English Abstract An estimate was made of present global emissions from
air traffic using statistical information on fuel consumption, aircraft
types and applying emission factors for various compounds. To generate
scenarios for future emissions from air traffic, assumptions were used
regarding the development of the volume of air traffic, of specific fuel
consumption and of the emission factors. In addition, some policy
alternatives were calculated in which a number of measures were implemented
to reduce aircraft emissions. In co-operation with the UK Department of
Trade and Industry (DTI) scenarios of the development of the volume of
global air traffic have been constructed, using economic growth figures from
three scenarios defined by the Dutch Central Planning Bureau (CPB), labelled
'European Renaissance' (ER), 'Global Shift' (GS) and 'Balanced Growth' (BG).
Combined with assumptions on the development of specific fuel consumption
and on the emission factors global emission scenarios for air traffic were
constructed for the years 2003 en 2015. Current trends of global emissions
of greenhouse gases from air traffic show for the period 1990-2015 a
substantial autonomous growth of about 140-190% for NOx and between 180-250%
for other compounds. Global totals appear to be rather insensible with
regard to the economic scenarios used for the projections. Related to other
energy-related emissions, the growth will be larger since air traffic is
expected to grow faster than other energy consumption. Furthermore,
indications are given of the maximum potential of policy measures to reduce
aircraft emissions globally. Depending on the compound, emissions could be
reduced substantially in 2015 (typically 25% compared with the reference
scenarios), if strong technological measures would be implemented to a high
degree (without retrofits of the current fleet). The cumulative effect of
integrated (technical, operational or economic) control policies can be
substantial, in particular with regard to NOx emissions. The results
indicate that a substantial limitation - in some cases even a reduction in
absolute figures - of the uncontrolled growth of emissions may be achieved,
provided that the assumed strong technological development would indeed
occur and were implemented to a high degree, and were combined with other
(operational and economic) policy measures. The calculated future global
emissions were spatially distributed in three dimensions using the 3D air
traffic database of Warren Spring Laboratory (WSL) (now: AEA, Harwell) and
emission factors defined by WSL and the Dutch National Aerospace Laboratory
(NLR). The data from this database were aggregated and included as Version
1 of the Emissions Database for Global Atmospheric Research (EDGAR) of
RIVM/TNO. Subsequently, the EDGAR functionality was used to generate
3-dimensional distributions of emissions for the years 2003 and 2015.
Combined with time profiles, which were compiled from data provided by
McDonnell-Douglas, these 3D emissions scenarios were used for
atmospheric-chemical research. The cruising altitude per aircraft type and
the seasonal variation were assumed to stay constant in time. This study
combines the results of an air traffic projection model with a gridded air
traffic emissions database to generate for future years three-dimensional
spatial distributions of aircraft emissions using well recognized and
documented reference scenarios, thus allowing a comprehensive assessment of
the atmospheric impact of aircraft emissions relative to other sources.
This complements the aggregated comparison of global emissions from aircraft
and other sources, such as presented in this report, and provides pivotal
information for environmental assessments of the impact of the emissions by
atmospheric models.
Rapport in het kort
Een schatting is gemaakt van de huidige mondiale
emissies van vliegverkeer met behulp van statistische informatie over
brandstofverbruik, vliegtuigtypen en de toepassing van emissiefactoren voor
verschillende stoffen. Voor scenario's van toekomstige emissies van
vliegverkeer zijn aannames gebruikt over de volume-ontwikkeling van
vliegverkeer, de ontwikkeling van het specifiek energieverbruik en voor de
emissiefactoren. Tevens zijn enkele varianten opgesteld van scenario's
waarin extra emissiereducerende maatregelen verondersteld zijn. In
samenwerking met het Britse Department of Trade and Industry (DTI) zijn met
het DTI-luchtvaartmodel scenario's voor de volume-ontwikkeling van de
mondiale luchtvaart opgesteld waarbij de economische groeicijfers zijn
gebruikt van drie door het Centraal Plan Bureau gedefinieerde scenario's
genaamd 'European Renaissance' (ER), 'Global Shift' (GS) en 'Balanced
Growth' (BG). Samen met veronderstellingen voor de ontwikkeling van
specifiek brandstofverbruik en emissiefactoren zijn hiermee mondiale
emissiescenario's voor luchtvaart opgesteld voor 2003 en 2015. De huidige
trend van broeikasgasemissies door vliegverkeer vertoont in de periode
1990-2015 een aanzienlijke autonome groei van 140 tot 190% voor NOx en
tussen 180 en 250% voor andere stoffen. De ontwikkeling van de wereldwijde
emissies van broeikasgassen door vliegverkeer is tamelijk ongevoelig voor de
verschillen tussen de economische scenario's die gebruikt zijn. Ten
opzichte van andere energie-gerelateerde emissies is de groei van
luchtvaartemissies groter, omdat luchtverkeer naar verwachting sneller zal
groeien dan het overige energiegebruik. Er is ook een schatting gemaakt van
het maximale mondiale effect van beleidsmaatregelen gericht op de reductie
van luchtvaartemissies. Afhankelijk van de stof zouden de emissies in 2015
aanmerkelijk gereduceerd kunnen worden ten opzichte van de
referentiescenario's (gemiddeld zo'n 25%), indien een zwaar pakket van
maatregelen volledig geimplementeerd zou worden (zonder zgn. retrofits bij
de bestaande luchtvloot). Het cumulatieve effect van een geintegreerd
(technisch, operationeel en economisch) pakket van reductiemaatregelen kan
aanzienlijk zijn, in het bijzonder bij de emissies van NOx. De resultaten
laten zien dat een aanzienlijke beperking - en in sommige gevallen zelfs een
reductie in absolute zin - van de autonome groei van de emissies zou kunnen
worden bereikt, mits de veronderstelde sterke technologische ontwikkeling
inderdaad plaats vindt en deze nieuwe technologie ook volledig wordt
toegepast, en wordt gecombineerd met andere, stringente (operationele en
economische) beleidsmaatregelen. De berekende toekomstige mondiale emissies
zijn drie-dimensional verdeeld met behulp van de 3D-luchtvaartdatabase van
Warren Spring Laboratory (WSL) (nu: AEA, Harwell) en emissiefactoren
opgesteld door WSL en het Nationaal Lucht- en Ruimtevaart Laboratorium
(NLR). De gegevens van deze database zijn opgenomen in Versie 1 van de
Emissions Database for Global Atmospheric Research (EDGAR) van het RIVM, en
vervolgens bewerkt tot drie-dimensionale emissieverdelingen voor de jaren
2003 en 2015. Vlieghoogte per vliegtuigtype en tijdverdeling (over maanden)
zijn daarbij constant verondersteld. Samen met tijdprofielen, die
ontwikkeld zijn door bewerking van gegevens van McDonnell-Douglas, zijn deze
emissiescenario's gebruikt worden voor atmosferisch-chemisch onderzoek.
Door de combinatie van resultaten van een luchtvaart-scenariomodel met een
luchtvaart-emissiedatabase op grid, zijn voor toekomstige jaren
3-dimensionale ruimtelijke verdelingen van luchtvaartemissies verkregen, die
gebaseerd zijn op bekende en goed gedocumenteerde basisscenarios. Dit maakt
het mogelijk om een geintegreerde analyse te maken van de atmosferische
effecten van de emissies van luchtverkeer tegen de achtergrond van andere
emissiebronnen. Deze resultaten zijn een 'ruimtelijke aanvulling' van de
geaggregeerde vergelijking tussen de totale luchtvaart en wereldwijde
grondemissies zoals hierboven beschreven en verschaffen informatie voor
analyse van de milieu-effecten van de emissies door atmosferisch-chemische
modellen.