14
-50 0.98 0.44 0.012 0.00015 | 1.90E-06 | 2.60E-08 | 2.60E-17
Zeta (mV) 20 1 1 1 1 1 1 1| 5.00E-21
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 1 0.97 0.95 0.92 | 8.90E-01 | 8.50E-01 | 6.20E-01
-20 0.99 0.92 0.8 0.61 | 3.80E-01 | 1.90E-01 | 2.00E-03
-30 0.99 0.85 0.51 0.16 | 3.20E-02 | 5.60E-03 | 1.00E-06
-40 0.98 0.74 0.21 0.021 | 1.70E-03 | 1.30E-04 | 5.70E-10
-50 0.98 0.61 0.065 0.0026 | 9.70E-05 | 3.70E-06 | 5.60E-13
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-20 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 1 0.98 0.97 0.96 0.95 0.94 0.93
-20 0.99 0.94 0.89 0.82 0.72 0.61 0.1
-30 0.99 0.89 0.72 0.44 0.2 0.071 0.0002
-40 0.99 0.82 0.44 0.11 0.019 0.00294 | 3.10E-07
-50 0.98 0.73 0.19 0.02 0.0016 0.00013 | 6.30E-10
Zeta (mV) 20 1 1 1 1 1 1 1| 5.00E-20 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 1 0.99 1 1 1 1 | 1.00E+00
-20 1 0.99 0.99 0.99 0.99 1 | 1.00E+00
-30 0.99 0.98 0.98 0.98 0.99 0.99 | 1.00E+00
-40 0.99 0.97 0.97 0.97 | 9.80E-01 | 9.80E-01 | 9.90E-01
-50 0.99 0.95 0.95 0.95 | 9.50E-01 | 9.50E-01 | 9.60E-01
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-19 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 1 1 1 1 1 1 1
-20 1 1 1 1 1 1 1
-30 0.99 0.99 1 1 1 1 1
-40 0.99 0.99 1 1 1 1 1
-50 0.99 0.99 0.99 1 1 1 1




Annex | Table 3. DLVO derived attachment efficiencies between ENPs and natural colloids in soil pore water

Soil
ENP Diameter (nm)
1 10 20 30 40 50 100
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-21 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.87 0.47 0.26 0.13 0.06 0.027 | 5.30E-04
-20 0.76 0.165 0.024 0.0029 0.00038 | 4.10E-05 | 3.90E-09
-30 0.67 0.052 0.0019 | 5.90E-05 | 2.00E-06 | 7.60E-08 | 5.30E-14
-40 0.597 0.017 | 0.000182 | 1.80E-06 | 2.00E-08 | 2.80E-10 | 2.70E-18
-50 0.54 0.0065 | 2.50E-05 | 9.30E-08 | 4.30E-10 | 2.50E-12 0
Zeta (mV) 20 1 1 1 1 1 1 1| 5.00E-21 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.87 0.56 | 4.10E-01 | 2.90E-01 | 2.10E-01 | 1.40E-01 0.018
-20 0.77 0.24 | 6.70E-03 | 1.60E-02 | 3.50E-03 | 7.90E-04 | 1.00E-06
-30 0.68 0.089 | 7.50E-03 | 5.40E-04 | 4.00E-05 | 3.30E-06 | 5.60E-11
-40 0.61 0.034 | 9.50E-04 | 2.40E-05 | 6.80E-07 | 2.20E-08 | 8.10E-15
-50 0.56 0.014 | 157E-04 | 1.70E-06 | 2.10E-08 | 3.10E-10 | 4.30E-18
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-20 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.88 0.62 0.53 0.46 0.4 0.35 0.15
-20 0.78 0.31 0.13 0.051 0.018 0.0064 | 5.20E-05
-30 0.69 0.13 0.021 0.0027 0.00036 | 5.00E-05 | 8.40E-09
-40 0.62 0.057 0.0032 0.00016 | 8.80E-06 | 5.30E-07 | 2.60E-12
-50 0.57 0.026 0.00063 | 1.40E-05 | 3.60E-07 | 1.10E-08 | 2.50E-15
Zeta (mV) 20 1 1 1 1 1 1 1| 5.00E-20 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.9 0.85 0.89 0.91 0.94 0.99 | 9.80E-01
-20 0.82 0.67 0.7 0.75 0.79 | 8.20E-01 | 9.20E-01
-30 0.75 0.48 0.45 | 4.40E-01 | 4.20E-01 | 4.10E-01 | 3.00E-01
-40 0.69 0.33 0.23 | 1.50E-01 | 9.70E-02 | 5.90E-02 | 5.00E-03
-50 0.64 0.23 | 1.00E-01 | 4.00E-02 | 1.50E-02 | 5.80E-03 | 6.60E-05
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-19 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.92 0.93 0.97 0.98 0.99 1 1
-20 0.85 0.85 0.92 0.96 0.98 0.98 1
-30 0.79 0.76 0.86 0.92 0.95 0.97 1
-40 0.74 0.66 0.77 0.86 0.91 0.94 1
-50 0.7 0.57 0.66 0.75 0.83 0.88 0.97




Annex | Table 4. DLVO derived attachment efficiencies between ENPs and soil grains

Soil
ENP Diameter (nm)
1 10 20 30 40 50 100
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-21 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.99 0.83 0.39 0.07 0.008 0.00081 | 5.50E-09
-20 0.98 0.36 0.005 | 3.90E-05 | 2.50E-07 | 1.60E-09 | 1.00E-20
-30 0.97 0.057 | 3.80E-05 | 1.80E-08 | 8.50E-12 | 3.70E-15 | 0.00E+00
-40 0.96 0.0065 | 3.40E-07 | 1.40E-11 | 5.50E-16 | 2.00E-20 0
-50 0.95 0.00084 | 4.70E-09 | 2.20E-14 | 8.80E-20 0 0
Zeta (mV) 20 1 1 1 1 1 1 1| 5.00E-21 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.99 0.88 | 6.40E-01 | 2.90E-01 | 8.40E-02 | 1.90E-02 | 5.40E-06
-20 0.98 0.52 | 2.90E-02 | 6.10E-04 | 1.20E-05 | 2.10E-07 | 3.30E-16
-30 0.97 0.13 | 3.50E-04 | 6.40E-07 | 1.10E-09 | 1.80E-12 0
-40 0.96 | 2.00E-02 | 4.70E-06 | 8.80E-10 | 1.50E-13 | 2.60E-17 0
-50 0.95 | 3.10E-03 | 8.80E-08 | 2.10E-12 | 4.60E-17 0 0
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-20 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.99 0.91 0.78 0.57 0.32 0.15 0.00064
-20 0.98 0.64 0.09 0.0047 0.00019 | 7.40E-06 | 5.40E-13
-30 0.97 0.23 0.0018 | 8.60E-06 | 3.80E-08 | 1.60E-10 0
-40 0.96 0.045 | 3.30E-05 | 1.90E-08 | 9.60E-12 | 4.80E-15 0
-50 0.95 0.0081 | 8.00E-07 | 6.30E-11 | 4.60E-15 | 3.30E-19 0
Zeta (mV) 20 1 1 1 1 1 1 1| 5.00E-20 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 0.99 0.97 0.98 0.98 0.98 0.99 | 1.00E+00
-20 0.99 0.93 0.89 | 8.40E-01 | 7.80E-01 | 7.10E-01 | 1.80E-01
-30 0.98 0.81 | 4.70E-01 | 1.40E-01 | 2.50E-02 | 3.90E-03 | 2.80E-07
-40 0.97 0.58 | 6.21E-02 | 2.50E-03 | 8.70E-05 | 3.00E-06 | 1.10E-13
-50 0.97 0.29 | 4.50E-03 | 4.00E-05 | 3.30E-07 | 2.60E-09 | 6.90E-20
Zeta (mV) 20 1 1 1 1 1 1 1| 1.00E-19 Hamaker (J)
10 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
-10 1 0.99 1 1 1 1 1
-20 0.99 0.98 1 0.99 1 1 1
-30 0.98 0.95 0.96 0.97 0.97 0.98 1
-40 0.98 0.91 0.85 0.76 0.63 0.45 | 1.90E-02
-50 0.97 0.82 0.51 0.16 | 3.30E-02 | 5.70E-03 | 6.60E-07




